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Abstract

We outline a model of dimensional reasoning on time and
space scales which integrates quantitative and qualitative
knowledge about distances. At the core of this model lie -
constraints on interval boundaries, partial ordering and sub-
sumption relations on interval relations and interval bound-
ary constraints, as well as the transformation of interval re-
lations to interval boundary constraints and vice versa.

Keywords: Qualitative and Quantitative Distances, Dis-
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Introduction

When humans reason about temporal or spatial relations
or even degree expressions in evaluative discourse (“tall”,
“fast”, etc.), they are highly proficient at seamlessly inte-
grating quantitative data and qualitative distances in these
dimensional reasoning processes. Unfortunately, formal
models for dimensional reasoning have so far been re-
stricted to relations with either quantitative or qualitative
distances, while any attempt at dealing with both types of
knowledge in an integrated framework is lacking so far.! In
this paper, we develop a formal framework which tries to
fill this gap.

In order to illustrate the need for such an integrated ac-
count, consider example (1). If you planned to meet John
and Heinrich at their arrivals, you would have to integrate
quantitative (1a,b) and qualitative information (1c) in order
to draw a conclusion such as (1d).

(1) a. Heinrich's flight from Frankfurt to New York-JFK
takes eight hours.

b. John's plane from Chicago to New York-La Guardia
will start one hour after Heinrich's.

¢. John's flight will be rather short.
(One plausible) Conclusion:
d. John will reach New York before Heinrich.
'As Cohn (1996), p. 138, remarks: “...qualitative and quan-

titative reasoning are complementary techniques and research is
needed to ensure they can be integrated .. .”
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This paper describes how previous research on quanti-
tative temporal distances by Badaloni & Berati (1996) and
work on qualitative spatial distances by Herndndez et al.
(1995) can be restated in order to allow for a tight coupling
between quantitative and qualitative knowledge.

Moreover, these proposals only support reasoning mech-
anisms on fairly low-level quantitative scales and rather
“atomic” qualitative relations. What is lacking then are ad-
equate means to adjust the level of inferences being carried
out according to the needs of various levels of abstraction
(this distinction between fine-grained and coarser types of
knowledge is often discussed in terms of different granu-
larities of knowledge (Hobbs, 1985)).

We, first, introduce the interval boundary constraint rep-
resentation for Allen's well-known interval relation sys-
tem (Allen, 1983) and then extend the approach to inter-
val relations and boundary constraints with distances. A
crucial point of our approach is the easy conversion be-
tween boundary constraints and higher-level interval rela-
tions. Reasoning by composition on distance constraints is
then described in the section on different types of distances.
Whereas, at first, we are able to abstract from the kinds of
distances involved, these will become very important for
the definition of the composition rules.

We only mention that as with temporal approaches like
those of Badaloni & Berati (1996) or spatial approaches like
those of Herndndez et al. (1995) which both can be general-
ized to dimensional reasoning, our proposal can be applied
to inferences with space, time or degree expressions as well.
However, for the ease of presentation we will concentrate
on examples with temporal information.

Representation by
Interval Boundary Constraints

In order to represent and reason with qualitative knowledge
(Allen, 1983), quantitative distances (Badaloni & Berati,
1996), and qualitative distances (Herndndez et al., 1995),
we aim to combine two sorts of requirements. On the one
hand, we use relations on intervals that allow for flexibility
and a high degree of abstraction in order to express the rele-
vant level of temporal and spatial dimensions. On the other
hand, it is often more efficient and — as it will become
plausible in the course of this paper — much simpler to in-



tegrate knowledge about distances into constraints between
the boundaries of intervals.

Constraints without Distances

Abstracting, for the time being, from distances, knowledge
about interval relations can obviously be encoded in terms
of constraints on interval boundaries. Figure 1, which was
adapted from Freksa (1992), shows clearly how AHen's
primitive interval relations and the corresponding interval
boundary constraints are interrelated.
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Figure 1: Changing between Representations
Allen's primitive relations between two events can be character-
ized by the conjunction of at most three constraints between their
beginnings (X3, Y3) and endings (X, Ye).

A very simple way to introduce a notation for interval
relations in terms of constraints on their boundaries is by
way of qualitative constraint arrays.

Definition 1 (Qualitative Constraints).
“T " are qualitative constraints.

The first two describe the common relations, the third one
denotes a non-restricting constraint.

Definition 2 (Qualitative Constraint Array). A qualita-
tive constraint array for two intervals, X and Y, is an ar-
ray [c1,...,cs) of eight qualitative constraints. These con-
straints describe all possible restrictions between the be-
ginnings (X,,Y;) and endings (X.,Y.) of these intervals
in the following ordering:? Xyc,Ys A Yyco Xy A XpcsYe A
Yeca Xy A XecsYy A Yoo Xe A XecrYe A Yecs Xe.

