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Abstract

Taking robots out of the shop-floor and into service
arm public-oriented applications brings up several
challenges concerning the implementation of real-time trrt
robust systems. In uncertain environments sensors are
required to get feedback and detect the actual world state.
Perception-action reasoning seems to be the right approach
for real-time and robust connections between sensing and
action. In order to adapt to new situations, robots must be
able to learn from given examples or from their own
experience. In addition, taking advantage of the available a-
priori task knowledge can speed up the learning task. The
proposed sensor-based architecture combines several
learning paradigms as well as pre-programmed modules,
since experimental evidence suggests that some paradigms
are more convenient for learning certain skills. The
correspondence between qualitative states and actions is
learnt. Programming is used to decrease the complexity of
the learning process. A general approach is presented that
is a suitable scheme for a wide range of robot situations.
Results are provided for a simulated exploration task as
well as for a real application of the architecture in
dexterous manipulation.

1. Introduction

Taking robots out of the shop-floor and into service
and public-oriented applications brings up several
challenges concerning the implementation of real-time and
robust systems. While modern robots are capable of
performing a broad range of tasks, the presence of
uncertainty in the motion or in the world model makes
current hard-coded robot programs fail miserably. The
robot needs to be endowed with sensors for perceiving its
environment, adapting to changes, and reducing the
uncertainties [1]. Additionally, the robot should be capable
of adapting to new situations by learning from given
examples or from its own experience. Current learning

approaches are often limited to simulated problems or
simple real tasks. In order to achieve complex real-world
tasks, the system should not ignore the available task
knowledge. The objective of this work is to build complex
systems using force sensing, task knowledge and learning
capabilities inspired on biological systems. The desinxi
architecture should get benefits from both pre-programmed
strategies and learning through the integration of several
learning paradigms, since experimental evidence suggests
that some paradigms are more convenient for certain
skills.

2. The Need for Robust Perception-
Based Learning

In the absence of feedback from the environment, a
robot must rely only on its internal programmed model.
The quality of this model is the key factor for the success
of the robot operation, but precision tasks are very
sensitive to small inaccuracies. For example: if the
location of the elements for an insertion task is known
with an error greater than the clearance between the
elements, the model cannot guarantee that the task will be
successfully accomplished.

In a broad sense, the problem is to enable the robot
to perform tasks despite its uncertain position relative to
external objects. The use of sensing significantly extends
the range of possible tasks [2]. Initially, persons rely
heavily on their senses, primarily vision and tactile, to
accomplish a certain task. However, upon proficiency, the
task becomes mechanistic and routine.

A robotic system should increase its skills in a
similar way: beginning with simple exploratory actions,
and upon completion of successive trials, it should
incorporate the learnt knowledge to its strategy, thus
becoming more skillful.
A learning approach for robot tasks is proposed in [3].
However, learning from scratch is inefficient in all but the
simplest tasks. Advanced control techniques should be
considered as primitive elements for such a skilled system:
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for example, the compliant motion techniques [4]; or the
use of vision in motion control as studied in [5].

3. An Architecture for Perception-Action

The proposed method is a framework which
seamlessly integrates different learning paradigms, namely
unsupervised learning, inference of Finite State Automata
(FSA) through recurrent neural networks and reinforcement
learning in a layered architecture, as depicted in Fig. 1.

The goal is to build an autonomous agent which is
capable of learning from its own experience. At the
beginning its skills are limited, and random exploratory
actions must be carried out frequently. After several trials,
either successful or not, the agent will be able to learn a
policy (correspondence between states and actions) which
tends to improve its proficiency.

3.1 Signal processing

The agent gets information from the environment
- through its sensors. In real applications, sensors are far

from perfect: measurements are noisy, and the relevant
information must be extracted prior to any other
computation. Although it is claimed that neural systems
are robust against noise, we argue that signal processing is
a well-established discipline that cannot be ignored at this
first stage. If the characteristics of the noise are known in
advance, efficient filters can be easily designed.

Besides noise filtering, other signal processing
operations like scaling or normalization can be performed
at this stage.

