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Abstract
In contrast to typical planning problems, automated earthmov-
ing operations such as digging a trench or leveling a mound of
soil pose some additional challenges. First, soil is diffuse and
therefore a unique description of the world requires a very large
number of variables. Second, the interaction between the robot
and the world is very complex to the point that it is not possible
to accurately predict the effect of a candidate action, in this
paper, 1 pose planning for earthmoving operations as a problem
of constraint optimization. I discuss why on-line search is nec-
essary and present experimental results from a testbed where a
robot is tasked to dig a trench.

Introduction

In our laboratory, we develop automation for machines that
operate in industries such as mining and construction. Three
characteristics distinguish such machines. They are capable,
e~cient and safe. Capability has to do with scale--forceful
interaction with the world requires machines that can generate
large forces. Efficiency boils down to performing a task as fast
as possible without compromising output. Safety is a matter of
ensuring collision free operation and in some cases avoiding
tipover.

Used judiciously, models can greatly help in increasing effi-
ciency and safety. By "models" I mean physical, numerical
models of mechanisms and their interaction with the world.
(Models of planning and sensing are also useful, but I do not
address them here.) That is, givefi a candidate input, these mod-
els predict the corresponding output of a (sub) system. 
course we would like invertible models--models that compute
the input necessary for a desired effect--but these are rarely
available. Good forward models are often the best we can
achieve. They provide the proaction that is necessary for sac-

cessfui goal directed activity, at least in the environments in
which we must put our autonomous machines. When invertible
models are not possible, search is necessary.

In this paper I will concentrate on one task---earthmoving--
that highlights the approach espoused above. I have a robot
manipulator that is equipped with a scoop ("bucket") and a sen-
sor that allows it to measure the shape of the terrain around it.
I would like the robot to dig a trench in a sandbox as per spec-
ification, or perhaps level a mound of soil. On the surface, such
a problem is familiar to researchers in artificial intelligence.
The world is in some initial state and must be modified to some

other state, through the use of a reasonably competent agent. To
be considered successful, the agent must independently cause
the transition for a Sufficiently large set of initial and goal
states. There are two main difficulties with operating in this
particular domain. First, the dynamics of the interaction
between a robot earthmover and the world are very complex.
This means that it is difficult to produce accurate forward mod-
els of actions that the robot might choose. Second, since soil
is diffuse, the number of variables required to uniquely specify
the state of the world is extremely large. In other words, the
configuration space that the robot operates in is essentially infi-
nite.

I have formulated the task of planning earthmoving operations
as a problem of constraint optimization. The nature of the mod-
els in this domain dictates the use of search. Further, since the
large configuration space affects the choice of the control
parameters, there is no hope of doing the search off-line.

Several researchers have adopted a similar view to planning for
diverse tasks such as robot juggling and robot pool playing
(Jordan 90, Moore 92, Schaai 94). Feiten and Bauer have
devised a planner for a mobile robot operating in a cluttered
environments that plans in the space of actions rather than in
the configuration space of the vehicle (Feiten 94). Kelly
describes a methodology for navigation of a cross country
robot based on like principles (Kelly 95). My approach is also
similar in motivation to work in classical optimal control (Kirk
70) in that it seeks to determine the control signals (plans) that
will both satisfy some constraints as well as optimize some per-
formance criterion.

Below I discuss five principles developed from my experience
with a planner for earthmoving.

¯ Develop a tractable representation. Since the configura-
tion space for this domain is intractable, another framework is
necessary. Search is conducted in the space of control parame-
ters (action space) that abstracts the prototypical task that the
robot must perform. It is also necessary to develop the notion
of an atomic action and a forward model that predicts the effect
of an action on the world. Finally, we need an evaluation func-
tion to measures the utility of an action.

¯ Reduce the search space. On-line search dictates com-
pacmess of the search space. In some cases an analysis of the
mechanics will often show that not all the parameters are inde-
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pendent. In other cases, if it is found that the utility function is
monotonic in relation to one of the parameters, then it needn’t
be searched for.

¯ Use force as well as geometry to constrain planning.
Geometry of the world and mechanism provides useful con-
straints on the action space. However, force constraints that
arise from the mechanics of robot-world interaction can effec-
tively represent the bounds on what the robot can actually do in
a world where friction and torques are significant. No a priori
models may be available in which case it is necessary to learn
these models from experience.

¯ Use multi-resolution search and heuristics. Abstraction of
the search into levels of varying granularity makes the search
more efficient. In some domains the addition of common sense
heuristics, can make the progression of the plans much more
natural.