Each of Allen's primitive relations can be defined by a
single constraint array. Moreover, many non-primitive re-
lations can be expressed that relate intervals by coarser
knowledge, namely by disjunctions of neighboring primi-
tive relations (like {m,o}; cf. Fig. 1). For instance, consid-
ering the example (1b), the relation between the time inter-
vals that are needed for the flights (we here do not consider

I‘> ”’"->‘ ” and

*We always assume that X, > X, A Y. > Y;.
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the information conveyed by “I hour”) can be denoted
by the disjunction {di, fi,0,m, <} in Allen's notation and
by the corresponding array set {[T,>,T,T,T,T,T,T]}
with the single constraint Y, > X, in ours (cf. also Fig. 1).

The largest benefit that can be attributed to our proposal
derives from the additional representation and reasoning
power we get from the smooth extension of qualitative con-
straint arrays, an issue we will elaborate on in depth. There
are, fortunately, no penalties brought about with this ex-
tension, mainly due to three reasons. First, the data struc-
tures we use for constraint arrays, at first sight, may look
more complicated than those provided for Allen's interval
relations. But empty constraints, the source of seemingly
increased complexity in our model, are only made explicit
here for the sake of structural arguments, and, hence, need
not be accounted for in an implementation tuned for effi-
ciency. Second, a conjunction of constraints (i.e., a con-
straint array with more than one non-empty entry) some-
times needs only a single primitive relation in Allen's no-
tation. As, however, coarser knowledge (as shown above
with example (1b)) can often be processed more efficiently
in our representation, this is rather a matter of trade-off
than a shortcoming on either side. Third, not all inter-
val relations can be represented by conjunctions of con-
straints. For instance, “interval X is disjoint with interval
Y’ must be represented by the array disjunction {[T, T, >
, T, T, T,T,T),[T,T,7T,T,T,>T,T]}, which consti-
tutes an ambiguous description. Again, since Allen's repre-
sentation leads to a similar disjunction (X {<, >}Y’) this is
not an argument against either approach.

Finally, reasoning on interval boundary constraints is as
easy as reasoning with Allen's relations. The axioms given
in Table 1 state how an interval boundary is related to it-
self (reflexivity), which constraints are contradictory (con-
tradiction), which constraints are weaker than others (sub-
sumption), and how constraints can be composed (composi-
tion). For more elaborate complete reasoning with interval
boundaries, cf., e.g., Vilain et al. (1989) and van Beek &
Cohen (1990). '

Va,b, ¢ € B, the set of interval boundaries:

a>a (reflexivity)
a>a (contradiction)
(a>bAa>b)ea>b (subsumption)

(a>2bAb>c)=>a>c
(a>bAb>c)=>a>c
(a>bAb>c)=>a>c
(a>bAb>c)=>a>c

(composition 1)
(composition 2)
(composition 3)
(composition 4)
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Table 1: Axioms for Qualitative Interval Boundary Con-
straints

Constraints with Distances

In order to accommodate to distances, too, we elaborate on
the type of constraints that may hold between two interval
boundaries. Instead of the common qualitative constraints
(cf. Def. 1), we will here incorporate formal constructs for
boundaries the semantics of which read as “a boundary is at



least/more than a distance z after another boundary” or “a
boundary is at most/less than a distance x before another
boundary”. D*, the distance structure, is intentionally de-
fined to incorporate only few restrictions such that it can
easily be applied to different types of distances in the fol-
lowing section.

Definition 3 (Distance Structure). The distance structure
D* is a triple (D, >\p,0), which consists of a set of dis-
tances D, the elements of which are strictly partially or-
dered by >\p, and a least element 0 € D.

Given such a structure D* we may define distance con-
straints as follows:

Definition 4 (Distance Constraints). Forallz'e D:
U g, “m_g” “>_g” and “T” are distance con-
straints. '

The new constraints (cf. Fig. 2) are characterized as fol-
lows: a >, b means that a is later® than b and the interval
in between has at least the length 2. a >, b is similar but
requires for the temporal distance between a and b to be
strictly larger than z. The occurrence of “~” in the index

arzblarzb
a>-zbfa>-zb

Figure 2: Distance Constraints
Assuming z € D, the set of distances in the distance structure
D", the grey color indicates the regions to which b is restricted
with respect to a by the constraints >, and 5 (>=—- and »_,
respectively). In contrast to >, > allows b to lie on the borderline,
too.

of such a constraint, e.g., @ =_; b, indicates a slightly dif-
ferent semantics, namely that a is either before b with at
most the distance x between a and b or a is after b. A corre-
sponding proposition holds for @ =_, b. Since “~" results
in weaker constraints and because we want to compare the
strengths of constraints on the basis of their indices, we de-
fine “~” as an operator that is used to extend D* to D*:

Definition 5 (Operator —). — is a bijective function that
maps D = D U {~z|z € D} onto itself such that -0 = 0
andz € D\{0} & —z € D\D.

