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Abstract

In commercial information retrieval. a trade-off exists
between relevance, cost. and time. We present a
sound theoretical framework for resource-limited
information retrieval that enables a user to search for
relevant information given time and cost constraints.
To use this framework, information providers have to
specify estimates of search and retrieval times in
addition to contents and accounting information.

1 Introduction

Commercial information providers have accounting
policies related to access, connection time, number of
retrieved items etc. Most users of these services try to get
relevant information at low cost. For non-distributed
information services, - like Excerpta Medica, and the
National Library of Medicine, many organisations use
trained staff. In a distributed information retrieval
environment staff training is hard due to dynamics in
information services and user requirements. At the
moment little support exists for cost-effective information
retrieval. In this paper we present a sound theoretical
framework for resource-limited information retrieval that
enables a user to search for relevant information given
time and cost constraints.

A retrieval process starts when a user interacts with the
retrieval system specifying a, for the system
understandable, query reflecting his information need'.
For example the need ‘show me the two most relevant
video fragments of a soccer match where AJAX is scoring a
goal as fast as possible but within 5 minutes and not
. exceeding $3.-°, expressed in an sQL like notation may
look like: SELECT video scenes WHERE time < 5 m., money
< 38. n=2, properties (AJAX, scoring goal. soccer match)
ORDERED BY relevance OPTIMISED BY (relevance/time).
Given this query the retrieval system should decide where
to start searching, as in general the user does not (need to)

' When the user has no idea about the expected cost in relation
to the quality of the results, the system should, as part of the
interaction, inform the user about the expected quality-cost
relation given a content-based query.
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specify where to search. Before actually spending time
(and money), an estimate of the most useful search action
should be made, e.g. taking the probability of finding
relevant information and the expected cost into account.
As the search proceeds, the system explores unknown
parts of the information environment and updates its view
accordingly. When relevant information has been found,
the system must decide whether to retrieve it or continue
searching trying to find ‘better’ information (e.g. more
relevant or cheaper). As the cost specified in the query
refers to the total cost, the system needs to decide how
much budget should be spent on searching and how much
on retrieving. This is in fact a fundamental problem when
developing a resource-limited retrieval strategy. We have
visualised this problem in Figure 1. Determining what
actions to choose when limited resources are available has
been tackled in the areas of artificial intelligence, robotics,
and theoretical computer science as part of a more general
problem of a system acting rationally: do the ‘right thing’
given its view of the (partially known) environment and its
intended goal. This has resulted in a variety of approaches
including on-line algorithms, real-time heuristic search,
robot exploration techniques, sensor-based planning,
resource-limited reasoning etc.
information environment
filled with objects

limited
? time and

money

known
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Figure 1. Deliberate between searching the information
environment and retrieving objects from the searched
environment with limited resources.

The rest of this paper is organised as follows. First we
provide an overview of our approach in Section 2. Next we
discuss the time and cost aspects we deal with. In Section
4 we present our resource-limited retrieval strategy. As the
strategy is based on relevance and cost estimates we briefly



sketch how these can be obtained in Section 5. Section 6 is
reserved for the conclusions.

2 Overview

We present a resource-limited information retrieval
strategy that is able to search for relevant information
given time and cost constraints in a partially known and
distributed information environment. Fuhr (Fuhr 1996)
tackles this problem using a probabilistic theoretical
information retrieval approach. It allows the retrieval of a
maximum number of relevant documents from multiple
databases at minimum cost. This approach is based on
many assumptions that are unrealistic in a real
environment, e.g. availability of the (theoretical) recall-
precision curves for all databases for all queries, the
number of relevant documents within each database etc.
Given the partially known information environment, a
search graph of possible actions can be constructed. The
graph will gradually expand as the search proceeds, see
Figure 2, and will be different for each search session. e.g.
due to a different query. a different starting point, the
dynamics of the environment etc. Considering the retrieval
of relevant information objects as “goal nodes’, standard
graph search strategies might be used, especially the ones
capable of dealing with cost. such as A* (Hart, Nilsson &
Raphael, 1968). They are. however, not suitable for
resource-limited information retrieval as they have no
imposed constraints on the resources used during the
search. They try to find the best (or any) solution (or goal
state) and use cost as a criterion to indicate the usefulness
of (the path to the) found solution. Extending the criteria
for these algorithms to stop searching when it runs out of
time and/or money. ignores the optimisation between time,
money and object relevance specified by the query.
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Figure 2. Example a gradually expanding action search
graph