¯ Take plans generated with a grain of salt. If meaningful
models of uncertainty can not be incorporated into the plan-
ning, the plans generated through the kind of process described
above should be thought of a means of being proactive. The
plans are best handed to lower levels controls that are tightly
coupled to the world with feedback.

Developing A Tractable Representation

To develop a planner for a task such as digging a trench, we
need three things: a search space, a forward model and an ~al-
uation function.

The Search Space

Instead of abstracting robot and world state, we could abstract
the task that the robot is to perform such that atomic actions are
described by a compact set of parameters. The space spanned
by these parameters is called an action space. At every step, the
robot selects from the set of feasible actions, one that optimizes
some cost criterion. The chosen plan is guaranteed to satisfy
constraints (e.g. avoid collisions) as well as optimize a cost cri-
terion (e.g. minimize joint torques). Fig. I provides a schematic
view of this optimization.

~ataP~neet
all constraints
and are "optimal"

Fig. l A ~hematlc view of constraint optimization. I

More formally, an action space is spanned by the range of

parameters used to define an action that a robot is capable of
executing. Each point in this space represents an atomic action.
The space can be separated into two sets-- the set of all feasi-
ble actions and the set of actions known to fail. An action might
fail because it is impossible to achieve or it results in an unde-
sirable effect¯ The task of an action space planner, then, is a
familiar problem in optimal control:

Maximize~Minimize h(lk) subject to g(lli)

where hO is a utility function and gO are constraints that
delimit the set of feasible actions and lli spans the set of actions
that a robot can execute.

Note that the constraints change whenever the state of the
world changes. Since we cannot predict the state of the world
in response to robot actions and there is a large branching factor
(many actions may be chosen at any step), it is not practically
feasible to consider sequences of digging actions. Hence the
searching will involve identification of only the action that is
optimal over a single planning step.

An atomic action

Since an action space encodes actions, not mechanisms, our
task representation will not include any details about the con-
figuration of the mechanism. Instead, we will encode the trajec-
tory followed by the excavator bucket (Fig. 2)

Fig. 2 Manipulator arm equipped v,~ a bucket, creating a trench.

There are an infinite number of digging trajectories that could
be used so it is necessary to consider a smaller set--those that
are of a particular form. For example, we could base the notion
of an atomic action on the patterns used by human operators.
There are typically three phases to an operationm penetrate,
drag and curl. Trajectories of this form can be parameterized by
a smaller set (Fig. 3).

This representation requires six variables and a functional to
represent uniquely: k is the distance from a fixed reference
frame to the point where the bucket enters in the soil, a is the
angle at which the bucket enters the soil. It travels along this
angle for a distance d!, and then follows a horizontal path for a
distance d2. Finally the bucket rotates through the soil along an
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Fill. 3 A typical dig during a trenching operation. A digging trajectory
of this form can be represented by (k, oh 1, d2, d3, r, PO).

arc of length d3 and radius r. We will also need to determine the
value of P0 (the pitch angle of the bucket, relative to a fixed
coordinate frame) throughout the dig.

The Forward Model

One interesting aspect of this problem is that no computation-
ally tractable forward models are available. That is, given a
shape of the terrain, and a candidate action, there is no hope of
predicting the resultant terrain. Finite element models are avail-
able to perform such simulations but since a single run might
take tens of minutes to simulate, it is not possible to use such
models for the purposes of planning. We might satisfy our-
selves with something less. For reasonable plans it is possible
to approximate the resulting trajectories. Under this assump-
tion, it is possible to calculate the forces experienced at the cut-
ring edge (using a pseudo-static analysis) as well 
approximate the-amount soil that might be swept into the
bucket.

The Evaluation Function

Typically, for earthmoving operations it is essential to optimize
the volume of soil excavated. Since there is often more than one
action that will meet this requirement, it is possible to add other
criteria such as minimizing the time taken to complete the dig,
or minimizing the torques on the joints of robot. Note that the
evaluation is good for only single actions and must be recom-
puted across the range of the action space whenever the state of
the world changes. I assume that the state of the world (topol-
ogy of the terrain) can be measured using a sensor.

Reducing the Search Space

Taken naively, the search space as described above is too large
to be searched on-line. However, some analysis of the space
can make the search more tractable. For example, if we assume
that the amount of soil excavated increases monotonically with
d2, its value can be found easily if the other variables are instan-
tiated. Values of P0, r, d3 can be found from a mechanical anal-
ysis of contact between the tool and the terrain (Singh 95a).

