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Abstract

Reasoning about a natural or man-made system
often requires a model that gives an accurate
quantitative description of its dynamics. Such
a model may bc built from observations on the
system either using structural models of the un-
derlying physics or learning an input-output re-
lation directly from observed data. The process
of modeling based oil experimentation is called
System Identification, and in the end, whichever
approach is used, it reduces to an optimization
procedure for parameter estimation. A central
problem of optimization techniques deals with
the choice of a good initialization. This paper
presents a novel approach to nonlinear black-box
system identification which combines QY¢ methods
with fuzzy logk: systems: such a method aims at
building a good initialization of a fuzzy identi-
fier, so that it will converge to the input-output
relation which captures the nonlinear dynamics
of the system. Fuzzy inference procedures are
initialized with a rule-base predefined by the hu-
[nan expert: when such a base is not available or
poorly defined, the inference procedure becomes
extremely inefficient. Our method aims at solv-
ing the problem of the construction of a meaning-
ful rule-base: fuzzy rules are automatically gen-
erated by encoding the knowledge of the system
dynamics described by the outcomes of its qual-
itative simulation. Both efficiency and robust-
ness of the method is demonstrated by its ap-
plication to different domains: in this paper, we
consider the problem of identifying the dynamics
of Thiamine (vitamin Bx) and its phosphoesters
in the cells of the intestine tissue.

Introduction

System Identification (sl) deals with the development
and analysis of methods which infer a quantitative
model of the system dynamics from observed data
(Haber & Unbehauen 1990; Juditsky et al. 1995;
Ljung 1987; S6derstrSm & Stoiea 1989). sI is applied
to perform both grey and black-box modeling tasks;
we refer to grey models when the available knowledge
of the underlying physics is such that the structural

model equation may be explicitely formulated but the
numeric values of some parameters are unknown, and
to black-box models when the structural equation may
not be written because either the knowledge about
functional relationships is incomplete or unknown or
no first principles are available. In the former case
(parametric approach), the problem reduces to the op-
timal estimation of the unknown parameter values in
the equation by using the measured data. More gen-
erally, parametric sI may require to choose, in accor-
dance with suitable criteria, also the "best" structural
equation within a set of plausible candidate models.

In black-box sI (non-paramelric approach), the
problem is much more complex as it requires to choose
an identifier model (Haber &; Unbehauen 1990) as well
as to estimate its parameters. Both the identifier and
parameters do not necessarily refer to the underlying
physical reality: as a matter of fact, the parameters
do not have a physical meaning but are a means for
adjusting the fit to the data.

A common problem to both approaches deals with
the optimization procedure for parameter estimation
which may terminate at local extrema if the numerical
search for the optimal value is not properly initialized.
Recent work within the Qualitative Reasoning (QR) re-
search framework has addressed the problem of the pa-
rameter estimation phase in the model building process
(Bradley 1994; Bradley, O’Gallagher, & Rogers 1997;
Capelo, Ironi, &: Tentoni 1996; 1998), namely the cru-
cial issue of automatically providing a "good" initial
guess to start the optimization procedure. The im-
plemented qYt techniques proposed in the mentioned
papers are components of computational environments
which integrate a variety of techniques with the goal
of automating model building. Such papers consider
ODE models which are automatically generated by ex-
ploiting physical knowledge either of a specific physical
domain (Capelo, Ironi, &: Tentoni 1996; 1998) or ex-
plieitely supplied by the user’s input (Bradley 1994;
Bradley, O’Gallagher, ~; Rogers 1997). The candidate
ODE models for parametric sI are selected in accor-
dance with their consistency with the observations. An
interesting method, based on semi-quantitative infer-
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ences, to reduce the candidate model space is given in
(Kay 1996). In the same paper, it is also proposed 
non-parametric identifier that fits a monotonic func-
tion to noisy data.

