
Spatial Reasoning and Constraint Satisfaction:
The Other Way Round

Hans W. Guesgen and Ute LSrch
Computer Science Department, University of Auckland

Private Bag 92019, Auckland, New Zealand
phone: +64-9-373-?599, fax: +64-9-3?3-7453

emaih {hans, ute~@cs.auckland.ac.nz

Abstract

Spatial (and temporal) reasoning and constraint satis-
faction are closely related in that many approaches use
a constraint satisfaction system for reasoning about
networks of spatial or temporal information. Unlike
these approaches, this paper describes how spatial rea-
soning can be used to enhance constraint satisfaction
systems. In particular, it applies fuzzy spatial rea-
soning to constraint graphs to extract the relevant in-
formation f~om these graphs and to convert it into a
format that can be used as input to a constraint sat-
isfaction system.

Introduction and Motivation
Over the recent years, constraint satisfaction has be-
come a popular problem solving technique in the
area of spatial and temporal reasoning (Allen 1983;
Anger & Rodriguez 1995; Guesgen & Hertzberg 1993).
Information about time and space is often encoded in a
network of temporal and spatial constraints, and con-
straint satisfaction algorithms are used to infer new in-
formation from the information given by the network.

Since constraint satisfaction is a general technique
with applications beyond spatial and temporal reason-
ing, various authors have made attempts to implement
constraint satisfaction systems that are independent of
particular domains. They usually offer a variety of con-
straint satisfaction methods that can be configured to
suit a particular application, Most commercial con-
straint satisfaction systems also provide a reasonable
user interface to input constraints and constraint net-
works into the system, but non-commercial systems
like CSP (Manchak & van Beek 1994) or CONSAT
(Guesgen 1989) often lack this feature. When using
system without a user interface that specifically sup-
ports constraint and constraint networks, editing con-
straint is likely to become an erratic task.

One of the easiest ways for humans to denote con-
straint networks is by drawing constraint graphs. Such
a representation has several advantages:

¯ Information is presented in two different ways. The
connections between variables and constraints, i.e.,
which constraints involve which variables, are rep-
resented by graphical elements, whereas the names
of the variables and the constraints, the domains of
the variables, and the relations of the constraints are
represented by text.

¯ Constraints are represented according to their spa-
tial relationship. Constraints that are in the same
neighborhood, i.e., share a variable with each other,
are represented closely together, whereas constraints
that are connected only indirectly via other con-
straints are represented further apart.

In this paper, we will discuss how constraint graphs
can be converted automatically into a format that is
readable by a constraint satisfaction system. The idea
is to apply fuzzy spatial reasoning to the constraint
graphs to extract information about variable domains,
constraint relations, connections between variables and
constraint, etc. from the graphs. This task appears
to be trivial, but in fact it is not. If the graphs are
produced by a human, it is very likely that there are
imperfections in the graphs (Chok & Marriott 1995),
which means that a simple parsing procedure would
fail. To solve this problem, we introduced heuristics
that can deal with the fuzziness in user-generated con-
straint graphs.

For the rest of this paper, we will use XFIG as the
graphic editor for drawing constraint graphs and CON-
SAT and CSP as the constraint satisfaction systems,x

We will introduce the program LIGECS which, given
a constraint network designed with the graphic editor
XFIG, converts the network into two different formats:

XThe main reasons for choosing XFIG as the graphic
editor were that it runs on many different platforms and
that it is a suitable editor for drawing constraint networks.
The reasons for choosing CONSAT and CSP as the con-
straint satisfaction systems were their availability in the
public domain.

From: AAAI Technical Report WS-97-11. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Figure 1: Coloring a map of New Zealand.

1. Lisp code that can be used as input to the constraint
satisfaction system CONSAT.

2. C code that can be used as input to the constraint
satisfaction system CSP.

From XFIG to CSP/CONSAT

Let us consider the following constraint satisfaction
problem. A map of New Zealand, like the one shown
in Figure 1, is to be colored with the colors red, yellow,
and green in such a way that adjacent region have dif-
ferent colors and that the Waikato and Nelson region
are colored green.2

There are at least two ways of representing the cor-
responding constraint network as a graph. Since all
constraints in this problem are binary constraints, one
can represent the constraints as edges in the graphs
and the variables as nodes connected by these edges

2This problem seems quite trivial and its solution re-
quires only little thought, but it serves the purpose of
demonstrating how LIGEC$ works.