For resource-limited information retrieval we need an
approach that selects the right action given its partial view
of the environment under time and money constraints. We
use Russell and Wefald's metareasoning decision theory
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(Russell & Wefald 1991) since it provides a sound
theoretical basis. As far as we know, it has not been
applied in the context of distributed information retrieval.
A fundamental idea behind the theory is the principle of
maximum expected utility, that is to choose the (external)
action that yields the highest expected utility (reflecting
the degree of usefulness), averaged over all possible
outcomes of the chosen action. In this theorv the
computational steps, required to choose the ‘best’ action,
are considered as (internal) actions and are therefore
selected on the basis of their expected utilities (which is
derived from the passage of time and the possible revision
of the intended (external) actions). We apply the meta-
reasoning decision theory to a resource-limited distributed
information retrieval context. When considering a search
action as an internal action and a retrieval action as an
external action, Russel’s theory provides a solution for the
deliberation between search and retrieval actions, see
Figure 3. Note that a retrieval action can only be
performed when an object has been found. The expected
utility of search and retrieval actions depends on the
optimisation criterion specified in the query and is based
on the provided estimates information for the (query
dependent) relevance and involved cost of the actions.

'_;seﬁh , _ retrievai | cost
internal !) extemal ::

Figure 3. Problem of assigning allowed cost to search
(internal) and retrieval (external) actions.

3 Cost aspects

In this section we discuss the time and cost aspects we deal
with, First we show how cost aspects can be included in
queries, thereafter we specify one cost model that basically
consists of search and retrieval cost.

3.1 Query model

In our approach a query consists of different expressions,
viz. a retrieval expression, a starting expression. a filter
expression, a ranking expression, and an optimising
expression. Using an SQL like notation, this is expressed as
follows:

SELECT retrieval expression

FROM starting expression

WHERE filter expression

ORDERED BY ranking expression

OPTIMISED BY optimising expression
» The retrieval expression states which properties of the
filtered and ranked information objects the user wants to
retrieve (and or present). e.g. ‘title of the books'.



* The starting expression states the potential starting
poini(s) from where the retrieval system should start
searching.

* The filter expression restricts the amount of potential
suitable information objects to those objects that fulfil the
constraints of the filter expression. These constraints may
refer to individual information objects, e.g. minimum
relevance of an object, but also to the search session, e.g.
total cost < c. total time < t, or may restrict the amount of
objects to be retrieved. A degree of importance can be
attached to the constraints to indicate their strictness. e.g.
via weights, priorities or the risk of overspending. In our
current strategy, we have included a simple mechanism
resulting in three strategy variants, viz. a cautious
strategy, an opportunistic strategy, and a common strategy.

* The ranking expression is used to determine the
presentation order of the information objects satisfying the
filtler expression. It may include relevance and cost
aspects. The filtering expression (e.g. value > threshold)
can be used as ranking expression (using the value) when
it is based on the same properties.

« The optimising expression (or objective function)
specifies the ‘optimal’ selection of information objects that
fulfils the constraints. For exampie, a user may want to
maximise the relevance of the results at minimum cost.
This means that the closer a set of information object is to
the ‘optimum’. the more useful the retrieved set of the
information objects is judged. See Figure 4 where, within
the constrained area, a darker colour represents a more
useful solution. When the objective function includes both
time and money aspects they need to be combined. This
requires a form of normalisation or transformation, e.g.
assign ‘monetary’ cost to time, which is common in
€cononmiics.

relevance

Figure 4. Visualisation of a cost related query including a
time constraint (< 5 minutes), a money constraint (< 3§)
and the coloured objective function: relevance/time).

Remember that the cost aspects included in the constraints
and objective function reflect the fotal cost, and not
separately for retrieval cost and search cost. As users may
have different constraint and objective functions. the
retrieval system should be capable dealing with any (user-
defined) constraint and objective function including
queries like minimise the total cost for the search and
retrieval of a fixed number of relevant information objects:
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maximise the amount of (the top most) relevant
information objects for fixed costs; maximise the sum of
relevance scores/the score-cost ratio (for a fixed number of
relevant information objects) for fixed cost.