The problem we are addressing here is how Qa tech-
niques can be used to improve the performance of
non-parametric approaches. It exists a rich and well-
established theory for black-box modeling of linear
physical systems (Ljung 1987; SSderstr6m & Stoica
1989). Nonlinear sl, which is much more complex
and problematic, has been studied for a long time,
under the label non-parametric regression, within the
statistics community. Recently, due to the paucity of
directly applicable results, nonlinear sI has received
more and more attention in the control community
with a consequent development of a number of new
approaches capable to describe the nonlinear dynamics
of a real system from input-output data. Neural net-
works, multi-variate splines and fuzzy logic systems are
the most known approximation schemes used for learn-
ing an input-output relation from data (Jang 1993;
Khannah 1990; Wang 1994). Although these ap-
proaches are successfully applied to a variety of do-
mains, they are affected by two main drawbacks: first,
the model identification procedure usually requires a
large amount of data and is often extremely inefficient;
second, the identification result, a nonlinear function,
does not capture any structural knowledge. With
the goal to overcome these drawbacks, we propose a
novel method which combines the qualitative and non-
parametric modeling frameworks. Therefore, such a
method is applicable whenever the incompleteness of
the available structural knowledge of the system under
study is not so strong as to prevent from formulating a
qualitative model of its dynamics through Qualitative
Differential Equations (QDE).

We believe that the efficiency and robustness of non-
linear black-box sI methods may improve only if they
incorporate and exploit all available knowledge of the
system, namely the structural and human knowledge,
and the experimental one. Qualitative models and lin-
guistic rules represent properly the structural and hu-
man expert knowledge, respectively. As qualitative
modeling formalism we have chosen QSIM (Kuipers
1994) because of both its expressive power to represent
QDE and its reasonable predictive capacity. As nonlin-
ear identifiers we have chosen fuzzy logic systems since
various classes of Fuzzy Systems (FS) can be proved
to have the universal approximation property (Wang
1994), i.e. they can approximate any real continuous
function on a compact set at any degree of accuracy. A
clear advantage of using FSs deals with their capability
to incorporate in the same framework both linguistic
descriptions of the unknown system dynamics, in the
form of |F-TIIEN rules, and experimental data. More-
over, the meaning of their parameters is linked to the
input-output data. Fuzzy inference procedures are ini-
tialized with a rule-base which defines the structure

of the input-output relation where parameters occur.
When such a base is not available or poorly defined,
also the fuzzy inference may become extremely ineffi-
cient as the inference structure has to be determined
using only numerical evidence. Our method aims at
solving the central problem of the construction of a
meaningful rule-base: fuzzy rules are automatically
generated by encoding the knowledge of the system
dynamics captured by its qualitative simulated behav-
iors. In outline, our method, which we label FS-QM,
may be summerized as follows:

¯ formulation and simulation of a qualitative model of
the system at hand;

¯ automatic generation of both a fuzzy rule base from
the outcomes of the qualitative simulations and its
associated FS;

¯ parameter estimation of the FS from the experimen-
tal data.

FS-QM may be applied to a number of different do-
mains. As test-benchmark we have considered prob-
lems from the medical domain. In particular, wc ap-
plied it for the identification of the dynamics of the
Blood Glucose metabolism in insulin dependent dia-
betic patients in response to different perturbations,
such as meals and conventional insulin therapies (Bel-
lazzi el al. ), as well as for the identification of the
dynamics of Thiamine (vitamin B1) and its phospho-
esters in the cells of the intestine tissue. In both eases,
FS-QM has shown good performance as for efficiency
and robustness.

In this paper we discuss the latter application prob-
lem. Thiamine is transformed within the cells through
an enzyme-mediated chemical reaction in higher en-
ergy forms (Piro-Posphate Thiamine, TheP, and Mono-
Posphate Thiamine, ThMP) that are used in the Krebbs
cycle. The chemical reaction is nonlinear, and conven-
tional modeling is hampered by experimental identifi-
cation problems. By using FS-QM we build an approx-
imator of the system dynamics, that can be used to
describe the different metabolic responses of subjects
with different pathological conditions.