Definition 6 (Extended Distance Structure). 7The exten-
ded distance structure D* is the quadruple (D,>,0,-)
derived from D* (as defined in Def. 3) by extending D to
D = DU {—z|z € D} and >|p to >, using 0 and “~” as
defined in Def. 5. Thereby, the strict partial ordering > on
D is defined as follows: Yz € D,y € D\D : z > y,
Vi, y € D : 2 >py & = > y, andVz,y € D :
T>YS —yY> -z

3Whenever we use a temporal expression, it is also valid for
corresponding spatial and degree expressions and the reasoning
on the expressions involved.
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Most of the axioms from Table 1 can easily be adapted
to the definition of the extended distance structure (cf. Ta-
ble 2). Only the composition axioms depend crucially on
the respective distance structure and their treatment is there-
fore deferred to the section on different distance types. The
neutral element renders “>~o” and “>¢” equivalent to the
common relations “>" and “>", respectively. Also, the
partial ordering > on D very often allows to compare the
strength of two constraints @ >, b and a >, b and deter-
mine the one that subsumes the other. These considerations
are reflected in the reflexivity, contradiction and subsump-
tion axioms of Table 2,

Ya,b € B,Vz,y € D:

z2<0=(a>za) ~ (reflexivity 1)
z<0=>(a>za) (reflexivity 2)
z>0=>(a>za=>1) (contradiction 1)
z2>20=(a>za=>1) (contradiction 2)

(subsumption 1)
(subsumption 2)
(subsumption 3)

(a>'z b/\at, b)@a»:b
(a >z bAa =y b) &6 Zmax(zy) b
(@ 5 bAG >y b) & 6 > max(zg) b

NN R LN

Table 2: Axioms for Interval Boundary Constraints with
Distances

To facilitate the description, we also use several nota-
tional shortcuts that are equivalent to a conjunction of con-
straints > and > (cf. Table 3).

Ya,b€ B,YVz € D
ﬂ‘*pb@b»za
a%:beb>za
aZ=b@a>_bAb>_ca
a= b a>_,bAb>_za

Caw»

Table 3: Logical Equivalences for Notational Shortcuts

Converting between Boundary Constraints and
Interval Relations

As mentioned before, constraints on interval boundaries are
on a rather low level of abstraction and, therefore, are often
less convenient than interval relations. Though the conver-
sion between qualitative boundary constraints and common
qualitative interval relations — as illustrated in Fig. 1 — is
almost trivial, the conversion between boundary constraints
and interval relations with distances is, however, not that
straightforward.

From Interval Relations to Boundary Constraints.
While for qualitative interval relations commonly accepted
standard relations exist (e.g., the ones given by Allen), this
is not the case for interval relations with distances. We have
the impression that the appropriateness of such interval re-
lations is strongly influenced by the underlying domain and,
thus, cannot fully be determined in such a canonical way.
However, some exemplary interval relations with distances




VX € I, the set of intervals, X, being the lower and X, being the upper
boundary of X, and Vn € D:

Relation Label] Constraints

is at most n long® | maxloy, Xy =-n X
isatleastnlong | minlo, X zn X

is n long length,, XeZn Xo AN Xy >—n Xe

Table 4: Binary Interval Relations Including Length Constraints

VX,Y € 1, the set of intervais, X; and Y, being the lower and X, and Y. being the upper
boundaries of X and Y, respectively, and Vn € D:

Relation Label Constraints
n older older, X Zn e AYe 20 Xb
survives at least with n svminy, Xern Ye
survives, but less than n sviessn XeroYeAXe <-n Ye
precedes with more than n minprs, Xe <0 Y
precedes, but less than n maxpry, Xe <0 Yo ANXe =-n Vs
head to head with a tolerance of n hhy, Xo=nYp
contemporary for more than n minct,, Xo <n YeAXe -0 Vs

Table 5: Ternary Interval Relations with one Parameter for Distances

that should be of general use are given in Tables 4 and 5.

The binary relations allow to state propositions about inter-
val lengths (cf. Table 4), while the ternary relations describe
distance constraints between the two intervals (cf. Table 5).

From Boundary Constraints to Interval Relations.
Given the definitions in Tables 4 and 5, converting from
interval relations to boundary constraints boils down to
a simple table lookup. Converting, however, conjoined
constraints into interval relations is a more difficult prob-
lem: The goal of the conversion is to find a conjunction
of interval relations that subsumes all the given bound-
ary constraints. Furthermore, these interval relations when
remapped to boundary constraints should equal the origi-
nally given ones. In general, this is neither easily realized
nor need it be useful at all. It is hard to realize, since the
number of possible constraint combinations increases dras-
tically by the additional distance parameters and, thus, re-
quires plenty of new interval relations to account for addi-
tional combinations. It may even not be useful, since such
a bounty of interval relations would possibly obscure the
essential distinctions to be made.