3.2 Search and retrieval cost

We distinguish two categories of cost: search cost and
retrieval cost. The search cost are all cost that are
involved identifying relevant information objects given the
query. The retrieval cost are ail cost involved of retrieving,
transporting, and presenting the requested properties from
the selected (most useful) information objects to the user.
The search and retrieval cost in a real information
environment are comprised of multiple cost aspects. see
Figure 5. Although the retrieval system ultimately needs to
handle all these cost aspects, for clarity reasons we
describe the strategy (in Section 4) using the (aggregated)
search and retrieval cost as this is sufficient to illustrate
the main problems we solve in our strategy.

tranamission
(retrioval cost data conversion,
merging resuits
network B (retrioval cost)

) . deoision
information (search cost)
acoces, matching \@bjects (scarh oost)
(search cost)
request proparty
(retrieval cost)

Figure 5. Cost aspect related to the context of a retrieval
strategy

As each action costs time (and money), an estimate of the
cost of an action is required preceding the execution of the
action to avoid too costly actions with respect to time and
money constraints. Determination of perfect estimates is
impossible in our context, because the relevance of objects
is query dependent and can only be exactly determined
when the object is accessed. In Section 5 we briefly discuss
how to obtain these estimates. '

4 Retrieval strategy

In this section we present our proposed retrieval strategy.
We start with an outline.

4.1 Outline of the strategy
At a high abstraction level our strategy works as follows:
1. Based on the query determine all possible start actions.

2. Remove all actions which do not satisfy the time,
money and/or relevance constraints.



(97

When all actions are filtered out, terminate the search

session.

4. For each new action Ai passing the filter rule. compute

its utility U(Ai)

Select the action (Ac) with the highest utility U.

. Determine whether the utility U(Ac) is higher than the
session utility U(A). If U(Aa) is not higher than U(A)
then terminate the search session, else carry out.action
Ad.

7. Update the view of the information environment, the
time-spent, money-spent, A, U(A) and determine all
new possible search and retrieval actions.

8. Goto2

(=2 N}

In the next sections we discuss the steps thoroughly.

4.2 Determine start actions

For a large dynamic information environment it is very
unlikely that it is completely known to the strategy.
Furthermore. exhaustively searching all available
collections within reasonable time seems not feasible.
Hence, the strategy should determine where to start
searching. The actual starting point for the strategy is the
root of the ‘action search graph’, a virtual node
representing the information environment the search is
conducted in, see Figure 6. We assume that the strategy is
aware of at least the access information (such as address
and access mechanism) of the start (search) actions. This
information is either provided by the query (in the FROM
clause) or encoded in the strategy as default(s). In
addition. other information about the action related
object(s), such as coverage, type etc., may be available,
e.g. stored from previous search results or obtained via
polling (as is done by many Internet search engines).

Nonetheless. due to the size and the dynamic nature of the -

information environment. it may not be worthwhile to
maintain this information. When this information is not or
only partially available, the strategy cannot determine the
cost involved in executing an action nor the usefulness of
an action.

The strategy may restrict itself to the fully labelled
transitions or may actively acquire the missing
information by accessing uninformed objects. Although
additional (access) cost are made, this approach may
eliminate unnecessary searches and hence save cost. We
do not elaborate on this problem here. but assume now
that the strategy only chooses among sufficiently informed
actions.
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Figure 6. ‘Environment root' node with and without
estimate information for the start-actions.

4.3 Filtering actions

The strategy needs to remove all actions that do not satisfy
the constraints specified in the query. This means that for
each action that is not removed, it is estimated that it can
be executed within the time and money budget left.
Because searching is in general only useful to a user when
(a property of) a relevant information object is retrieved,
not only the cost of a search action itself should satisfy the
constraints but also the (estimated) remaining search cost
to find a relevant information object as well as the
(estimated) retrieval cost of this object. This means that
only when a relevant object is expected to be found and
that can be retrieved within the constraints, the search
action is acceptable. E.g. in Figure 7 search action S1 and
retrieval action R3 are acceptable whereas search action
S2 will be filtered out.

