
Best Information Planning for Unknown, Uncertain, and Changing Domains

Anthony Stentz

Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

U.S.A.

Abstract
Planning operations for an autonomous agent is a
much-studied problem. Most solutions require that
the agent’s domain be fully known at the time of
planning and fixed during execution. For many
domains, however, this is not possible. One
approach to the problem is to construct an initial
plan based on the best information a priori and
revise the plan during execution as better
information becomes available. In this paper, we
show that this approach yields good average case
performance compared to competing approaches
for certain problems of interest. We also discuss the
uses for this approach to planning and describe
qualitative conditions for making it tractable.

1 Introduction
To solve many realistic problems, autonomous agents must
operate in domains for which they have less than complete
information or which change over time in unpredictable
ways. In such cases, the types of domain information avail-
able to the agent might include the following:

¯ Partially-Known: accurate information is available for
some part of the domain and no information is avail-
able for the rest. Example: a road map that shows just
the primary roads but no secondary roads.

¯ Outdated: information was accurate at one time but is
now inaccurate. This situation frequently occurs in
dynamic environments. Example: bridge closure due
to construction not indicated on map.

¯ Probabilistic: distributions covering a range of possi-
bilities. Example: likelihood of traffic congestion
along a particular road.

¯ Heuristic: rules of thumb that are frequently correct.
Example: avoiding a particular intersection during
rush hour is prudent.

¯ Assumed: default information used for lack of better
information. Example: all roads are open and free
flowing.

¯ Estimated: approximate information possibly calcu-
lated from measurements. Example: report from a
helicopter on approximate traffic conditions.

Given the lack of complete information, we propose a
best information approach to planning for autonomous
agents. The foundation for this approach was described in

earlier papers for single agent problems [Stentz, 94] [Stentz,
96] and later extended to multiple agents [Brumitt and
Stentz, 96]. The idea is to construct an initial, optimal plan
based on the best information available, including complete
information when possible, and one or more of the above
types when necessary. As the agent executes the plan,
whenever better information becomes available, the agent
recomputes an optimal plan from its current state to the goal.
We call this approach best information planning, because at
all times the agent is executing an optimal plan with respect
to the best information available.

This approach is similar to assumptive planning
[Nourbakhsh and Genesereth, 96], in which assumptions are
made about the agent’s domain and actions to avoid the
combinatories of conditional planning [Warren, 76]. We
must emphasize, however, that best information planning
does not preclude conditional planning, since conditional
plans could be constructed which are later revised in
response to better information on the possible courses of
action.

Whereas inaccurate information can mislead an agent to
construct a poor plan [Koenig and Smirnov, 97], we assert
that the average case performance of such an approach is
quite good for many problems of interest. In the
experimental results section of the paper, we validate this
assertion for one important problem: a mobile robot seeking
a goal in a cluttered environment. But first, in the next
section we address the difficult computational issue in best
information planning: replanning for each new piece of
information.

2 Conditions for Tractability
Best information planning can be difficult compuiationally.
For example, STRIPS planning is PSPACE-hard [Bylander,
94], and in the worst ease replanning is no better. But for
many problems, replanning can be very efficient such that
best information planning is tractable. In this section, we
qualitatively describe conditions for making this approach
possible.

2.1 Dynamic Programming

Dynamic programming is an approach to algorithm design
that solves a problem by constructing increasingly larger
subproblems until the given problem is solved [Aho et al,
83]. Often, the subproblems are "memory cached" for re-use
to avoid unnecessary calculations. This approach holds
promise for best information planning since the new plans
produced during replanning are likely to be similar to the
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original plan. Some of the partial plans that were produced
for the original plan can be re-used for the "repaired" plan.
The same idea is employed in many incremental algorithms
[Ramalingam and Reps, 92].

A* is an example of a search algorithm that uses
dynamic programming [Nilsson, 80]. Optimal paths between
initial and goal states are found by chaining together optimal
paths between substates until the entire optimal sequence is
constructed.

2.2 Bounding the Effects of Information Updates

For some planning problems, new information about the
domain has a limited, local effect on agent operations. Deter-
mining bounds on these effects can serve to prune the search
during replanning. For example, consider a mobile robot,
equipped with a sonar sensor with a two-meter maximum
range, planning paths across a room to a door. As the robot
moves toward the door, its sensor detects an obstacle in its
path, two meters away. Unless the obstacle completely
obstructs a passageway, the robot need only replan those
near-term driving operations that take it around the obstacle
and piece the partial plan for this subproblem together with
another partial plan that moves it the rest of the way to the
goal.

Similarly, consider a robot that is following a planned
path to the goal believed to be five meters in length (based on
best information). If it sees an open door previously believed
to be closed that is six meters away, it knows that this new
information cannot possibly yield a better plan to the goal.
Therefore, the effects of this new information need not be
further investigated.

2.3 Backward Chaining

Plans can be constructed by forward-chaining operations
from the initial state to the goal state, or by backward-chain-
ing operations from the goal to the initial state [Charniak and
McDermott, 85]. This latter approach is better suited for best
information planning since from one replanning iteration to
the next, the goal remains fixed and the initial state changes.

Therefore, if information updates occur local to the
agent, the planned operations in the sequence near the goal
state are less likely to be affected than those near the agent.
Reptanning can be accomplished by searching from affected
operations in the middle of the sequence back to the agent’s
current state, re-using the search space constructed near the

goal.