The result is that our action space can be spanned by a compact
three-tuple (k, ft., d!).

Using Force & Geometry to Constrain Planning

Recall that each point in an action space represents a unique
action. We can pose constraints in the regions of the space that
correspond to plans that the planner should stay away from.

Geometric Constraints

A plan may be geometrically infeasible because it requires a
robot to exceed its range of motions or because it violates some
geometric criterion associated with successful execution of the
task.

The teachability constraint. Fig. 4 shows a graphical depic-
tion of the set of digging actions that are within the workspace
of the robot for the very first dig. The surface that is formed by
this three-dimensional set represents critical points that are on
the edge of being reachable. Since the actions are parameter-
ized with a larger set of variables than can be visualized in three
dimensions, some of the critically reachable plans are in the
interior of the set.

joint limit

limit

Fig. 4 Two views of set of feasible plans that meet the teachability
constraint. This set is specific to the joint limits of the robot used and to
the terrain before the action Is commenced. The tmjectddes implied by
three points are shown explicitly. The shaded region shows the amount
of soil swept by each trajectory.

The shaping constraint. The shaping consWaJnt for trenching
keeps the trajectory of the bucket from going past the shape of
the desired trench (dashed line in Fig. 5). That is, all trajectories
that extrude past these boundaries are excluded.

The volume constraint. Of the geometrically feasible actions,
some will yield a partially filled bucket, some will result in a
full bucket and yet others will sweep through the terrain to
excavate more soil that can possibly be held in the bucket. A
simple calculation of swept volume is used to predict the
amount of soil excavated by a digging action. All actions that
excavate a volume larger than a preset percentage of the bucket
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Fill. S Two views of set of feasible plans that meet the shaping
constraint. Note that all of the digs here stay within the bounds of the
trench that has been specified (dashed line)

capacity, are excluded (Fig. 6).

(a)

Fill. 6 Two views of set of feasible plans that meet the volume
constraint. All trajectories sweep only sweep up to as much soil that the
bucket can hold

The set of actions that meet all the geometric constraints is
shown in Fig. 7.

~1~ 7 Two views of set of feasible plans that meet the shaping
conslralnt.

Force Constraints

If a robot earthmover is infinitely strong, that is, it can muster
any torque required, then it is sufficient to consider only geo-
metric constraints. More realistically, for robots with torque
limits, it is necessary to consider the required forces. If we
could estimate the forces required for candidate digs, we would
have a good criterion by which to further restrict the set of digs
that are geometrically feasible. Unfortunately, the interaction
between an excavating tool and terrain is complex enough that
no simple physics-based models are available to predict the
resistive forces for arbitrary actions and terrain shapes. In ear-
lier work I have shown a method that learns to predict resistive
forces based on observation of the resistive forces, tool trajec-
tories and the shape of the terrain from previously conducted
digging experiments (Singh 95b). Fig. 8 compares the geomet-
ric and force constraints for the very first digging actionm for
some values of the parameters, the robot is not limited geomet-
rically but the corresponding actions can not be achieved
because the required forces are too great.

~ Co~lmlmJ For~ Cmm~m

I ml

Fig. 8 Comparison of geometric constraints vs. force constraints for
one value of k.

To determine if a candidate dig passes the force constraint, the
force prediction function is called. The predicted resistive force
and the robot’s trajectory are used to calculate the effective
joint torques required to overcome the resistive forces. A can-
didate dig is force-feasible if the joint torques due to resistive
forces do not exceed the torque capability of the robot.

Using Multi-resolution Search and Heuristics
So far I have examined only a planar problem, that of digging
a trench as wide as the excavator bucket. For more complex
problems such as the excavation of a foundation footing (Fig.
9), we could abstract the problem such that at a coarser level the
ultimate goal is broken down into a sequence of trenches. The
alternative is to make the planner global by searching for addi-
tional variables that dictate base position. This has two prob-
lems. First, the search space becomes very large and second, it
is difficult to develop an efficient sequence of actions.

Sometimes, there are common sense procedures that can be
used at a coarser level of planning. For example, when digging
into a cavity we might always start near the top, before digging
further down into the hole for the same reason as one starts
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Fig. 9 Plan view of an excavator backhoe digging a footing. 1"he
machine starts at A and digs one side of the footing to a desired depth.
Second, the machine moves to B from which a second side can be
excavated. A third setup (C) is achieved by rotation of the base.
Excavation of the center is achieved by a fan-like pattern of digs from
(D).

sweeping stairs from the top and not the bottom. If relevant,
such procedures can be incorporated into the coarse planning
alleviating the need for search to generate such sequencing.

