
Baselines for On-Line Search Methods

Joseph C. Pemberton
pemberto~dc.isx.com

ISX Corporation
2000 North 15th Street, Suite 1000

Arlington, VA 22201

Abstract

On-line search algorithms have become increasingly
important in a wide variety of application domains.
Our position is that research in on-line search algo-
rithms should at a minimum include experimental re-
suits that compare the algorithm’s performance to a
reasonable set of baselines. We suggest a general ap-
proach to baselines, and then present examples for a
particular domain of on-line search problems.

Introduction

On-line search is often necessary when solving real-
world decision problems, particularly when there is a
measurable time, solution quality or opportunity cost
associated with the deliberation needed to find a so-
lution. The general conjecture that underlies on-line
search algorithm research is that algorithms that are
aware of the on-line conditions can exploit them to
produce better quality decisions. In this paper, we
suggest several baseline algorithms that can be used
to help identify whether or not a particular on-line de-
cision problem can benefit from a customized on-line
search algorithm.

For this paper, we have focussed on on-line decision
problems where the task is to find a sequence of deci-
sions that is optimal for some objective function (e.g.,
minimum cost, maximum solution quality, etc.). The
complete solution is thus a sequence of decisions that
transform the initial state into the goal state. In addi-
tion, we assume any partial solution can be extended to
a complete solution (i.e., there are no dead ends in the
search space), and that there exists some function for
estimating the value of a complete decision sequence
given a partial decision sequence.

One example of this type of on-line decision problem
is on-line scheduling optimization. Scheduling prob-
lems consist of a set of tasks and a set of resources
with which to perform the tasks, and the objective is
to determine the order in which to process the tasks
on the given resources while minimizing the solution

cost. Scheduling problems become difficult when there
are not enough resources to perform all of the tasks
at once, and when there are ordering constraints on
the tasks (e.g., a part must be milled before it is
sanded, a painted part must be dry before it can be
installed). There are many different variations on the
general scheduling problem (e.g., flowshop scheduling,
job-shop scheduling, transportation scheduling). For
our purposes, these scheduling optimization problems
become on-line decision problems when the cost of an
executed schedule includes the cost of the time spent
deciding what order to perform which tasks.

General baseline recommendations

Any on-line search algorithm will ultimately have to
trade-off the cost of finding a solution with the cost
of executing the solution found. The first step toward
providing a baseline for evaluating an on-line search
algorithm is to consider the on-line cost of finding
an optimal complete decision sequence using the best
known algorithm. We call this approach the solve-
then-execute algorithm. For a scheduling problem,
this consists of solving for an optimal schedule and
then executing it. When computation is inexpensive’
(i. e., free) relative to the cost of executing the solution
found, solve-then-execute is a reasonable competitor.
For the more interesting case where computation is
not free, the solve-then execute solution cost" provides
a baseline with which to measure the potential value
of an on-line decision algorithm.

The second step toward a general purpose baseline
is to consider very simple (i.e., low-cost) heuristics for
making a sequence of greedy on-line decisions. For
the scheduling problem, one example is to schedule the
tasks in increasing order of their processing time (sub-
ject to the ordering constraints). It makes sense to
spend some time considering possible greedy-decision
heuristics because they can also be used to direct the
problem-space exploration in more complicated on-line
search algorithms. Other obvious greedy heuristics to

129

From: AAAI Technical Report WS-97-10. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



consider include longest-first, most-constrained-first,
and least-constrained-first.

The solve-then-execute and simple greedy algo-
rithms together define a spectrum of on-line search
algorithm performance. In particular, if the cost of
the computation to find the decisions is counted sep-
arately from the cost of executing the solution found,
then it is possible to parameterize the complete so-
lution cost (deliberation and execution) as a function
of the ratio of deliberation to execution cost. When
the cost of deliberation is small, solve-then-execute is
the algorithm to beat. Alternatively, when the cost of
deliberation very expensive, an on-line algorithm that
makes greedy decisions is likely to be the algorithm to
beat. The more interesting cases from an on-line al-
gorithm design perspective are in between these two
extremes.