3.2 Feature extraction

Usually not every component of the signal vector is
relevant for the task. The problem is simplified if only
those important values are considered in the next levels.
However, in the general case it is difficult to state which
information is essential and which other signals can be
discarded. Principal Component Analysis (PCA)
techniques are useful for linear spaces. In a previous work
[7, 8] the authors demonstrated the feasibility of
unsupervised learning algorithms for extracting relevant
feature information from sensor data in robotic
manipulation tasks. The dimensionality of the feature
vector is considerably lowered, and the computation
complexity is decreased.

3.3 Symbolic conversion

The feature vector should be converted into
qualitative information before further processing. This is a
requirement for the proposed learning algorithm which is
suitable for discrete state and action spaces. This
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Fig. 1. Overall system architecture.

conversion can be achieved by defining sets in the feature
space, and assigning labels to each set. The label of the set
which contains the feature vector is chosen. If no task
knowledge is available, a random partition can be chosen,
or an unsupervised clustering algorithm can be applied [7,
8].

3.4 Inference of FSA through recurrent neural
networks

In the simplest case, the qualitative information
obtained from the feature vector could be considered as the
system state. More generally, the current state is not only
identified from the last observed symbol, but from the past
history too. If the sequences of symbols are considezed
strings from an (unknown) regular language, then this
behavior can be modeled with a Finite State Automaton.
Although the regularity assumption seems to be too
restrictive, it should be noted that any language can be
approximated at a desired degree with a regular language.

The language alphabet is the finite set of discrete
symbols obtained from the feature vector. Since neither
the states nor transitions of the automaton are known in
advance, an inference process is needed to learn the
structure of the automaton from example strings. This
process is carried out by means of a recurrent neural
network, namely an Elman network trained with the
backpropagation algorithm [9]. The FSA is extracted from
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the hidden layer of the network through a procedure called
dynamic state partitioning [10]. The state of the agent is
determined by the state of this inferred automaton upon
processing of the qualitative input.

3.5 Learning the correspondence between states
and actions

The system generates an output based on its current
state. This output can be programmed for a given state, or
it can be learned from examples (stored state-action pairs
from other executions) or from its own actual experience,
by means of a reinforcement signal, which indicates the
quality of the actions performed by the robot. This signal
needs not be generated externally to the agent; an internal
signal which keeps track of the invested effort is also
appropriate. A general reinforcement algorithm, namely Q-
learning [11], is proposed. This algorithm learns the state-
action pairs which maximize a scalar reinforcement signal.
Initially, the system randomly explores the action space.
As it becomes more experienced, it learns the correct
association between each state and the best action for such
state.

3.6 Control modules

Only discrete actions are issued by the learning
algorithm. This discretization is usually considered a
major drawback of this algorithm. However, in our
experimental results, it is shown that only eight different
actions are sufficient for successfully performing a real
insertion task. But these actions are high-level primitives,
e.g. compliant motions [4]. Well-known algorithms are
used for position control, force control, compliant motion,
etc. A separate control law can be used for each distinct
qualitative action.

4. Simulation of a sensor-based spatial
exploration task

A simplified simulation of a real problem is carried
out to test the learning capabilities of the proposed
architecture. The task is to attain a goal guided only by
sensory information. This sensor signal is related to the

¯ Scenario 1 Scenario 2

°
Fig 2. Sensor maps for two different scenarios.

region where the agent is, but this relationship is
unknown, and the agent’s position is unknown too. The
agent can move from a cell in a grid world to any of its
eight neighbors with a single step. The task is simplified
at the sensor and actuator levels, but the agent must learn
an unknown and possibly complex relationship between
states and actions. Starting from a random location, the
agent must find its way to the goal (at the center of the
scenario) guided only by its sensory information (see Fig.
2). The sensor measures a single discrete signal with 
finite number of different values (A to F in the first
scenario or A to D in the second one).

Each location is associated to a static sensor
measurement, but two distinct isolated locations may
produce the same sensor value. Thus, the sensor
measurement is ambiguous and the real state of the system
cannot be directly obtained from the current sensor signal.
Despite this ambiguity, the learning algorithm is able to
find the best action (the one which leads to the goal in the
minimum number of steps on average) for those states
which are not replicated, in the first scenario. No best
action is learnt for the rest of the states; the reason is that
the agent is confused and cannot guess an optimal policy.

