
On-Line Graph Searching by a Smell-Oriented Vertex Process

Israel A. Wagner 1,2, Michael Lindenbaum 2, and Alfred M. Bruckstein ~,z

I IBM Haifa Research Lab, Matam, H~ifa 31905, Israel
2 Department of Computer Science, Technion City, H,dfa 32000, Israel

3 AT&T Bell Labs at Murray-Hill, NJ 07974, USA
israelw@vnet.ibm, corn, { miclfreddy} @cs.technion. ac.ii

Abstract

An ant walks along the edges of a graph G, occ~-
sionMly leaving pheromone traces at vertices, and
using those traces to guide its exploration. We
show that the ant can cover the graph within time
O(nd) where n is the number of vertices and d the
diameter of G. The use of traces achieves a trade-
off between random and self-avoiding walks, as it
can give lower priority to already visited neigh-
bors. A I-I~miitonian cycle in G, if one exists, is a
limit cycle of the smell directed graph exploration
process.

Introduction
Following an ancient advice t, we consider a memory-
less a(ge)nt that searches a graph G for food. The ant
has the ability to leave pheromone traces on vertices,
and to sense the smell traces at the current location
and its immediate neighbors. By "sensing the smell" at
a vertex we mean that the ant knows both the number
of smell traces that have been left on the vertex, and
the time of the most recent trace. Formally, a vertex v
at time t is marked by a pair (et(v), rt(v)) ~rt(v)
is the number of marks left on v, and rt(v) is the time
of the most recent mark left there up to time t. Initially
we set both marks to zero for all v E V, V being the set
of vertices. Being at a vertex u, the ant smells around
and chooses among N(u), the set of neighbors of u,
neighbor v with a mark lower than itself, i.e. such that
(o’t(v),rt(v)) < (~rt(u),rt(u)), where "<" means "less
than" in lexicographic order. If no such vertex exists
in the neighborhood of u (i.e. u is a local minimum of

¯ ~rt(.)), the ant increases tr(u) by 1, and r(u) to the
current time. Intuitively, this rule of motion behaves
like a steepest-decent optimizer, with the additional
option to dynamically alter the cost function, thereby
avoiding being stuck in a local minima.

We shall call this process "vertex ant walk" to dis-
tinguish it from a similar "edge ant walk" process dis-
cussed in (Wagner.Lindenbaum & Bruckstein 1996)
where the edges, rather than the vertices, were marked.

1 "Go to the ant. thou sluggard; consider her ways, and

be wise" (Proverbs. vi. 6).

It has been shown there that a group of k smell-
oriented ants that evolve in an edge process can cover
a graph in a (worst case) time of O(An2/k), where A
is the maximum vertex-degree and n - the number of
vertices. The result in the current paper is an improve-
ment since, in general, nd < AnL

The VAW process, beyond its theoretical interest,
has applications in robotics where a robot with lim-
ited sensing capabilities but with the ability to leave
marks on the ground has to cover a closed region for
purposes of cleaning a dirty floor, painting a wall, or
demining a mine-field. Another potential application
is searching a large network of WWW sites which are
changing slowly; if a web-site does not change more
than once in T units of time, and T < 2dn, then our
method guarantees that no change will be missed.

Related work: Graph search is an old problem;
several methods exist for deterministic (e.g. (Even
1979), (Fraenkel 1970), (Hopcroft & Tarjan 1973),
(Tarry 18..), (Tarjan 1972)) random (e.g. (Aleliunas
al. 1979), (Barnes & Feige 1993), (Broder et al. 1994))
and semi-random ((Gal & Anderson 1990)) covering.
A step towards a trace-oriented theory of search was
done in (Blum & Sakoda 1977) and (Blum & Kozen
1978), where pebbles are used to assist the search. Peb-
bles are tokens that can be placed on the floor and later
be removed. In (Blum & Kozen 1978) it was shown
that a finite automaton with two pebbles can search all
mazes. In a sense, our work is a generalization of this
work, since one may use "diminishing pebbles" or "de-
flating tokens" as a model of odor markings. There are
several related search methods in the literature, some
of which will be briefly mentioned in the sequel. The
RTA* (Real-Time A*) and LRTA° (Learning RTA*)
(Korf 1990) are two variations on the famous A* heuris-
tic search, with a cost function that takes the current
searcher’s location into account, thus making the algo-
rithm more realistic for field applications like robotics.
In (Thrun 1992),(Thrun 19928) counter-based ezplo-
ration method is described which is quite similar to our
method, but the upper bound shown there on the cover
time is O(n2d), where d is the diameter and n is the
number of vertices in the graph. In the Nearest Neigh-

122

From: AAAI Technical Report WS-97-10. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

bor Approach (NNA) method of (Koenig & Smirnov
1996), a graph is learned by moving towards the near-
est un-visited edge in the graph, and an upper bound
is proved on the cover time of O(m log n) where m is
the number of edges in the graph. The usage of ideas
from nature for search and optimization problems has
recently acquired popularity. See (Dorigo,Maniezzo &:
Colorni 1996) and references therein for an ant-system
used to solve Travelling Salesperson (TSP) problems.