Figure 4: Converting a drawing of a constraint network
into CSP, respectively CONSAT input.

(Mackworth 1977). Two nodes are connected by
edge if there is a constraint between the variables rep-
resented by the nodes. Figure 2 shows the resulting
constraint network for the New Zealand map coloring
problem.

Another way of representing a constraint network is
as a bipartite graph (Guesgen 1989).3 In this case, the
variables are represented by one type of node (usually
circles) and the constraints by the other type of node
(usually boxes). Nodes of different types are connected
if the variable represented by the circle is a one of the
variables of the constraint represented by the box. Fig-
ure 3 shows the constraint network for the New Zealand
map coloring problem as a bipartite graph.

Regardless of which representation is chosen, XFIG
can be used to draw constraint networks like the above
and to save them as I~TEX code with eepic macros.4

The I~TF~ code can then be included in documents like
technical reports or conference papers. Beyond that,
the code can be used as input for the LIGECS system,
which analyzes the code, extracts all relevant informa-
tion from it, and converts it into CSP or CONSAT
code (see Figure 4).

LIGECS searches the I~TF_~ code for certain key-
words like ’put’, ’path’, ’makebox’, and ’ellipse’. It

SThis representation is useful especially if the arity of
the constraints in the network is greater than two.

4The eepic macro package extends the I~TEX picture
environment by additional objects like ellipses, splines, etc.

68

UE = UNEQUAL (Consmd~)
between two regio~

No = Northland

Au = Auckland
Wa = Waflmm & Bay of Plenty

Ea = E~.al~

Ta = Tm’mudd
Ha = Hawkes Bay

Ce =CemralNorlhhland & WellinlP.on
Mt = Mmdborough

NC = Nelson

We = West Coast

Ca =Camedm~

Ot =O~o

So =SouthLand

(Sines {red, Sre~n. yellow I

{red, linen, yellow}

re¢ pee~ yelk~w)

{red, ip~, y~ow!

Figure 2: Constraint network for the New Zealand map coloring problem with constraints represented as edges.

lind, memo, yClow! {red, I~ee~ yellow} {*rim) (re¢ mee~ yeUow}

UE = UNEQUAL (Constraint)
between two regions

No - No~md

Au ,, Auckland
Wa = Wldkam & Bay of Plenty

Ea = Eastcape
Ta = Taranak/

Ha = Hawkes Bay
Cc = Central North Island & Wellington

Ma ,. MadborouSh

N¢ ~ Nelson

We = West Coast

Ca = Canterbury
Ot . Otago

So = South land

[(roll, in~n. yellow

Figure 3: Constraint network for the New Zealand map coloring problem with constraints represented as boxes.

I

Name
of the

consU’aint
Relation of the constraint

Domain of the variable

Relation of the constraint

(a) (b) (c)

Figure 5: Graphical representation of a variable (a), a constraint as a box (b), and a constraint as a line

analyzes the data associated with these keywords
and generates objects of type ’circle’, ’box’, ’line’,
and ’text’. It then puts these objects into different
databases and uses the position of the objects to deter-
mine the names of the variables and constraints, their
domains and relations, the connections between vari-
ables and constraints, and so on. If, for example, the
coordinates of the starting point of a line are on the
circumference of a circle (defined by XFIG as ellipse),
then it is assumed that the constraint represented by
the line restricts the variable that is given by the circle.
Or if a text object is inside a circle, then it is assumed
that the text object specifies the name of the variable
represented by the circle (see Figure 5).

Although this task is straightforward in principle,
the praxis often looks different, as most drawings cre-
ated by humans are fuzzy:

¯ Edges don’t always end exactly at the boundaries of
circles and boxes.

¯ Text indicating the name of a variable or constraint
isn’t always completely within a circle, respectively
a box.

¯ Text denoting the domain of a variable or the rela-
tion of a constraint isn’t always in the close vicinity
of a circle, respectively a box.

To resolve this problem, we implemented a variety of
algorithms and heuristics, which will be described in
the next section.

Resolving Fuzziness
The basis of the parsing algorithm of LIGECS is an
iterative algorithm that searches the /.4TEX code of
a constraint network for various elements like circles,
boxes, lines, etc. and the connections between them.
Figure 6 shows an outline of this algorithm. The algo-
rithm starts with searching for the names and domains
of the variables. For each variable, it then searches for
the adjacent constraints, their names, and their rela-
tions. The two search algorithms are called variable

filtering and constraint filtering, and will be described
in the following subsections.