0 budget
| cost spent budget left
S1
Efsearch cost] E[retrieval cost)
X S2
Efsearch cost] Efretrieval cost]
R3]

E[retrievall cost)

Figure 7. Example of action filtering. Search action S2 is
filtered out because its estimated search and retrieval cost
do not satisty the budget left constraint.

As we will discuss in section 5, the cost estimates need not
necessarily to be single valued (e.g. the average) but may
consist of multiple values, like minimum, maximum etc.,
or in general be a probability distribution function. The
use of probabilities implies that there exists a risk of
overspending. This is tackled in our strategy via three
different types of filter rules:

* Opportunistic filter rule: remove an action if there is no
or a very little chance that it will satisfy the constraint,
e.g. upper bound < filter value.

* Common filter rule: remove an action if it is expected
not to satisfy the constraint, e.g. average < filter value.

* Cautious filter rule: remove an action if there is a

chance that it may not satisfy the constraint, e.g. lower
bound < filter value.



Our current strategy terminates when ail actions are
filtered out.

4.4 Action utility

Given the estimations of the time. money. and relevance of
different actions, the question remains how these different
estimates can be combined into a single decision criterion.
As the search shouid be optimised according to the
objective function specified in the query. we advocate to
use this function to estimate the utility of individual
actions. As the objective function is defined for the
complete session, the cost and relevance parameters need
to be adjusted to reflect the individual action aspects. see
Figure 8. For the same reason as for filtering search
actions, the utility of a search action should be based on
the remaining search cost to a relevant object as well as
the estimated retrieval cost and estimated relevance of this
information object. For example, suppose we have an
objective function relevance/cost. Then the estimated
utility of a search action j will thus be E[relevance object
jV(E[search cost] + Efretrieval cost]). In addition. the
estimated utility for a retrieval action is based on the
estimated relevance and estimated retrieval cost.

®

E[U(S3)]=0.1 |ER]= 0., E[Sc] = 2, E[Rc} = 4

E[U(S6)] = 0.13 [E[R]=0.5. E[Sc] = 1, E[Rc] = 3

4
E[U(R6)] = 0.16 [ E[R]= 0.5, E[Rc] = 3|

Figure 8. The estimated utility of search action §3,
E[U(S3)], and S6, E[U(S6)), are based on the relevance
estimate E[R], the estimated remaining search cost, E[Sc],
and the estimated retrieval cost E[Rc]. The utility of the
retrieval action R6, E[U(R6)), is based on estimated
relevance E[R] and estimated retrieval cost E[R]. Legend
cf. Figure 2.

In section 5 we discuss how these (query dependent)
relevance and cost estimates can be obtained prior to the
execution of an action. As these estimations are
independent of the actions carried out by the strategy, the
utility of an action does not change. Hence. only the utility
of new actions need to be computed.

4.5. Action selection

It will be clear that. when money and time aspects are
taken into account. the outcome of a search depends on the
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order of the performed actions. In case there are multiple
actions satisfying the constraints, the strategy needs to
choose. Throughout the search the strategy continuously
has to decide what action to carry out. The best action to
choose seems to be the one with the highest expected
utility, cf. the maximum expected utility principle (Russel
& Wefald 1991). Simply using the expected money cost in
the computation of the utility works fine when a large
number of searches are performed, e.g. for the search
service provider, and these average cost are charged to the
user. For a single search this is not satisfactory because the
average does not reflect the real cost of the retrieved
information object. From (Lomio 1985) we know that
users are very cost sensitive and do not want to pay an
unspecified amount of money for an unknown amount of
data. Failures in estimating the costs in advance generaily
lead to complaints about the system. Instead of considering
only the expected utility, different (measures of the) utility
distribution can be used to cope with different variants of
the strategy (e.g. cautious. common or opportunistic). For
example in (Palay 1985) rules are described to select the
most appropriate alternative when they are characterised
by a minimum, average and maximum value for a chess
game. The application of this approach in our context.
assuming that the average, upper and lower bound utility
scores are computed, leads to the following rules, each
representing one of the three strategy variants:

* Opportunistic selection rule: choose the action with the
highest utility upper bound, if equal choose the action
with highest utility lower bound, if equal choose randomly
* Common selection rule: choose the action with the
highest average utility, if equal choose the action with the
highest utility upper bound, if equal choose the action
with the highest utility lower bound, if equal choose
randomly

* Cautious selection rule: choose the action with the
highest utility lower bound, if equal choose the action with
the highest upper bound, if equal choose randomiy.
Instead of using the upper bound, lower bound and
average values, one can use any (combination of)
measurement(s) of the (multi-aspect) utility distribution to
compare the alternatives, ¢.g. a virtual upper bound using
the standard deviation, so that e.g. 95% of the values are
below this point.