Iterative-Deepening Minimin

The main characteristics of on-line decision-making
problems are that there is a limit on the amount of time
available before a decision must be made, and that the
opportunity exists to interleave planning and execu-
tion. In general, on-line decision making can be broken
down into three sub-problems. The first is deciding
what information to gather (or generate) to support
the decision process given the limited time available.
The second is deciding when to stop collecting informa-
tion (or evaluating the effect of future decisions) and
commit to a decision. The third is determining what
action to execute given the information that has been
gathered (or generated and evaluated) to support the
decision. In this section, we briefly discuss baselines for
each of these three subproblems. The combination of
the three subproblem baselines is iterative-deepening
minimin (Pemberton 1995b).

The choice of which information gathering method
to employ normally boils down to the following ques-
tion: Is a sophisticated information gathering method
that is more particular about which information to
gather better than a simple information gathering
method that can explore a larger percentage of the
search space due to its smaller overhead cost? The
key observation here is that the time spent figuring
out where to search will naturally take away from
the amount of searching that can be done. The pos-
sibilities for information gathering range from brute
force search, to simple heuristic exploration, to full-
blown value-of-information calculations. Given a lim-
ited amount of time with which to explore the prob-
lem space, a reasonable baseline for information gath-
ering is iterative-deepening branch-and-bound, where
the bound is based on a simple (i.e., low cost) admis:

sible heuristic evaluation of the complete decision se-
quence cost given a partial decision sequence. This
baseline provides the decision-making component of
the algorithm with a reasonable set of information
given the time constraint.

Perhaps the simplest way to decide when to make a
decision is to delay the decision until the time for the
decision is at hand. The advantage of delaying a deci-
sion is that it makes it possible for additional informa-
tion to change the current decision. The disadvantage
is that committing to a decision at the last minute may
waste exploration resources that otherwise could have
been saved for later decisions. In many on-line decision
problems, the natural decision point is determined by
the problem itself (e.g., when a resource becomes avail-
able in a scheduling problemi. For single-agent on-line
search problems, we recommend that the decision be
delayed as long as additional cost is not being incurred.
We refer to this as last-minute decision making.

Given a partially explored problem space, we rec-
ommend that the baseline method for action choice
be the minimin decision method (Korf 1990). A min-
imin decision is to move one step toward the lowest
cost (or best) frontier node of the currently explored
search space. This simple decision-making method has
been shown to be very effective in both randomly gen-
erated search trees and randomly generated flow-shop
scheduling problems (Pemberton 1995b). The added
advantage of the minimin decision method is that the
minimin decision is the same for an admissible branch-
and-bound exploration and a full-width fixed-depth ex-
ploration.

These three baselines are the basis of iterative-
deepening minimin. Prior work (Pemberton 1995b)
has shown that this on-line search algorithm is com-
petitive and thus a reasonable first comparison point
for more complicated search algorithms.

Summary

We have presented three baseline algorithms to con-
sider when evaluating on-line search algorithms for
optimization decision problems: search-then-execute,
greedy, and iterative-deepening minimin. These al-
gorithms provide an initial baseline against which to
measure more sophisticated on-line search methods.

The baseline recommendations presented here do not
apply to on-line search problems for which there does
not exist a function for evaluating intermediate nodes
in the search space (e.g., robot navigation in unknown
space, scheduling with hard deadlines). For a schedul-
ing problem where the complete decision sequence is
constrained to finish before a preset deadline, a partial
decision sequence cannot bc evaluated without first de-

130



termining if there is a feasible completion. For this and
other on-line decision problems we recommend that
other baseline algorithms be developed and adopted
in order to provide an experimental comparison point
for newly developed on-line search methods

References
Boddy, M., and Dean, T. L. 1994. Deliberation
scheduling for problem solving in time-constrained en-
vironments. Artificial Intelligence 67:245-285.

Dean, T. 1991. Planning under uncertainty and time
pressure. In Proceedings of the 1990 Workshop on
Innovative Approaches to Planning, Scheduling and
Control, 390-395.

Goodwin, R. 1994. Reasoning about when to start
acting. In Hammond, K., ed., Proceedings of the
Second International Conference on Artificial Intel-
ligence Planning Systems (AIPS-94), 86-91.

Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42(2-3):189-211.

Pemberton, J. C. 1995a. k-best: A new method for
real-time decision making. In Proceedings of the 1995
International Joint Conference on Artificial Intelli-
gence (IJCAI-95).

Pemberton, J. C. 1995b. Incremental Search Methods
for Real-Time Decision Making. Ph.D. Dissertation,
University of California, Los Angeles.

131