Our algorithm suggests a reasonable trade-off be-
tween the rigid, highly sensitive Depth-First Search
(DFS) and self avoiding (Madras & Slade 1993)
on one hand, and the absolutely adaptive (but very
time-consuming) random walk, on the other hand.

In this extended abstract we prove an O(nd) bound
on the cover time of a graph by the above process,
where n = IV(G)I and d = diam(G), and show that
Hamiltonian cycle, if one exists in G, is a limit cycle of
the process.

Vertex Ant Walk - a Tradeoff Between

Random and Self-Avoiding Walks

Formally, the process is defined by the following rule
of motion:

Rule Vertex-Ant-Walk(u vertex;)
A) v := u’s neighbor with

minimal value of (~(.), r(.));
(if there is a tie - make a random decision)

B) if ~(u) < ~(v)
C) sigma(u) := ~(u) +
D) r(u) :=t;
E) t:=t+l;
F) go to v.
end Vertex-Ant-Walk.

In the sequel we shall refer to the above rule as the
VAW rule. See Figure 1 for an example of the YAW
evolution.

How efficient is this process ? Let us now show
that it covers any connected graph within O(nd) steps,
where n is the number of vertices and d is the diameter
of the graph.

Lemma 1 If (u, v) 6 E then it always holds that

I~(u) -~(v)l-< 1.

Proof The lemma is clearly true when t -- 0 since
all o’(.) values are being preset to zero. Assuming
is also true at time t, we claim that the (t + 1)th step
of VAW does not cause any harm, i.e. the assertion
of the lemma remains true. Note that the only change
in a at this time may occur at the current node u in
step C of the YAW rule. If the ant finds that a(u)
:(v) then there is no change to a and the assertion
remains true. Otherwise, (r(u) ~ ~r(v) and ~(u)

increased, but this again causes no harm since ~(u)
a minimum among N(u), hence incrementing its value
by one cannot cause it to differ by more than 1 from
any other neighbor. {::1

Our next step is to show that under the VAW rule,
vertices are marked in at least 1/2 of the steps. For
this end, let us define the total smell on the graph at
time t, as(G), to be the sum of all the a values on the
vertices at that time.

Lemma 2 At all times t,

> t12.
uEV

Proof Let us denote the sequence of nodes visited
up to time t by xl, x2, ¯ ¯., zt. According to the VAW
rule, upon moving from xi to xi+l, it holds that either
6ri(Xi.{.1) < O’i(2i) (i.e. a negative gradient existed at
time i) or ¢ri+l(Xi+l) ~ ai+l(Xi) (i.e. the created
an anti-gradient by increasing a(xi)). It is also clear
that

= .,-i(x,-1)1
- +’"

+ - +
But o’1(Zl) = O, hence

i=2

where 6i - ai(xi) - ai-l(xi-1). According to Lamina
1, each & is either -1, 0, or 1. In the last two cases,
~i(xi) should have been increased in the (i+ 1)th step,
otherwise the ant could not move to zi+l - recall that
it is only allowed to move along a negative gradient of
¢(.). Denote by tn,t0 and tp the number of 5%, up
time t, with values -1, 0, and 1, respectively. Clearly,
t - t~ + to + tp and o’(G), the total sum of a over
G, is exeactly the number of increases in o’(.), that
is ~r(G) = tp + to. On the other hand, observe that
tp - tn > 0 since

tp -t. = >_ O,
which implies tp >_ t, and hence tp + to > t/2, and

= tp + to >__ t12.
o

Now let us combine the continuity of ~(.) (Lemma
1) together with its temporal accumulation (Lemma
to get

Theorem 1 Denote by d the diameter of G, and by
n - the number of vertices. Then O’d(2n-d-1)q-l(U) 0
for all u 6 V. In other words - after at most d(2n
d - 1) + 1 steps the graph is covered.