Consider, e.g., a simple domain where the only interval
relation which incorporates a distance and which is avail-
able is a binary relation that describes an interval length.
This allows one to infer, in principle, that one interval X
is a distance d before another interval Y. If, however, no
interval relation incorporating such a distance constraint is
specified, a corresponding qualitative distance-neutral rela-
tion, e.g., “precedes”, would be an adequate means to ap-
proximate the boundary constraints. This need not be con-
sidered a disadvantage at all, since approximations that are

*Xy <o X. need not be added, because it is entailed by the
general knowledge that the beginning of an interval is before its
ending. This general knowledge must be made available at all
times for all events.
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valid but not necessarily complete descriptions often consti-
tute the right level of abstraction (e.g., “Schiller died before
Goethe” seems to be a reasonable abstraction for “Schiller
died at least 27 years before Goethe™).

Therefore, given a set of interval relations (e.g., Tables 4
and 5) and a set of boundary constraints on two intervals,
we do not require the “reconverted” interval relations to
equal the given boundary constraints. Instead, we just set up
the requirement that they should approximate them as nar-
rowly as possible. In order to define “approximation”, we
here introduce the new concepts of a “distance constraint
array” and of “subsumption of constraint arrays”.>

Definition 7 (Distance Constraint Array). A distance
constraint array for two intervals, X and Y, is an array
[e1,...,c12) of twelve distance constraints (¢f. Def. 4).
These constraints describe all possible restrictions between
the beginnings (X, Yy ) and endings (X, Y. ) of these inter-
vals in the following ordering: Xyc, Yy AYyC2 Xy AXpC3Y A
Yeca XoAX s YsAYpCe X AXCrYe AYcs Xe A X eCa Xp A
Yecio¥s A Xpenn X, A YperaYe.

Distance constraint arrays allow to represent all combi-
nations of distance constraints in a unique way. Hence,
they allow to compare the restriction range of different con-
straint combinations by way of subsumption.

Definition 8 (Subsumption of Constraint Arrays). A
constraint array [c1,1,...,¢C1,12] subsumes another con-
straint array [ca1,...,¢212} UF Vi € (1,12] : ¢y sub-
sumes ca,; (cf Table 2 for subsumption axioms).

SWe here handle boundary constraints on two intervals with at
most one parameter and the constraints »o and >¢. Interval re-
lations with more than one parameter (and/or more constant con-
straints) can be defined at the cost of a slightly more complicated
definition of approximation.
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Assume the following order for the constraint array with at most one parameter n: [X.?Y3, Ye?Xs, X3 7X.]. The graph depicts

1. The (transitive) subsumption relation between different arrays (esp. in the upper part of the graph).
2. Arrays that are subsumed by contradictory constraints (X, »o X.), and which are, as a consequence, contradictory, too.

Actually, for an array with twelve elements one special region would be at the top part of the lattice, too, since there are two
constraints that are always true, namely X, »o X, and Y, »o X,. Thus, all real constraint combinations are subsumed by

Due to the large number of possible constraint combinations an interval relation cannot be assumed to exist for all non-
contradictory constraint combinations. Thus, a given constraint array must be abstracted by subsuming, best-approximating
interval relations. For instance, in this example [, >0, T} is abstracted by the interval relation CONTEMPORARY-OF

Figure 3: The Lattice Structure of Constraint Combinations — a Simplified Version with 3 Constraints.

Subsumption of constraint arrays defines a partial ordering
of a (semi-)lattice with [T, ..., T] as its largest elementS.

Definition 9 (Best Approximation for One Parameter).

Let a set of boundary constraints on two intervals with at
most one parameter n be represented by a constraint array
C1. An interval relation represented by a constraint array
C> with its possibly single parameter n fixed is called a

SIf we postulate an infinite distance “co” then [>=co, . . . , Zoo
] = [4,...,1] can be considered the complement to [>—oo
yooes>=00] = [T,...,T] and, thus, the least element of the
lattice.
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best approximation for Cy, iff C2 subsumes C and there is
no other interval relation with one parameter (represented
by a constraint array Cs) such that Cy subsumes Cs and
C; subsumes Cy and Cs # Cj (cf. Fig. 3)."

This definition may yield several best-approximating in-
terval relations, since it is based on a partial ordering. A
unique best approximation is given by the conjunction of
these interval relations. If the reconverted interval relations
must equal the boundary constraints, one may provide an

"When the constraints in C, come with parameters n; then
these parameters are appropriate candidates for .



interval relation® for each of the 48 constraint combina-
tions that cannot be described by a conjunction of constraint
combinations, but which themselves can be used to describe
any constraint combination (1 : [>_,,T,...],2 : [>-n
T8 i g Tyee 4t gy Ty 5 0 [T 2
s Toeedyee s 88 [T, 0, Ty 4n))

Reasoning on Intervals with Distances

A sample inference on interval relations with distances pro-
ceeds as follows:

1. Use a lookup table to convert interval relations into dis-
junctions of constraint arrays (e.g., X {"precedes at least
n”"overlaps”} Y -+ X {C}, C2}Y; cf. Tables 4 and 5).

2. The composition axioms (cf. Table 1 for qualitative
constraints and the following section for distance con-
straints) are applied to pairs of constraint arrays until
no more inferences can be drawn (e.g. X {C1,C2}Y A
Y{C3,C4}Z = X{C1,3,C1,4,C23,C24}2).