For domains with a large number of states and frequent
information updates, D* is able to replan hundreds of times
faster than brute-force replanning from scratch. The
algorithm was tested both in simulation and using a real
mobile robot driving in a cluttered and unknown
environment. For each new obstacle detected by the robot’s
sensor, D* was capable of replanning the entire path to the
goal in less than a second on a workstation.

The D* algorithm is described extensively in earlier
papers [Stentz, 94] [Stentz, 95] [Stentz, 96], as is its
validation using a real robot [Stentz and Hebert, 95].

4 Experimental Results
In order to validate the best information approach to plan-

ning, the following problem was analyzed. Consider a
mobile robot equipped with a contact sensor that is
instructed to drive from a start state S to a goal state G along
the shortest possible path while avoiding a field of unknown
obstacles. This problem is illustrated in Figure 1. For the
experiments conducted, the robot’s environment was a 500 x
500 grid of 8-connected cells. A total of 50 square obstacles
were randomly placed in the environment, each of which
ranged (randomly) from 1 to 50 cells in width. Note that
obstacles could overlap. The optimal (i.e., shortest length)
path from S to G is shown by a black polyline.

Figure h Optimal Path Given Complete Information

3 D* Search Algorithm
The D* algorithm (Dynamic A*) [Stentz, 94] is an efficient
search algorithm for replanning that embodies all of the
characteristics in the previous section. Like A*, D* uses a
dynamic programming approach to construct plans by piec-
ing together solutions to larger and larger subproblems. D* is
capable of detecting when a new piece of information could
affect the optimality of the current plan, and it propagates the
effects of this new information only far enough in the search
space to compute a new optimal plan. D* backward-chains
operations from the goal to the agent’s current state.

Two algorithms were compared: 1) the Best Information
Planner (BIP), and 2) the "Bugl" algorithm [Lumelsky 
Stepanov, 86]. Initially, BIP assumes that each cell does not
contain an obstacle. It begins by planning a straight-line path
from S to G and follows it. Whenever the robot attempts to
move into an occupied cell, the contact sensor reports the
presence of an obstacle. In such cases, BIP stores the
obstacle cell in its map and replans a path to the goal using
information about all obstacle cells detected so far. The
traverse taken by BIP for the environment in Figure 1 is
shown in Figure 2. The obstacles are drawn in black to
indicate that they are unknown to BIP. As BIP discovers
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them with its contact sensor, it colors them grey. The path
taken by BIP is 91% longer than the optimal path with
complete information shown in Figure 1.

Figure 2: BIP Traverse Given No Initial Obstacle Information

S G

are shown in black and the known and "discovered"
obstacles are shown in grey.

Figure 3: Bug Traverse of Same Environment

S G

Bug is a local algorithm that moves directly toward the
goal through freespace and drives the full perimeter of each
obstacle encountered to find the closest "leave" point before
resuming free motion toward the goal. The traverse taken by
Bug for the environment in Figure 1 is shown in Figure 3.
The path taken by Bug is 405% longer than the optimal path
with complete information. Note that free motion for both
algorithms is generally not a single straight line since 8-
connectivity is used.

A total of 100 environments were randomly produced
and the results were averaged. Normalizing the width of each
environment to "1", the average length of the optimal
traverse through each environment given complete
information was 1.236. The average length of the BIP
traverse was 1.873 (52% longer than optimal). The average
length of the Bug traverse was 5.578 (351% longer than
optimal).

It is important to note that on average, BIP traversed
0.6% of the freespace and the Bug algorithm traversed 2%.
Therefore, both algorithms are superior to an undirected
approach that systematically explores the freespace until it
happens across the goal [Pirzadeh and Snyder, 90].

To show the value in using the best information
available, the above set of experiments was repeated for BIP
where some of the obstacles where known to the planner
initially. Table 1 shows the results for 11 cases ranging from
0% of the obstacles known (full freespace assumption) up 
100% known (complete information). As indicated,
performance of the algorithm improved on average as the
quality of the initial information improved.

The BIP traverse is shown in Figure 4 for the
environment in Figure 1 where 50% of the obstacles where
known a priori. The path taken by BIP is 47% longer than
optimal with complete information. The unknown obstacles

Figure 4: BIP Traverse with 50% of Obstacles Known

l

Note that the knowledge of 50% of the obstacles a priori
led to a shorter traverse when compared to the case of no
known information. This traverse, however, was still longer
than the case for which all information was known a priori.
All three traverses were shorter, than Bug’s.

112



Percentage of Percentage Longer
Obstacles Known Path Length than Optimal Path

O% 1.873 52%

10% 1.855 50%

20% 1.824 48%

3O% 1.820 47%

40% 1.775 44%

50% 1.711 38%

60% 1.602 30%

7O% 1.488 2O%

8O% 1.396 13%

9O% 1.314 6%

100% 1.236 0%

Table 1: BIP Results from Combining Known and Assumed
Initial Information

5 Conclusions
In conclusion, we have empirically shown that the average
case performance of best information planning for a mobile
robot seeking a goal in an unknown and cluttered environ-
ment is superior to locally-directed and exploratory
approaches for the environments modelled. We assert that
this approach to planning can cover a wide range of prob-
lems for which less than complete information is available a
priori, and we have qualitatively described the algorithm
constructs needed to replan efficiently.

We are currently developing efficient replanning
algorithms for STRIPS-like planners, moving goal problems,
and sensor coverage.
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