123

Proof Assume that at time t the graph has not yet
been fully covered. Then there exists at least one node,
say u, for which e(u) = 0. According to Lemma
none of u’s neighbors can have ~r > 1, none of the
neighbors’ neighbors can have a > 2. etc. Hence we
have at least one node with ~ -" 0, at least one with
a = 1, and so on up to d- 1. The rest of the nodes Cat
most n - d) may have a < d. This gives a total a(G)
of at most d(d- 1)/2 + ~n- d) d(2n - d-1)/ 2.
But according to Lemma 2, ~ is increased in at least
half the steps; hence if t > d(2n - d - 1) the graph is
necessarily covered, o

The bound of O(nd) is nearly tight; the example in
Figure 2 depicts a case where the cover time required
by VAW is indeed O(nd).

VAW and the Hamilton cycle
As opposed to DFS and similar search methods, our
VAW ant never stops, unless we pre-program it with
an upper bound on its walking time. Hence, VAW is
not the best method for a one-shot search; however, as
we shall show in this section, it may be a competitive
candidate for an adaptive-repetitive search, in which
we want the graph to be searched again and again.
Applications may be guarding/surveillance or keeping
an up-to-date database in the context of a huge net-
work of data sources (e.g. INTERNET).

Let us assume that after covering the graph we allow
our ant to continue its YAW process. It follows from
Theorem 1 that once every (at most) 2dn steps, an-
other coverage of the graph is completed. If the graph
has a Hamiltonian cycle, following this cycle is clearly
the shortest way to cover the graph. We shall now
show that a Hamiltonian cycle (if one exists in G) is
limit cycle of the YAW process; i.e. if the ant happens
to follow such a cycle for one time, it will follow this
cycle forever.

Lemma 3 A Hamiitonian cycle in G is a limit cycle
of the YAW process.

Proof: Let us denote by to the time of completion
of a Hamiltonian path. Hence, according to our as-
sumption, the n vertices visited prior to to + 1 ex-
actly constitute the set V, and the following step com-
pletes the cycle, i.e. xt0+l = zto-n+l. By tile VAW
rule, an ant can only follow the anti-gradient of the
(o’(.), r(.)) function; hence, at time to, it should
that o’to(xto-n+l) > ato(Xto-n+2) > "’" >_ °’to(zto)’

But then we know that at time to + 1 our ant goes
again to xt0-n+l, which inplies that o’t0+x(Xto)
~to(Xf0_n+x). But this is only possible if cr values
all vertices increase exactly by one during each cycle.
Hence when the ant visits x~0+l, all its neighbors (with
the exception of xt0) have a value equal to that of
xto+:; hence ~ is increased by 1 for that vertex, and
the next vertex is chosen according to r, the secondary

parameter. But this parameter holds, for each neigh-
bor, the time of the latest change done to its marking -
hence the oldest neighbor is chosen and the cycle con-
tinues on and on. n

Some Open Questions
The vertex ant walk seems to be quite a simple pro-
cess; however, several facets of its behavior are still
challenging, as is shown by the following examples.

¯ Does a YAW process on a Hamiltoniangraph always
converge to a limit cycle ? In other words, are there
any non-Hamiltonian limit cycles for such a graph ?
In general, does the spanning tree induced by YAW
improve (in terms of covering cycle) with time

¯ A probabilistic version of YAW rule does not deter-
mine the next neighbor specifically, but assigns each
neighbor a probability according to its current (a, r)
mark, e.g. the probability of jumping from u to v
may be

11(1 + ~(v))
Prob(u -- v) = EueN(u) 1/(I -I- a(u))"

Is such a semi-random coverage process faster, on
the average, or slower than the deterministic one ?

Acknowledgements
We thank Bob Holt of AT&T-Bell Labs for the careful
reading of this paper and for several suggestions for
improvements.

References
R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovasz,
C. Rakoff, "Random Walks, Universal Traversal Se-
quences, and the Complexity of Maze Problems," in
20’th Annual Symposium on Foundations of Com-
puter Science, p. 218-223, San Juan, Puerto Rico,
October 1979.
M. Blum, W.J. Sakoda, "On the capability of finite
automata in 2 and 3 dimensional space," in FOCS’77,
p. 147-161.
G. Barnes, U. Feige, "Short Random Walks on
Graphs," in Proc. of the 25’th ACM STOC, 1993.

M. Blum, D. Kozen, "On the power of the compass,
or, Why mazes are easier to search than graphs," in
FOCS’78, p. 132-142.

A.Z. Broder, A.R. Karlin, P. Raghavan, E. Upfal,
"Trading Space for Time in Undirected s- t Con-
nectivity," SIAM J. COMPUT., Vol. 23, No. 2, pp.
324-334, April 1994.