Brief introduction to fuzzy identifiers
In this section we recall the basic concepts and defini-
tions of fuzzy identifiers which are relevant to a clear
description of the method.
A Fuzzy set F in U is a generalization of the concept of
ordinary set. F is characterized by a membership func-
tion pF : U -~ [0, 1], where U, Universe of discourse,
is the collection of objects that we would like to reason
about, and #F(U) represents the degree of membership
ofuEU to the set F.
A Fuzzy System (FS) exploits fuzzy concepts for rea-
soning about a set of objects. A Linguistic Variable is
a variable whose values are words in natural language,
and that can be represented through a collection of
fuzzy sets.
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A Fuzzy Rule Base (FR~) is the knowledge base that
we use to reason about the objects in U. In particular,
a FRB is a collection of rules of the kind:

IF xl is/’1 and ... and xn is Fn THEN y is G

where F1,...,Fn and G are fuzzy sets, and xl,...,xn
and y are linguistic variables.

The most popular FSs proposed in the literature ba-
sically differ in the way they map input (antecedents)
and output (consequents) information into a rule
(Wang 1994). We restrict to the class of FSs that are
useful for function approximation, i.e. to those FSs
which are proved to be universal approximators. In
particular, we would like to approximate continuous
functions from ~’ --* ~: the value of an output vari-
able y defined on V C ~ is inferred by using a FRB
with n input variables defned on Ui C ~, such that
U = U1 x ... × U,~. This means that each continuous
variable should be properly fuzzified. The fuzzifica-
tion operation performs a mapping from xi E Ui into
a fuzzy set. We exploit the singleton fuzzifier, that
transforms a real number xi E Ui into a fuzzy set with
membership function defined over Ui, such that it is
equal to 1 in xi and to 0 elsewhere. Once a quantita-
tive measure of the inputs is fuzzified, it is evaluated
as an input of all the rules in the FnB.

In order to perform inferences, it is necessary to re-
sort to a machinery that gives a precise interpretation
of the terms is, and and then that appear in a fuzzy
rule. For our purposes, it is sufficient to say that it
is possible to select a Fuzzy Inference Engine (FIE), 
which the flizzy logic principles are used to map fuzzy
sets in U into fuzzy sets in V. In particular, we have
chosen as FiE the product-inference rule (Wang 1994):
given an input in U, we obtain a collection of M fuzzy
sets as outputs, where M is the number of rules of the
FRB.

For the purpose of function approximation, we must
transform into a real number the output of the applica-
tion of FIE. This may be done through a defuzzification
operation (Mamdani 1974): we exploit the Center Av-
erage Defuzzifier, in which the collection of M fuzzy
sets is averaged as follows:

(1)

where #F~ is the membership function associated with
the linguistic variable of xi that appears in the j-th
rule, and :Oj is the point in V where Gj reaches its
maximum value. This functional form can be easily
exploited in function approximation without requiring
strong assumptions on the input-output relation. The
system described by the equation (1) can be rewritten
as:
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where

M

j=l

HiLl ~F/’ (xi)=
M n

and #r[ has the same meaning as in the equation (1).

The functions ¢j0s are called Fuzzy Basis Functions
(FBF); the FS is hence viewed as a linear combination
of such FBFs.

In the following, we will exploit a useful class of
FS for fllzzy approximation with Gaussian membership
functions. Then, FS assumes the mathematical form:

^ n xi-&J 2

y(x) = ¯ (3)
M n ~-~

Such an expression allows us to interpret the nonlinear
function approximation problem with FS as the pro-
cess of identifying the vector of parameters (~)j, 5:i, c~i)
of a known nonlinear function from a set of data.
Moreover, the FS defined by the equation (3) holds
the mfiversal approximation property (Wang 1994).
Other properties can be found in (Kim &: Mendel 1995;
Wang 1994).