3. Subsumption tests (cf. Def. 8) eliminate redun-
dant disjunctions (e.g., X {C1,3,C1,4,C23,C24}Z &
X{C\,3,C1,4}Z, where C 3 and C} 4 subsume C3 3 and
C,4, respectively).

4. Compute the best approximation (cf. Def. 9) from
the boundary constraints.” Determine the best ap-
proximation for each array of the array set (e.g.,
X{C13,C14}Z — X {“contemporary-of”’, “over-
laps with at least n”} Z; for an analogy consider
Fig. 3, where given constraints are best approximated by
“contemporary-of”).

Thus, the subsumption criterion does not only yield the
best approximating interval relation, but it also reduces un-
necessary ambiguities.'® Furthermore, under “natural” in-
put conditions the mechanism is quite efficient.!!

8With one exception, all of Freksa's (1992) semi-interval rela-
tions are of this type, though, of course, without a mechanism to
represent quantities.

%If there are interval relations that are defined by disjunctions
of constraint arrays, one can adjust definitions to allow disjunc-
tions to be elements of the lattice, too.

19A more elaborate redundancy avoidance mechanism might be
based on the least common subsumer Ics of two constraint arrays,
C) and C:. If all constraint arrays subsumed by Ics do either sub-
sume C) or C: or are subsumed by C; or Cs, then lcs is equiv-
alent to the disjunction of C; and C». Still better, we can give
an algorithm which determines the equivalence between subsets
of a (disjunctive) distance constraint array set and single arrays.
This allows to compute a minimal representation for n given con-
straint arrays in time O(n'®). However, this procedure cannot be
presented here due to its complexity.

UThe general computational complexity of the inference pro-
cess can be estimated as follows: The lookup in the table —
which is fixed for a certain application — needs constant time.
The computation complexity of the composition on boundary con-
straints (step 2) depends on the respective axioms. But given a
constant time for each composition operation the constraint prop-
agation (for a single alternative; e.g., combining {{...}} with
{{...}{...}} yields two alternatives) is straightforward, since it
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Concluding this section, it should be noted that the repre-
sentation by boundary constraints does not require the exis-
tence of abstract time points. Though it may be convenient
to actually employ time points at one granularity level, the
boundaries may themselves be considered events at a finer
level of granularity. Then, a natural interpretation for >
could be the minimal and maximal distance between the
“centers” (e.g., midpoints) of the respective boundary in-
tervals.

Treatment of Different Types of Distances

So far, we have said nothing about the types of distances
that are allowed in our approach. An almost trivial one is
the restriction of the distance structure to the single dis-
tance, 0, such that D = {0}. This exactly allows to rep-
resent Allen's relations, since “>o” and “>o" are equiv-
alent to the common relations “>" and “>", respectively.
Much more interesting are the restrictions to quantitative or
qualitative lengths or their combination. These considera-
tions and the strategies to handle them are discussed subse-

quently.

Quantitative Distances

Quantitative distances are treated equivalently to non-
negative real numbers. All the axioms and equivalence
rules from Tables 2 and 3 do still apply. Furthermore,
composition axioms for quantitative distances can be pos-
tulated (cf. Table 6). These are very simple, and even
though distances marked with “—" embody a slightly dif-
ferent meaning, their composition with unmarked distances
simply boils down to addition with negative reals. For the
number zero the composition is simply equivalent to the
transitivity property of “>" and “>".

can be reduced to an interval label propagation problem with lin-
ear inequalities (Davis, 1987) with m(m — 1)(m — 2) constraints
(one constraint for each triple a >z bAb > ¢ = a Compose(>z
,>y) ¢) on m(m — 1) nodes (one for each possible distance),
where m is the number of interval boundaries. However, exponen-
tially many alternatives may be concluded. Consider the distance
series di,2 = {1V 3},d2,3 = {5V 10},ds4 = {20V 40},...
Here, exponentially many alternatives must be concluded for dy ;,
since the later distances are always larger than the sum of all pre-
vious distances and no redundant distances emerge. It appears to
us that this results from the non-convexity (cf. Vilain et al. (1989))
of the input conditions. Under more natural conditions we expect
a much lower magnitude of runtime complexity.

A subsumption test between two given arrays requires constant
time, since it involves twelve comparisons, at most. Step 3 is
quadratic in the number of alternatives, at worst (compare each
alternative with each other and do not find any comparability).
The ordering of the interval relations can be precomputed. Thus,
determining where to place a certain constraint combination needs
only time linear to the number of interval relations.

Computations are valid, but not complete. This is analogous to
results concerning 3-consistency in Allen's calculus (van Beek &
Cohen, 1990).