In the second scenario, configuration of the regions is
even more ambiguous, and no optimal action can be learnt
b~ using only the current symbol information. However,
the agent can infer some underlying structure of both
scenarios by means of randomly walking and building
strings of sensor measurements. In Fig 2, such a trajectory
is depicted, which produces the string CAAABBAABBE
DBBDFFEEEEDEEEC and ends in the goal region.

Sets of such strings are used to infer the structure of
the automata by means of an inference process, which is
canied out by an Elman recurrent neural network with a
hidden recurrent layer of two units. The automata are
extracted through dynamic state partitioning, and mdL_=:e~l__
to its equivalent minimal state representation using a
standard minimization algorithm. The resulting automata
are used to identify the current state based on the current
and previous sensor readings.

Results of the simulations are shown in Fig. 3. The
number of steps vs. number of trials are depicted in the
plots, using a moving average window of 25 consecutive
values. Experiments consisted of 1500 trials, each of them
beginning at a random location and finishing either when
the goal is reached or the agent performs 100 steps
without attaining the goal. Three independent runs are
depicted in each plot. The performance of the system is
compared for the two approaches, using only symbol
information, and using the inferred automaton, on the two
scenarios. The use of the automata leads to an
improvement in the number of trials needed to converge
and the final number of steps needed to attain the goal. In
fact, the system that uses only symbols is unstable in
scenario 2.
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where Be (x) is the sphere of radius e centered at x. One

should note that the clearance (difference between hole and
peg width) is much smaller than the uncertainty radius,
but the hole depth is much greater than this radius.
Consequently, the location of the hole cannot be detected
due to uncertainties in the coordinates (x, y), but the
insertion of the peg can be detected with the value of the z
coordinate. The key problem is how to move towards the
goal with position uncertainty. A random walk is one
possible choice [6, 12], but a sensor-guided strategy is
likely to be more efficient. Physical studies suggest that
torque signal provides enough information about the
direction to the hole [13]. However, when using real
sensors, analytical solutions are quite difficult to derive.
Thus, a learning scheme will be introduced at this stage.

Based on all the previous task knowledge, our
proposed architecture is now applicable to this problem.
Each independent module is described in the following.

5.1 Sensor signal processing

The system inputs are the six force and torque signals
from the wrist sensor, and the joint angles which are
measured by internal encoders.

After visual inspection of the signal spectra, we
decided to use a 2rid order digital Butterworth filter with
cutoff frequency 4 Hz (sampling rate is 140 Hz).

The encoder values are used to get the joint angles,
and the kinematic equations allow to calculate the
Cartesian coordinates of the end-effector.

5.2 Feature extraction and symbolic conversion

Task knowledge suggests that only the uncertainty
along x and y axes is important in our setup. Contact
information is extracted from the reaction force. Depending
on the point of contact, a different torque will be sensed,
but the z component of the torque vector is always small
(since the normal force to the surface is nearly parallel to
the z axis). This is confirmed by visual inspection of the
force profiles obtained during different trials.

Despite the fact that the real task is inherently
continuous, we argue that qualitative information is
sufficient to achieve the goal successfully and reliably.
The current state is derived from position and force
sensing. Qualitative position is obtained by thresholding
the current relative position with respect to the nominal
goal. Two thresholds are used for X and Y (namely -lmm
and +lmm), thus partitioning the space into 9 regions
(negative, zero and positive for each coordinate).
Qualitative torques are obtained in the same way from the
torque space. Thresholds for X and Y torques are - 1 and + 1
Kgf-mm. Similarly to position space, torque space is
divided into nine regions: positive, zero or negative for
each coordinate.

Contact is detected by a single threshold in Z force,
currently set to -0.1 kgf.

All threshold values are selected on an ad hoc basis,
but consistently with the signal value distributions.

In our experiments we found that torque information
is relevant only when position information is uncertain,
namely when both X and Y values are close to zero. Thus
only 17 task states from the 81 possible are used. Eight of
them are based on the qualitative position and do not
depend on the torque values. The remaining nine states are
defined by the qualitative value of the torques when the
qualitative location values of X and Y are zero.