Fuzzy System identification
Once that the FS has been defined, a function ap-
proximator y(x_) may he obtained. Such a fimction
approximator is dependent on a parameter vector 0-,
such that y(x_) = y(x_,~_), where 0_ = {_~,~_,a__} 

---- {yj}, ~ ---- {&~} and K = {(ri}, where i = 1,...,n,
-¢

3 = 1,...,M.
Numeric values, which express the prior knowledge

included in the system, and which provide for an ini-
tial guess of the system dynamics, are assigned to the
parameter vector 0_ in the construction phase of the
FS. Given a set of experimental data, the estimate
of 0_ is then refined through optimization procedures.
The identification process can be carried out consider-
ing the meaning of the antecedents and consequents of
each derived fuzzy rule.

In FS-QM, the description of the system dynamics
is performed through rules that give the next value
yk+l of the system output as a function of the val-
ues of the current inputs (uk) and output (Yk). Then,
the output behavior can be described with a Nonlinear
Autottegressive exogenous input model (NAP.X) of the
kind:

yk+~ = .v(~k, e) + vk (4)
where k is a discrete time index, "xk = {uk,yk}, vk is
the measurement error and y(.) has the same meaning
of equation (3).



Since the model (4) is nonlinear in the model pa-
rameters, it is necessary to resort to nonlinear iden-
tification techniqucs to estimate the vector 0_. Within
FS-QM a number of approaches may be considered, but
two of them seem to take particularly advantage of it.

In the first approach, the rs is represented as feed-
forward networks, as described in (Wang 1994), and
the identification of_0 is performed by using the back-
propagation (BP) technique. Such a technique allows
us to estimate all the FS parameters through an iter-
ative search in the solution space by employing a gra-
dient descent search. If not properly initialized, such
a search procedure may be either trapped at a local
minimum or converge very slowly.

Another very interesting strategy to be investigated
^3 and M/" of the vec-consists in fixing the parameters xi

tor _8, so that only the parameters 9j are estimated
from the data. Since the equation (3) is linear in the
parameters yj, the identification problem expressed by
equation (4) is also linear, and therefore it is possible
to resort to efficient methods, such as classical linear
least squares. The major advantage offered by this
choice is that it allows us to preserve the structure of
the FS initialized on the basis of the a-priori knowledge
represented by the qualitative model.

Herein, we demonstrate that FS-QM provides for a
significant initialization of Be algorithm, with a conse-
quent fast eonvcrgence to the global minimum.

The FS-QM method
Fuzzy set theory and QR techniques share the mo-
tivation of facing too complex or ill-defined physical
systems to be analyzed through conventional tech-
niques. Then, the idea of unifying both frameworks
with the goal of producing effective solutions to an
extended range of application problems is a matter
of course. With reference to this, we would like to
mention the works proposed in (Shen & Leitch 1993;
Vcseovi & Trav~-Massuy~s 1992) which combine fuzzy
sets and qa to produce, respectively, a fuzzy qualita-
tive simulation algorithm (FUSIM) that allows a semi-
quantitative extension to QSIM and an extension to the
numeric Euler’s method so that it can handle qualita-
tive coefficients.

Our method, FS-QM, is grounded on the intuition
that analogies between elements of the QSIM and fuzzy
formalisms can be highlighted (Fig. 1).

At a first level, namely the modeling one, given a
physical system S characterized by {xl, i = 1,..., m}
state variables, thc quantity space Li associated with
the variable zi may find its semantic correspondence
with the universe of discourse Ui of xi.

The set Li U {(/j , /2+1), lj E Li}j=t,j,-1, where j’ is
the cardinality of Li, contains all significant distinct
qualitative magnitude values (qmag) of xi, whereas
the elements of Ui are the supports of the member-
ship functions p which represent the linguistic values
associated with xi.

@SIM FS

Li t L Ui

model
level

qn~g ~.

.................................................................