Va,b,c € B,Vz,y€ D
8. {a>:bAbryc)=>arz4yc
9. (atszb>yc)=>a>'z+vc
10. (@>:bAbryc)=>arz4yc
1. (@a>2bAb>,c)=>a>sqycC

(composition 1)
(composition 2)
(composition 3)
(composition 4)

Table 6: Composition Axioms for Quantitative Distances

Qualitative Distances

Let us now consider qualitative distances (cf. example (1c))
and their treatment within our calculus and representation
schema. Basically, we adapt the composition rules de-
scribed by Herndndez et al. (1995) and Clementini et al.
(1995) to our needs, while we keep the representation by
distance constraint arrays and the axioms and equivalences
from Tables 2 and 3, the new interval relations described in
Tables 4 and 5, and the conversion mechanism described in
the previous section.

Clementini et al. (1995) assume a totally ordered set of
qualitative distances, viz. {A]i € [1,n] A A; > 0} (with
Ap = 00). Depending on the availability of further restric-
tions, different composition rules are given. What is espe-
cially remarkable in this context is that Clementini et al.
always compute upper and lower bounds. Nevertheless,
they do not directly represent these bounds, instead they
choose a disjunction of distance regions as representation.
For some small n (i.e., few different distance regions), their
representation schema is as good as ours. For larger num-
bers, however, the computational costs become unnecessar-
ily large in their approach.

For illustrative purposes, we give some of the composi-
tion rules for qualitative distances described by Clementini
et al. in our notation'? in Table 7. Also, the more com-
plicated ones for heterogenous structures or the absorption
rule they define can be directly translated into our approach,
if the proper conditions are fulfilled. Composition for a
“positive” with a “negative distance” can be derived from
the rules given by Clementini et al. for opposite directions.

Unlike the proposal made by Clementini et al., our ap-
proach allows a partial ordering for qualitative distances.
This reflects a requirement that can be traced to the use of
qualitative distances in natural language expressions. These
expressions do often not constitute a total ordering, but only
a partial one. Consider, e.g., the expressions “somewhat
later”, “a little later” and “much later”. The precedence
between “somewhat” and “little” is not clearly drawn,
while both expressions are certainly ordered with respect
to “much”.

With the composition rules described so far, the deriva-
tion of conclusions relating to two distances which are not

PWe assume &; = A; — Ai—; and Ao = 0. The compo-
sition rules are applicable, if the respective triggering conditions
on the boundaries ("lower” and "upper bound”) and the respective
structural restrictions on the distance system D* ("monotonicity”,
"range restriction”) are fulfilled. The names “monotonicity” and
“range restriction” are taken from Clementini et al. (1995).

61

ordered with respect to each other is not supported. How-
ever, a simple scheme which is easily illustrated by the fol-
lowing small example allows to do exactly this. Assume
four distances A;, Agza, Agp, Az, wWith A; < Agzq < Az
and &; < Agp < Ag, and the knowledge a >_a,,
bAb >_a, c The subsumption axioms from Table 2
require — and therefore allow to infer — that @ »_a,
bAb »_a, canda ~_a,, bAD >_a, cto which the
total ordering composition rules can be applied. Depend-
ing on the circumstances, the result may be a conjunction
of two non-comparable constraints on an interval boundary
pair, which requires a revision of the definitions 7 and 8,
respectively.

Definition 10 (Multiple Distance Constraints Array). A
multiple distance constraints array for two intervals, X and
Y isanarray[si,. .., s12) of twelve distance constraint sets
si, where all c; € s; are distance constraints such that for
alli € [1,12] no constraint c; € s; subsumes another one
ck € 8i,k # j (i.e, 8; is a minimal representation).

Definition 11 (Subsumption of Multiple Distance Con-
straints Arrays). A multiple distance constraints ar-
ray Cy = [811,...,81,12] subsumes another one C2 =
[32'1,...,82,121, Vi€ (1,12 : (Vex € 834 : 3cj €
81,i : ¢j subsumes ci).

Consider an array like [{>_-a,.,>-a,},{T}H. -]
which describes a conjunction of constraints X, >_a,,
Yy A Xy >_a,, Ys. Thus, composition rules must be ap-
plied to both constraints and the usual subsumption rules
must enforce the minimality of entries in the arrays. How-
ever, the main ideas of computing compositions for quanti-
tative and qualitative distances (cf. Tables 6 and 7) and com-
puting a best approximation (cf. Def. 9) remain unchanged.

Combining Quantitative and Qualitative Distances

The major advantage of our reformulation is that it allows
inferencing with either Allen's relations, or interval rela-
tions with quantitative distances, or interval relations with
qualitative distances in an integrated framework.