Variable Filtering

The first step in the execution of LIGECS is the fil-
tering of the names and domains of the variables. For
each circle representing a variable, the parser searches
for the text placed in the interior of the circle. Beyond
that, the parser also looks in the proximity of the cir-
cle, to allow for fuzziness in the drawings. In Figure 7,
the search spaces for the name and the domain of a
variable are shown.

LIGECS finds the names and domains of a variable
by calculating recursively the distance d of the point
vector of the center (m~,my) of each circle and the
point vector (x, y) of each text object:

If d _< r, i.e., the text is inside the circle, or if d <
(r + er), i.e., the text is inside a circle with a slightly
larger radius, then the text is interpreted as the name
of the variable. If (r +~r) < d <_ (r+ 1let),
the text is interpreted as the name of the variable.
is a fuzzy factor that can be changed anytime when
running the program.5

After filtering out the domain and the name of a
variable, LIGECS searches for the lines adjacent to the
circle. Again, the inaccuracy of the drawing will be
considered by using the fuzzy factor £, which in this
case means that the lines don’t have to start exactly
at the circumference of the circle (see Figure 8).

For the further progression of the program it is es-
sential to distinguish between drawings in which con-
straints are represented as boxes and those in which
constraints are represented as lines. ~ We will discuss
both cases in the following subsections.

5By testing the program with different examples, we
found that e ---- 0.1 is a reasonable setting for us. However,
a different user may have a different preference.

7O

begin
variable list +- nil;
for each circle do

for each text do
if coordinates of text are inside search space
of variable name then

variable name ~ text
end if
if coordinates of text are inside search space
of variable domain then

variable domain ~-- text;
end if

end for
add variable name and domain to variable list;
for each line do

if one endpoint of line is inside search
space for line endpoints of circle then

if no box exists then
for each text do
calculate distance d to the line;

if d ~_ 1.5e then
generate constraint name;
constraint name ~- generated name;
constraint relation +-- text;
add constraint name and relation to
constraint list of variable in variable list;

end if
end for

else
for each box do

if other endpoint of line is inside
search space for line endpoints of box then

for each text do
if coordinates of text are inside
search space for constraint name then

constraint name +- text;
end if
if coordinates of text are outside
search space fer constraint name and
inside search space for
constraint relation then

constraint relation ~- text;
end if

end for
end if

end for
end if

end if
end for

end for
end

Figure 6: Outline of the LIGECS algorithm for general
constraint networks.

Search space for the

\ ~~./. 7--"---.. Main search space for

the name of the variable

Figure 7: Search spaces for the name and domain of a
variable.

Search npace for the. o....-
,., ..

;

" i

%".... ’o--’°"

Figure 8: Lines connecting circles and boxes.

Filtering Constraints Represented as
Boxes

The processing of constraints represented as boxes is
very similar to how variables are processed. Text found
inside a box or in the close proximity of the box is in-
terpreted as the name of the constraint, whereas text
further outside is interpreted as the relation of the con-
straint (see Figure 9).

Let (x, ?/) be the coordinates of the point vector
the text. For each text found in the drawing, LIGECS

first checks if xz _~ x ~ x~ and !/z _< ~/ ~ Y2, i.e.,
the text is inside the box. If this fails, then LIGECS
checks if xt _< x < xu and ~/l _< y _< 9u, i.e., the text is
in close proximity of the box, where x~, xu, ~/t, and ~/u
are defined as follows:

Search spzce for the

relation of the constraint

Main search space for

the name of the constraint

Extended search space for

the name of the constr~nt

Figure 9: Search spaces for the name and relation of a
constraint.

71

~d elation of the constraint

Figure 10: Binary constraint represented as a sequence
of lines connecting two variables

¯ xl = (=i - ~(z2 - ~i))

¯ ~ = (~2 + ~(~2 - ~i))
¯ yz = (yx - e(v2 - y~))

¯ w = (y2 + ~(y2 - yl))

If one of the checks is successful, the text is interpreted
as the name of the constraint.