5.3 State Identification and automata inference

In the current implementation, the state is defined by
the current qualitative values, and no past history is
considered. However, one should note that the inference
process of the simulated example is equally feasible, and it
will be included in future implementations. Since the state
set is finite, the automaton can be discovered by a
recurrent neural network. The results obtained with the
simple system are encouraging, but for pegs with complex
shapes it is likely than the inclusion of the automaton
will improve the performance.

5.4 Action selection and control modules

The action space is discretized. For example, the
exploratory motions consist of fixed steps in eight
different direction of the XY-plane.

These motions are hybrid, with some degrees of
freedom (XY) being position-controlled and other degrees
(Z) being force-controlled, as stated in [4]. The complexity
of the motion is transferred to the control modules, and the
learning process is simplified.

5.5 Learning subsystem

When the peg is contacting with the surface, the
qualitative features described in 5.2 are used to move the
peg towards the hole. The relationship amongst states and
actions is learned by means of a reinforcement algorithm,
namely Q-learning [11]. A discrete number of actions is
chosen, i.e. different directions of motion. Each pair
(State, Action) is given a numerical value (zero, initially).
The learning algorithm updates these values according to
the reinforcement signal obtained when each action is
executed in a given state. A simple action-penalty
representation is used [15]. The agent is penalized with the
same value for every action that it executes. The method
converges to the values which minimize the accumulated
penalization (which will correspond to the minimum
insertion time). Initially, the agent chooses actions
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(negative, zero and positive for each coordinate).
Qualitative torques are obtained in the same way from the
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is relevant only when position information is uncertain,
namely when both X and Y values are close to zero. Thus
only 17 task states from the 81 possible are used. Eight of
them are based on the qualitative position and do not
depend on the torque values. The remaining nine states are
defined by the qualitative value of the torques when the
qualitative location values of X and Y are zero.

5.3 State Identification and automata inference

In the current implementation, the state is defined by
the current qualitative values, and no past history is
considered. However, one should note that the inference
process of the simulated example is equally feasible, and it
will be included in future implementations. Since the state
set is finite, the automaton can be discovered by a
recurrent neural network. The results obtained with the
simple system are encouraging, but for pegs with complex
shapes it is likely than the inclusion of the automaton
will improve the performance.

5.4 Action selection and control modules

The action space is discretized. For example, the
exploratory motions consist of fixed steps in eight
different direction of the XY-plane.

These motions are hybrid, with some degrees of
freedom (XY) being position-controlled and other degrees
(7,) being force-controlled, as stated in [4]. The complexity
of the motion is transferred to the control modules, and the
learning process is simplified.

5.5 Learning subsystem

When the l~,g is contacting with the surface, the
qualitative features described in 5.2 are used to move the
peg towards the hole. The relationship amongst states and
actions is learned by means of a reinforcement algorithm,
namely Q-learning [11]. A discrete number of actions is
chosen, i.e. different directions of motion. Each pair
(State, Action) is given a numerical value (zero, initially).
The learning algorithm updates these values according to
the reinforcement signal obtained when each action is
executed in a given state. A simple action-penalty
representation is used [15]. The agent is penalized with the
same value for every action that it executes. The method
converges to the values which minimize the accumulated
penalization (which will correspond to the minimum
insertion time). Initially, the agent chooses actions
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randomly. After learning, the action with higher value for
the current state is chosen.

6. Experimental results

The system has been implemented in a Zebra Zero
robot arm with a wrist-mounted force sensor. The iask is
the insertion of a cylindrical peg into a hole. The peg is
29 mm in diameter, while the hole is chamferless and
29.15 mrn in diameter. The clearance between the peg and
the hole is 0.075, thus the clearance ratio is 0.005. The
peg has to be inserted to a depth of I0 nun into the hole.
In order to apply our system to other shapes of the peg,
we are working on methods for exporting the learned
knowledge (automaton, correspondence between states and
actions) from simple tasks to more complicated ones.

The controller is trained in a sequence of trials, each
of which starts at a random position within the uncertainty
ball (its radius is 3mm). The exploration area is a 5 
square, centered at the real starting position.