While the latter two modes both subsume Allen's calcu-
lus, they really are complementary. Moreover, they also
interact. This interaction can be described on the ba-
sis of a partial ordering between quantitative and qualita-
tive distances. For instance, world knowledge may spec-
ify that “rather short” describes a temporal length less
than three hours.!> Composition rules for mixed quantita-
tive/qualitative measures can then be handled analogously
to partially ordered qualitative distances, namely by refer-
ring to common subsuming constraints. Of course, a fun-
damental aspect of mapping “rather short” onto “less than
three hours” is the context in which the qualitative descrip-
tion is made. Staab & Hahn (1997) give an algorithm to

In general, this might also be a two-sided restriction like
“between one and three hours”, but for the sake of simplic-
ity we here avoid the second parameter that merely complicates
approximation,



Va,b,c€ B,VA, A, €D

Application Conditions Composition Rule
“Lower Bound” a>a, bAD>a; c
Ai,Aj 20 =a >-Amnx o €
“monotonicity””: a>-a; bAb>_a; c
“Upper Bound” Vi€ (l,n]: iy > 8 =8 > A inisin) ©
—Ai,~A; 20 “range restriction”: a>-a; bAb>_a;C
Vi€ [lan] (01 > A = a >"Amin(mm[i.j)+l.n) ¢

Table 7: Exemplary Composition Rules for Constraints with Qualitative Distances

deduce “comparison classes”!* which is sensitive towards
contextual criteria, and Herndndez et al. (1995) sketch an
articulation rule mechanism that is designed to find the cor-
rect mapping. However, the general problem still needs fur-
ther research.

What is even more interesting is that this reformulation
allows for the expression of new interval relations with
qualities or quantities, ones that are cognitively plausible
in that they involve a single act of perception. For instance,
we can now introduce the relation “roughly meets” or the
relation “meets with a measuring tolerance of 100ms”,
which can be defined by the boundary constraints!

{[XCéA(roughly)Yb’Xb =0 Yb]} = X{[{T}7 {>O}a {T}7
{Th {*-A(roughly)}' {*—A(roughly)}’ {Th.. }Y or
{[Xeé_A(IOOms)vaXb <o Y3]} = X{[{T}, {*0}1 {T},

{T} {*-A(IOOmS)}: {*—A(IOOms)}’ {Th.. }Y.

Fig. 1 illustrates the possible scope of “roughly meets”
by the region between the two dotted lines. Naturally,
“roughly meets” subsumes “meets”, but it also subsumes
some parts of neighboring relations. Thus, its scope is a
new kind of “conceptual neighborhood” that arises when
only one parameter at a time is varied (cf, Freksa (1992)).

An Example of Dimensional Reasoning with
Qualitative and Quantitative Distances

To illustrate the basic mechanisms we have introduced so
far, let us return to example (1) in more technical detail. We
assume H and J to denote the time intervals for Heinrich's
and John's flight, respectively. Then, the sentences can be
assigned the following representation structures:!6

() a IengthA(sh)(H) = {[He =a(sn) Hs, Hy = _a(sn)
Hel} = H{{THL{THL{THL{THL{THL{TL{T}L{T}.
{=ZaEmh {zaen}l {=Z-aen} {=-aen 1 H

'“The notion of “comparison class” in the natural language un-
derstandmg community is roughly equivalent to “frame of refer-
ence” in the spatial reasoning community.

!We here assume that the function A maps expressions like
“100ms” or “roughly” onto elements of the distance structure D*
using the proper frame of reference.

'5We here formally capture binary interval relations R, (X) by
ternary relations R, (X, X) such that composition rules can be ap-
plied on the left and on the right side of other relations R, (X,Y)
and R} (Z, X).

b. oldera(1p)(H,J) = {[Js =a1n) Ho, Ho =_aqn)
B} = H{{z-aaw} {Zaanh {TH{THL{T}
{T}s {T}7 {T}’ {*0}’ {*0}1 {T}a {T}]}J

c. maXIOA(rather short)(J ) = {[J f-A(rather short)
Jes Je =0 B} = J{{TH{THL{TL{THL{T},
{T}’{T}’{T}y{>0}’{*0}’{3-A(rathershort)}’

{t—A(rather short) HYJ

For the reasoning process, these constraints together with
the assumption that “rather short” in the intended frame of
reference (cf. previous subsection) means a distance which
is not exactly specified but which is certainly less than three
hours are taken for granted. We may then conclude the
following additional constraints by propagation and appli-
cation of composition rules: Hy >_a(n) Je,Je >=a(1n)
Hy, He =aqn) Jos Jo Z—a(rn) Hey He = a(an)

Je =_an) He.

Combining the entire knowledge available from the ini-
tial data and the results of dimensional reasoning, we get:
H{[{>_aam} {Zaan} {=-a@m} {~aam}s
{zaam}h {z-amnh (aumh {=-aem} {Zaen}
{>o}: {=-a(@m}: {t—A(rather short)}]}J’ Since we em-
ploy only a trivial qualitative distance system with one dis-
tance A(rather short), no composition rules can be applied
to yield qualitative distance constraints (and, thus, non-
singleton constraint sets), too.