If the text is in the outer area of the whole search
space, it is interpreted as the relation of the constraint.
The conditions for a text object to be in that area are
the following:

¯ (xl - 5e(yo - y~)) < x < x~ or
(xo + 5~(yo - y~)) > x > Xo

¯ (yz-3e(xo-xz)) <_Y<Yz or
(yo + 3~(Xo - x~)) > y > yo

Note that the width of the outer space depends on the
height of the original box, and the height of the outer
space on the width of the original box. This means
that a tall box is extended further in x-direction than a
smaller box with the same width. Although this seems
to be counterintuitive, it gave us the best results when
testing LIGECS with several constraint networks.

Filtering Constraints Represented as Lines

In this section we will discuss drawings of binary con-
straint networks in which the constraints are repre-
sented by lines or series of lines annotated with the
relations of the constraints (see Figure 10). The extrac-
tion of constraints from these drawings is simpler than
the one from drawings in which the constraints are rep-
resented as boxes, since we assume that the names of
the constraints are defined by the names of the vari-
ables and are not explicitly given in the drawing.6 As a

eLIGECS constructs a name for each constraint by con-
catenating the names of its variables.

result, the only information that has to be filtered out
for each series of lines is the relation of the constraint.

To determine whether a text object denotes the re-
lation of a constraint given by a series of lines, the
distance d of the text object to the closest line seg-
ment of the series is calculated. If d _< 1.5e then the
text is considered to be the relation of the constraint.~

Conclusion
In this paper, we described the LIGECS system, which
is an attempt at providing an environment for visual
programming with constraints. The system takes the
XFIG eepic representation of a constraint network and
converts it automatically into a format that is readable
by a constraint satisfaction system. LIGECS has been
implemented in Common Lisp as a set of library func-
tions.

LIGECS was developed as part of a diploma thesis,
the time restrictions of which made it impossible to
consider all aspects of how constraint networks can be
represented graphically. As probably has become ob-
vious in this paper, there are quite a few restrictions
imposed on the user. If the conventions mentioned
in this paper are violated, LIGECS delivers very poor
results which require a significant amount of editing
before they can be used by CSP or CONSAT.

Another shortcoming of LIGECS is the restriction
to certain constraint satisfaction programs, in this case
CSP and CONSAT. If there were a standard format for
specifying constraint networks, this format could have
been used as the output format of LIGECS. However,
to the best of our knowledge, such a standard format
doesn’t exist yet, so we had to make a decision of what
output format to use. To choose a C-based system on
the one hand and a Lisp-based system on the other
seemed to be reasonable.

There is no principal problem to overcome the short-
comings mentioned above. Other shortcomings, how-
ever, are much harder (or even impossible) to deal
with. For example, LIGECS can’t always determine
the right order of the variables with respect to the re-
lation of the constraint. Only if the name of the con-
straint contains the names of the variables (like in the
example shown in Figure 3), the variables can be as-
sociated with the constraint relation in the right way,
assuming that the order in which the variables occur in
the name of the constraint is intentional and reflects
which component of the constraint relation restricts
which variable. Otherwise, the variables are associ-
ated with the constraint relation randomly, which of-
ten editing output file generated by LIGECS.

7Again, the value of a is based on the result of our ex-
periments with LIGECS; its initial value is 0.1 .

72

References

Allen, J. 1983. Maintaining knowledge about tem-
porai intervals. Communications of the A CM 26:832-
843.

Anger, F., and Rodriguez, R. 1995. Reasoning with
unsynchronized clocks. In Proc. IJCAI-95 Workshop
on Spatial and Temporal Reasoning, 25-34.

Chok, S., and Marriott, K. 1995. Automatic con-
struction of user inferfaces from constraint multiset
grammars. In Proc. llth International IEEE Sympo-
sium on Visual Languages (VL’95), 242-249.

Guesgen, H., and Hertzberg, J. 1993. A constraint-
based approach to spatiotemporal reasoning. Applied
Intelligence (Special Issue on Applications of Tempo-
ral Models) 3:71-90.

Guesgen, H. 1989. CONSAT: A System for Con-
straint Satisfaction. Research Notes in Artificial In-
telligence. San Mateo, California: Morgan Kanfmann.

Mackworth, A. 1977. Consistency in networks of
relations. Artificial Intelligence 8:99--118.

Manchak, D., and van Beek, P. 1994. A c-
library of constraint satisfaction techniques. Tech-
nicai report, Available by anonymous ftp from
ftp.cs.ualberta.ca:pub/ai/csp.

73