4.6. Termination

We use the filter and selection rules of the previous
section. to choose between search and retrieval actions. In
addition the utility of actions can also be used to determine
whether to proceed the search session or to stop. In case no
search or retrieval action passes the filter rule, the search
stops. When the strategy still has actions to choose from.
we use the relation betwéen the action utility and session



utilitv as a stop criteria. The utility of a search session is
based on the objective function and includes the session
results (e.g. the sum of the retrieved objects) and the total
cost spent. On the contrary, the action utility is based on
the results and cost related to the particular action. It may
be clear that when the search proceeds the session utility is
likely to change as cost is continuously spent. Remember
that the utility of possible actions does not depend on the
actions carried out by the strategy.

We argue that the search session should be proceeded with
the "best’ possible action when the utility of this action is
higher than the current session utility, because executing
the action will increase the session utility. (Remind that
for the utility of a search action both the search cost and
retrieval cost are included).

We illustrate this with an example. Let A denote a search
session: a sequence of actions (A1 ... Ai); Aj is action j. Aj
can also be denoted as Sj when Aj is a search action and
Rj when Aj is a retrieval action. U(Aj) is the utility of
action Aj, U(A) is the session utility and U(A.Aj) is the
session utility after executing action Aj.

It can be proven that when U(Rj) > U(A) this means that
U(ARj) > U(A) for the object function: sum of
relevance/cost. For example, when U(A) = r/c and URRj) =
rj/cj then U(A.Rj) = (r+rj)/(ctcj). When rj/cj > r/c this
implies that (r+rj)/(ctcj) > r/c.

When Rj is the retrieval action included in the estimation
of U(Sj) and perfect relevance and cost estimations are
available, then URj) > U(Sj), and thus U(Sj) > U(A)
hence U(A.Sj.Rj) > U(A). See Figure 9 for an illustration
based on the search graph of Figure 2).

Remember that we have adapted the objective function
(relevance/cost) to compute the utility for search and
retrieval actions. We assume that for other objective
functions the utility of search and retrieval actions should
be adapted in a way that whenever U(Ai) > U(A) it implies
U(A.Ai) > U(A).

Due to inaccurate estimations U(Rj) > U(Sj) may not be
true. However, because the accuracy of the estimations is
not known in advance and the utility of an action may be a
probability distribution function, different (termination)
rules can be applied reflecting different strategy’s variants.
We use the following rules:

- Opportunistic termination rule: terminate the search
when there is no current action Ai available with a utility
upper bound U(Ai) > U(A)

» Common termination rule: terminate the search when
there is no current action Ai available with an average
atility U(A4i) *» U(A).

* Cautious termination rule: terminate the search when
there is no current action Ai available with an utility
lower bound U(Ai) :- U(A)
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Figure 9. Utility of search actions (sj), retrieval actions (rj)
and session utility (dashed line) after different actions are
carried out cf. the action search graph of Figure 2. The
session s terminated when no U(Aj) < U(A)

4.7 Execution of the best action

When the best chosen action is carried out, the current
view of the information -environment is updated
accordingly. Furthermore, the time (and money) spent
parameter(s) are updated. resuiting in a smaller budget
left. Also the new session utility U(A) is computed. Given
the new view of the environment all new possible search
and retrieval actions are determined.

S Estimation of cost and relevance

As described in the previous section, the computation of
the utility of an action might use relevance, search, and
retrieval cost estimates. It is the responsibility of the
information services to provide these (query dependent)
estimates to the strategy. A practical problem might be the
willingness of a provider to give insight in his tariff
policy. Even if he provides descriptions, on which the

‘estimations are based, one should be aware that this could

deliberately be misleading information, e.g. resuiting in
high relevance and low cost. to attract customers. This can
be avoided when the accuracy of the estimations are
learned based on the results of previous search sessions.
This can be done using similar approaches developed for
dynamic network routing algorithms, like EGP or BGP.