M. Dorigo, V. Maniezzo, A. Colorni, "The ant system:
an autocatalytic optimizing process," IEEE Trans. on
Systems, Man, and Cybernetics-Part B 26 (1996), 29-
41,

124

S. Even, Graph Algorithms, Computer Science Press,
Rockville, Maryland, 1979.

A.S. Fraenkel, "Economic Traversal of Labyrinths."
Mathematics Magazine. 43: 125-30, 1970, and a cor-
rection in 44: 12, 1971.

S. Gal, E.J. Anderson, "Search in a Maze," Probabil-
ity in the Engineering and Informational Sciences,4,
1990, 311-318,
J. Hopcroft, R. Tarjan, "Efficient Algorithms for
Graph Manipulation," Comm. ACM, June 1973, pp.
372-378.

R. E. Korf, "Real-Time Heuristic Search," Artificial
Intelligence, 42 (1990) pp. 189-211.

S. Koenig, Y. Smirnov, "Graph learning with a near-
est neighbor approach," COLT’96 , Desenzano del
Garda, Italy, June 28 - July 1, 1996.

N. Madras, G. Slade, The Self-Avoiding Walk,
Birkenhauser, 1993.
R. Tarjan, "Depth-First Search and Linear Graph Al-
gorithms," SIAM J. Comput.,vol. 1 no. 2 (1972), pp.
146-160.

G. Tarry, "Le problem des labyrinths," Nouvelles An-
hales de Mathematiques, 14:187.

S. Thrun, "The Role of Exploration in Learning Con-
trol," In Handbook for Intelligent Control: Neural,
Fuzzy and Adaptive Approaches, Van Nostrand Rein-
hold, Florence, Kentucky 41022, 1992.

S. Thrun, "Efficient Exploration in Reinforcement
Learning ," Tech. Rep. CMU-CS-92-I02, Carnegie-
Mellon Univ., Pittsburgh, Pennsylvania 15213-3890.

I.A. Wagner, M. Linden-
baum, A.M. Bruckstein, "Smell as a Computational
Resource - A Lesson We Can Learn from the Ant,"
Proc. ISTCS’96, pp. 219-230. web-accessible through:
http://www, cs.technion, ac.il/" wagner

)

t 2?t
0 4

(0,0)
(0,0)

(1,1)
(0,0)(3)

(1,3)
(1,1)

(0,0)

(1,3)
(1,1)

(1,2)
(1,0)

/50,)0)
1 2

(1,3)
(2,4)

(1,2)
(1,0)

(0,0)

(1,3)
(2,4)

(1,2)
(1,0)

(0,0)
(0,0)

2 3

(1,3)
(2,4)

(1,2)
(1,0)

(0,0)
(0,0)

3 1

(1,3)
(2,4)

(1,2)
(I,5)

(0,0)
(0,0)

4 2

(1,3)
(2,4)

(1,2)
(1,5)

(0,0)
(0,0)

5 4

(1,3)
(2,4)

(1,2)
(1,5)

(0,0)
(0,0)

6 6

(2,11)
(2,4)

(1,2)
(2,8)

(1,7)
(1,6)

7 5

(2,11)
(2,4)

(2,10)
(2,8)

(1,7)
(1,6)

8 4

(2,11)
(3,12)

(2,10)
(2,8)

(1,7)
(1,6)

9 6

(2,11)
(3,12)

(2,10)
(2,8)

(1,7)
(2,9)

10 3

(2,11)
(3,12)

(2,10)
(2,8)

(1,7)
(2,9)

11 1

(2,11)
(3,12)

(2,10)
(2,13)

(1,7)
(2,9)

12 2

(3,17)
(3,12)

(2,10)
(2,13)

(1,7)
(2,9)

13 4

(3,17)
(3,12)

(3,16)
(2,13)

(2,14)
(2,9)

14 5

(3,18)
(3,16)

(2,13)
(2,14)

(2,9)
15 6

(3,16)
(2,13)

(2,14)
(3,15)

16 3

(2,13)
(2,14)

(3,15)
17 1

(2,14)
(3,15)

18 2 (3,15)

Figure 1: A VAW ant covers a graph and arrives at
a Hamiltonian limit cycle. The corresponding (~,, r)
evolution is shown in the table. Note that a(2) (at
times 4 and 18) and a(4) (at time 12) do not increase
since they are not a local minima.

:~ eee

... d ...

Figure 2: A hard case for the VAW rule. There are n
vertices, and about 1.25n edges. The diameter is about
0.8n, and the time needed to traverse it may be as long
as O(nd) O(n2). The dotted ar rows show the worst
case where each triangle of vertices is a "trap" that
causes the ant to go back to its starting point.

125