SIMULATED
QUALITATIVE

FUZZY RULE

BEHAVIOR
BASE

system
behavior

level
QS(S,t ) x i,Y

/\
QV(x i,t QV(y,t 

1 1
la~ ~ R

Figure 1: Analogies between the QSIM and FS for-
malisms. Bi-directional arrows indicate a semantic cor-
respondence, whereas the other ones have the usual
meaning.

At a second level, more related to the simulated sys-
tem behavior, the qualitative system dynamics, which
is described by the simulated Qualitative Behaviors
(QB), may find its correspondence in fuzzy rule-bases.
Each QB is defined by a sequence QS(S, tk) of qualita-
tive states of the system, where QS(S, tk) is a m-tuple
of the qualitative values of each individual system vari-
able. Given the input and output variables, all their
possible dynamics are extracted from the behavior tree,
suitably manipulated, and automatically mapped into
rule sets where the input and output variables are, re-
spectively, the antecedents and consequent in the IF-
THEN rules.

Remark 1. Let us observe that we map a quantity
space, which is a set made up of landmarks and in-
tervals, into fuzzy sets: then, apparently, we map
a non-uniform set into a uniform one. Landmarks
are symbolic names denoting particular real numbers
that separate qualitatively distinct regions. However,
in many applications, and in particular the medical
domain we are interested in, a landmark value may
not have a crisp representation but, in its turn, be
defined by an interval with "soft" boundaries: as a
matter of fact, we consider this case, and then we
map a set made up of intervals into fuzzy sets. A
semi-quantitative model representation (Kuipers 1994;
Shen & Leitch 1993) would be formally more appro-
priate but not always feasible as we are considering
systems whose knowledge is highly incomplete with re-
gards to non-observable variables.
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A priori
knowledge

FUZZY QSIM 1
SETS MODEL

xi " Y~ sffimulated
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I CONSI"RUCrXONI

> FUZZY SYSTEM
IDENTIFICATION ~ y (z)

Figure 2: The basic step of FS-QM.

The overall system identification procedure proceeds
in three main phases (Fig. 2):

1. QSIM model formulation and simulation, and deft-
nition of the fuzzy elements. The prior structural
knowledge of the system at study must be organized
so that its behavioral model can be defined. More
precisely, the variables of interest and the network of
interactions between them, along with their math-
ematical descriptions, must be specified: variables
are described by their respective quantity spaces,
whereas their interactions by a set of qualitative
constraints which include both functional dependen-
cies and equations governing the system dynamics.
Then, an initial state of the system, which may de-
scribe a perturbation on it, has to be provided to
simulate its behavior. An attainable envisionment,
which does not generate ally new landmarks, is per-
formed to produce in one run all possible behaviors
that could follow from the given possibly incom-
plete specification, and shows us the entire range
of possible system dynamics at once. The idea un-
derlying the mapping of a QB into a set of FRs ex-
ploits the semantic correspondence between the el-
ements of quantity spaces and linguistic values de-
fined through fuzzy membership functions p. Then,
the fuzzy quantity spaces of the input-output vari-
ables, i.e the linguistic variables associated with the
quantity spaces of the input-output variables, and
their corresponding p, have to be defined. Such def-
initions are suggested by the expert knowledge.

2. Conslruction of lhe FS. The prior knowledge of the
dynamics of the system captured by the Qns derived
at phase 1 together with the fuzzy quantity spaces
are exploited to generate automatically a base of Fas
whose antecedents and consequent are the input and
output variables used to quantitatively identify the
dynamics of the system. The choice of the F~E, the
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fuzzification and defuzzification methods, complete
the definition of the FS.

3. Identification of the FS from the experimental data.
The generated rules, interpreted in accordance with
the FIE selected at the previous phase, initialize an
optimization procedure for the identification of the
parameters in the FS, which learns from the avail-
able experimental data an accurate input-output re-
lation.

The next subsection details the algorithms concerning
the phase 2. The phases 1 and 3 will be exemplified in
the next section through the application of the over-
all procedure to the identification of the dynamics of
Thiamine and its phosphoesteres in the cells of the in-
testine tissue.