The discrete qualitative values of the sensed location
and forces are used to determine the state of the system
(see 5.2). In this first implementation no automaton 
inferred thus the recurrent network is not used, but the
robot is still able to improve its skills. Further tests
which include the inference process are needed to test if the
knowledge of this structure leads to a further significant
improvement.

A threshold in F, is used to detect a surface contact (-
0.10 Kgf). The learning algorithm uses only 17 different
states. The action space is discretized and only eight
directions of motion are allowed. In [16] it is suggested
that qualitative reasoning may be an effective means by
which humans understand the sensory force information
they receive during a manipulation task.
The peg approaches the surface until a contact is detected.
Next, a sequence of compliant motion steps across the
surface is executed. The xy-direction of each step is
determined by the action, which is chosen by the so-called
Boltzmann exploration strategy. The probability of
selecting an action a in state s is:

Q(s.a)

e T
p(s, a) Q(s,a)

Zae T

where T is a positive constant value, which controls the
degree of randomness and is often refened to as
temperature. Its value is gradually decayed from an initial
fixed value. When it is close to zero, exploration is turned
off and the best action is always selected.

The z-motion is determined by a damping controller.
Each motion command lasts for 14 control steps (i.e. ten
motions per second at a sampling rate of 140 Hz).

Figure 5. Smoothed exploration time taken
on 350 consecutive trials of the insertion

task.

After the execution of each step, the learning
algorithm updates the Q-value associated with the starting
state i and executed action a as follows:

Q~+lCi, a) =(1-ot)Q~(i,a)+ ~(r + ~’. (j))

where j is the successor state reached, r is the immediate
cost or reinforcement value, ¢x is the learning rate, and

is a discount factor (7=I.0 is used here). Vo,(j) is the

value of state j, i.e. the largest value of its actions. In the
action.penalty representation, the system is penalized for
every action it executes (r = -1 always). Since
reinforcement-learning methods determine policies that
maximize the total reward, the system will learn to insert
the peg in the minimum possible number of steps. Each
trial ends up when the hole is detected or it is aborted after
a time limit (20 seconds). This detection is achieved by 
threshold in F~ (loss of contact). A motion along the 
axis is performed until a contact in F~ is detected again.
Despite the low clearance, no problems of jamming or
wedging arose in the experiments, possibly due to the
passive compliance of the gripper and the inherent noise of
the process.

Experimental results are shown in figure 5. The
critical phase is the surface-compliant motion towards the
hole. The system must learn to find the hole based on
sensory information. The exploration time of 350
consecutive trials is shown. The smoothed curve was
obtained by filtering the data using a moving-average
window of 25 consecutive values. The learning algorithm
is executed since the beginning. Temperature is gradually
d~ from the initial high value, thus turning down
exploration.

After 150 trials, the exploration time is
approximately constant and it has been considerably
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improved over the values at the first steps. These results
are better than those presented in [3] for a similar task,
although the setup is different.

Experimental results show that the system learns
incrementally from an initially random strategy, by
improving its performance based only on its own
experience. A significant amount of task knowledge is
embedded in the system architecture, which simplifies the
learning problem. However, the imprecision, noise and
inherent difficulties of a real robot are dealt with a discrete
learning algorithm. A dramatic reduction of insertion time
is achieved in only two hundred trials.

7. Conclusions and future work

An architecture that incorporates a seamless
integration of different learning paradigms has been
introduced. Sensor processing, learning from experience
and qualitative knowledge are the key elements of the
system. The modular structure provides a clean integration
of the different paradigms. The goal applications are those
tasks which cannot be fully programmed due to
uncertainties and incomplete knowledge. The proposed
scheme also differs from other learning approaches in that
it clearly states the difference between previous knowledge
(programmed) and learned knowledge (association amongst
states and actions). The qualitative treatment of
information makes it suitable for the analysis of system
behavior, knowledge extraction and generalization to other
more complex tasks. Future research includes the study of
the convergence and stability of the algorithm, the
application to other non-cylindrical shapes, considering
uncertainty in peg-orientation and using more degrees of
freedom.
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