Taking Plans Generated With a Grain of Salt

For real world applications, it is never possible to model all the
effects of sensors and actuators. At best we might hope to cap-
ture first order or second order effects. It may be possible to
fold uncertainty models into the planning directly and limit the
feasible set by the margin of cumulative uncertainty. However,
this is not always possible and after all the modeling, plans are
best thought of as a means of proaction. Final execution of the
plan is best left to a lower level control scheme that has a tight
coupling with the world. Control schemes typically are appli-
cable in a narrow range of operating conditions and in this light
planning can be thought of as a means to specify actions that
fall within the operating conditions that where properties of
convergence hold.

We would like as much feedback as is possible--- state feed-
back before planning so as to plan properly, during execution
so that unmodeled effects can be compensated for, and after
execution so as to set the stage for the next plan.

Implementation

We have developed a testbed to conduct experiments in subsur-
face sensing and excavation. The testbed consists of a sandbox
(2.5m x 2.5m x lm), a hydraulic robot outfitted with an exca-
vator bucket and force sensor, and a laser range finder. The
setup of our testbed is shown in Fig. 10. We use a large indus-
trial manipulator with an end effector payload of approxi-
mately 125 Ibs. A small excavator bucket with a volume of
0.01m3 serves as an end effector. The laser range scanner pro-

~Cla~ ea~ni "g.~,~:~,~
rangefinae~

~./bucket ~_

Fill. I0 Testbed

duces an image of the terrain such that the value of each pixei
in the image corresponds to the distance from the scanner to the
world. This image is used to build a topographical map of the
terrain in the sandbox.

The excavation cycle consists of three phases. First, a terrain
map is produced from range images taken by the laser scanner.
Next, the planner chooses a digging action to execute that sat-
isfies geometric and force constraints and optimizes utility cri-
teria. Last, the action is executed by the robot and the cycle
repeats until the terrain is sufficiently close to the specified
goal.

When the search space is extremely large and answers are
needed quickly, at the expense of optimality, a numerical
method such as simulated annealing can be used. In fact I have
used an augmented version of simulated annealing to do the
optimization in the past (Singh 91). However, the stochastic
nature of the search means that the solutions found are not
repeatable and it is very hard to perform controlled tests where
one of the constraints is modified. Further, exhaustive search
(test and generate) with intelligent ordering of constraints
works well enough for our purposes. While in the worst case
this means that each constraint has to be evaluated for each can-
didate point in the action space, in reality testing early for con-
ditions such as reachability prunes the search space.=ffectively.
It is possible to further select from this set based on other crite-
ria. such as time or joint torques required. For example, Fig. I l
shows two different trajectories selected for the same initial
state of the terrain, given different evaluation functions. Note
that both plans sweep the same amount of soil.

Experimental Results

We have conducted over 2000 digging experiments with our
testbed. Fig. 12 shows a progression of one sequence in which
the goal is to produce a trench. In this experiment’ the digging
actions chosen sweep a volume of soil very close to the bucket
capacity. However, the actual yield in the bucket is a function
of how cohesive the soil is--digging in loose, granular soil
results is some of the soil spilling out of the bucket. Experimen-
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FIg. 11 Two different trajectories selected for the same state of the
terrain (a) evaluation lunctlon minimizes the largest torques (b)
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Fill. 12 The first eight steps in the creation of a trench. The desired
trench Is shown by the dashed line. The shaded region is the volume of
soll On m3) estimated to be swept by the excavator buCkeL

tel results are encouraging. The planner examines approxi-
mately 2000 plans in a few seconds and almost always find one
that fills the bucket. The planner becomes inefficient as the pro-
file of the terrain approaches the desired goal. This is because
the form of the prototypical plans does not produce efficient
trajectories. In this case, it is possible to execute open loop tra-
jectories that follow the outline to the desired trench to scoop
out the remaining soil.

Conclusions

Eanhmoving is an example of an application where the interac-
tion between a robot and the world is significant. To perform
such a task efficiently, we will want to use every trick in the
book. This includes the use of good forward models, mechani-
cal analysis and multi-resolution search.

I have shown how the task of digging a trench can be stated as
a problem of constraint optimization. Since the optimization
happens one action at a time (necessary due to the uncertain
forward models and large branching factor at every planning
step), the planner is greedy and thus requires a higher level
planner that ensures that proper subgoals are specified.
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