Step 3 of the reasoning procedure need not be applied,
since no ambiguities exist. Given exactly the interval
relations from Tables 4 and 5 in step 4 the subsumption
test would recognize that the relations “maxlo”, “minlo”,
and “length” could be applied to H and “maxlo” to J,
respectively. However, for H “lengtha(sn)” approximates
better than either “maxlo” or “minlo” — this is just the
information given in (2a). Furthermore “older”, “svmin”,
“svless”, “hh” and “minct’ also subsume the constraints,
but “older” is subsumed by “hh” and, therefore, the con-
junction “lengtha sn)(H) A max"’A(rathershort)(J) A
olderany(H, J) A svminan)(H, J) A sviessa(zn)(H, J)
A mincto(H, J)" is returned as result. This is not a min-
imal result (an optimization could proceed by testing
whether a conjunction is subsumed by a single interval
relation), but it contains the essential information from a
dimensional reasoning problem at a considerable level of
abstraction, viz. that “mincto(H, J)” can be inferred from
“olderan)(H, J) A svminp(an)(H, J)".



Related Work

Since this paper aims at the integration rather than the sub-
stitution of existing quantitative and qualitative approaches,
itis similar to them with respect to several aspects. Still, our
proposal achieves considerable extensions and an advanced
level of conceptual abstraction in comparison to all other
approaches.

The quantitative part of our approach closely relates to
work done by Badaloni & Berati (1996) and Zimmermann
(1995). Badaloni & Berati use a relational primitive which
consists of upper and lower bounds for distances. However,
they do not give a mechanism to abstract from these rather
unwieldy primitives. Zimmermann uses the primitive re-
lation a(>,d)b & a = b + d, which is quite similar to
our constraints on interval boundaries. However, his for-
malism is not that convenient to formulate distance regions
which are often necessary for coarse reasoning. Moreover,
we elaborated extensively on the partial ordering he uses
to allow for easy embedding of qualitative distances in the
sense of Herndndez et al. (1995). Though we did not touch
on this issue, benefits of his mechanism like reasoning on
proportions can be transferred to our mechanism, too. Ear-
lier studies on duration reasoning, such as (Allen, 1983) or
(Kautz & Ladkin, 1991), do not tightly integrate quantita-
tive reasoning and reasoning on Allen's relations, but rather
combine two different networks. Dechter et al. (1991) con-
sider quantitative temporal constraint networks. These are
extended to include Allen's relations in a single network
by Mairi (1991). Nevertheless, this approach still does not
allow for more abstract relations like “overlap at least n”.

As for qualitative distances, Herndndez et al. (1995) and
Clementini et al. (1995) present the most elaborate work
(cf. Cohn (1996)) and thus serve as a blueprint for our qual-
itative distances reasoning part. We extend thejr mechanism
to account for partially ordered distance systems, too.

Common interval label propagation networks that repre-
sent interval boundaries by restrictions on time points (cf.
Davis (1987)) do not offer the same level of expressibility
as our proposal, since simple transitive conclusions, e.g., @
later b and b later ¢ implies a later ¢, cannot be inferred.
However, our approach can be reduced to such a network
with constraints on distances. But then the implications are
not structured in a way that is easily accessible from outside
the reasoning system.

We build on Freksa's consideration who favors conjoined
partial specifications (similar to the notion of “convex rela-
tion” by Vilain et al. (1989)) to allow for lucid reasoning
about knowledge at a coarser level of specification. We do,
however, not subscribe to his point of view when he intro-
duces new labels for semi-interval relationships instead of
simply using the constraints between the interval bound-
aries. His newly introduced labels are equivalent to single
constraints on interval boundaries. !’

17 . . ) . ) .
One exception, “is contemporary of ”, requires a conjunction
of two constraints.
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Conclusion

In this paper, we presented a mechanism for dimensional
reasoning with qualitative and quantitative distances that in-
tegrates proposals by Allen (1983), Hernéndez et al. (1995)
and Badaloni & Berati (1996). Given such an integration,
our proposal considerably increases the reasoning power of
the underlying calculus compared with either of these.

Our approach builds on distance constraint arrays as a
new way of uniquely representing interval relations with
different types of distances. Central to the reasoning
scheme are the notions of subsumption and approxima-
tion which allow to infer interval relations that are much
more lucid from a human designer point of view, since they
achieve a high degree of conceptual abstraction from the
underlying interval boundary constraints.

We were not able to consider three major points in detail
in this paper. First, for knowledge like “A's flight is much
shorter than B's” meta-reasoning on the different lengths of
flights is required. This can easily be achieved by consid-
ering the distances, D, as being bounded by meta-intervals
to which our proposal is applied, too. Second, though our
approach requires exponential time at worst, it remains effi-
cient when the input is restricted to input conditions that de-
scribe convex relations (cf, Vilain et al. (1989)). Third, we
abstracted from how to actually assign numerical bounds
to qualitative distances. This is a highly context-dependent
problem for which first solutions exist (cf. the section on
“Combining Quantitative and Qualitative Distances”), but
which still needs further investigation.

To the best of our knowledge, no other proposal offers
a similarly tight integration of qualitative and quantitative
knowledge for dimensional reasoning or a similarly high
level of interaction of constraints as the proposal we have
outlined in this paper.
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