To get an idea how to obtain the estimates we briefly
sketch the ideas behind the mechanism of the ADMIRE
information model (Velthausz, Bal & Eertink 1996). This
model provides a general framework for modelling any
information, regardless of type, size or abstraction level.
See Figure 10 for an example of the information object
structure. Via the notion of different kinds of information
objects and (informed) relationships, it facilitates a
gradually expanding action search graph, as illustrated in
Figure 2 (Section 2), with labelled transitions that can be
used to estimate the (query dependent) relevance and
involved cost of the actions.



Figure 10.Example of ADMIRE information object structure

5.1 Relevance estimate

We need an indication of the relevance of unexplored
information objects that are reachable via. or contained in.
another information object is without accessing them. The
problem is that the relevance of information objects is
query dependent. Given the wide range of possible queries
in a large and dynamic environment. it is impractical to
reuse relevance estimations of previous searches. Another
problem in a distributed environment is that it is likely
that different matching methods (which determine the
relevance between the query and an information object)
are used. The scores obtained from multiple collections
may therefore not be directly comparable. To combine
different scores into a general, universally applicable.
score is a problem that we will not diverge into. We refer
to (Callan, Lu & Croft 1995; Voorhees. Gupta & Johnson-
Laird 1995) that lists a number of possible approaches that
can be used. Here we assume that the relevance scores of
different information objects are ‘normalised scores’.
meaning that they can be directly compared with each
other.

The ADMIRE information model facilitates aggregation and
propagation of information that characterises reachable
information objects. Using the composite relationships in
the object hierarchy enables a bottom up propagation of
and aggregation of the lower layered object
characterisations. This information can then be used to
estimate the relevance of unexplored information objects.
For example, the coverage of a database containing soccer
and tennis video fragments might be characterised by
(aggregated) concepts such as sport, game etc. Matching
these concepts with the query provides a relevance
estimate for the video fragments objects. A way to increase
the accuracy of the relevance estimate is to enhance the
query with related concepts. e.g. synonyms. hypernyms
etc., before matching it with information object
descriptions.

Using summarised information to describe particular
aspects of the lower layered nodes in a hierarchy. has
successfully been applied in (Gravano & Garcia-Molina
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1995) and (Garcia-Molina. Gravano & Shivakumr 1996)
for the content-characterisation for (hierarchical)
databases containing textual documents.

5.2 Cost estimate

In addition to estimating the relevance. an accurate
estimation of the remaining search cost to find the
requested information objects as well as the retrieval cost
of these objects is needed. As the cost may (partly) depend
on the query, the structure of the query (e.g. the operators,
the requested number of objects etc.), can be used to
estimate the remaining search and retrieval cost, as for
example is done in (Chaudhuri & Gravano 1996).

The ADMIRE model has not been developed to support cost
estimations, but it can simply be extended using the
bottom-up propagation and aggregation of cost-related
information. In this manner cost distributions can be
obtained reflecting different cost aspects. Instead of the
actual distribution function, derived measures such as
average, minimum. maximum. variance, etc. can be used.
For example, the retrieval time can be estimated using the
propagated object size distribution. the throughput and
network delay. The latter two are either known to the
strategy before the search is performed or can be estimated
via the exchange of messages.

A potential problem with upwards propagation of
information is the topicality of the aggregated information.
Since this information is obtained prior to the actual
search, changes in costs, adding new or deleting
information objects might not be directly reflected in the
aggregated information. Furthermore. a consequence of
the use of the aggregation methods is that the cost and
relevance estimates are independent of each other and
therefore may lead to inaccurate utility estimations.

As non-composite relationships only enable accurate
estimations of directly reachable objects (look-ahead of 1),
estimated utilities based on composite relationships are
likely to be more accurate and hence should be preferred
over non-composite relationship based utilities.

6 Conclusions

In this paper we presented a sound theoretical framework
for resource-limited information retrieval that enables a
user to search for relevant information given time and cost
constraints. We have shown that a limited meta-reasoning
theory can be applied to resource-limited distributed
information retrieval. To verifv and validate the retrieval
strategy we will use a prototype in a distributed and
heterogeneous ‘office’ environment based on the ADMIRE
model. that covers multiple servers, and contains multiple
(different) information objects.
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