Construction of the FS

Given n input variables xi (n < rn), and the output
variable y, a QB is automatically mapped into a FRB
in the following steps of the method:

1. from the time set T, draw out its subset T =
tJ’~=lT~~ UTy, whose elements are the significant time-
instants of both xi and y (T~ and Ty are the sets of
distinguished time-points of xi and y, respectively);

2. from the elements of T, built 7- = {to} O
{(tj_l, tj), tj}j=l...k, where k is the cardinality of ~:

3. Ytk E 7-, where tk may be either a time-point or a
time-intervM, repeat:

(a) consider QS(S, tk);
(b) from QS(S, tk), draw out the qualitative values

of input and output variables, namely QV(.vi,tk)
and QV(y, tk) (necessarily, QV(y, tk+l) if {xi} fl
{y} ¢ 0);

(c) from QV(xi,tk) and QV(y,t~), draw out
its related qualitative magnitude qmag, i.e.
qmag(xi, tk) and qmag(y, tk );

(d) consider the linguistic values, and therefore the
membership functions #i and ~ which are asso-
ciated with qmag(xi,4) and qmag(y, tk), respec-
tively;

(e) generate a linguistic rule R where xi are the an-
tecedents, y the consequent, and then the corre-
spondent fuzzy rule where Pi and ]~ are the fuzzy
sets.

Remark P. The number of rules generated in corre-
spondence with each QB is not greater than the eardi-
nality of 7-. Identical rules may happen to be gener-
ated as variables may have the same qmag either at dif-
ferent time-points or time-intervals: in such a case we
group the equivalent rules and keep only one of them
as representative of an input-output relation. Qualita-
tive values of the variables of interest which differ only
in the value of the output variable are likely generated.
Then, it is probable that some conflict rules, i.e. rules



which have the same antecedents but a different con-
sequent are produced. We store such rules and leave
tile conflicts be resolved in accordance with the degree
of rule calculated on the data pairs (Wang 1994).

Remark 3. The entire range of possible system dynam-
ics is captured by the whole tree of behaviors. Such
a tree, as it includes all logically possible outcomes
of the given qualitative information, may contain am-
biguous results and may be quite large to be efficiently
explored. Such ambiguities, as well as the dimension
of the behavior tree, may be significantly reduced by
additional knowledge. Moreover, let us remark that
many behaviors in the tree may not present any differ-
ence as far as the input-output variables are concerned.
Then, behavior aggregation procedures, which aim at
taking the significant distinctions out of the tree, have
to be performed to cope with the problem of an effi-
cient generation of a complete and meaningful fuzzy
rule base. Whenever reasonable physical assumptions
allow us to define equivalent behavior classes, the por-
tion of tree considered is further reduced by keeping
one representative for each class.

Given the behavior tree, the algorithm for the gen-
eration of the FBR which describes the overall system
dynamics is performed as follows:

1. selection of an individual behavior;

2. generation of the FttB which corresponds to each in-
dividual behavior;

3. union of all the FRBs generated at step 2, and filter-
ing of the equivalent rules.

The FS-QM method in Biomedical
applications

Fs-q~a can be applied to a variety of biomedical appli-
cations. As other black-box methods, it can be suc-
cessfully used in problems of recognition (of signals or
patterns) and prediction (as in adaptive control). 
the latter area, we have studied the problem of predict-
ing the Blood Glucose (BG) concentration in Diabetic
patients (Bellazzi et al. ). That work aimed at deriving
a black-box predictor of the BG dynamics in response
to exogenous insulin delivery and meal ingestion. The
performance of the method was tested in a two-step
experiment: a truining phase, in which the approxima-
tor y(x_) was identified on a set of experimental data
and a validation phase, in which the prediction accu-
racy of y(x_) was evaluated on a new data set. We ob-
tained a one-step ahead predictor that can be used for
therapeutic purposes and in on-line (adaptive control
applications.

FS-QM can be applied also in other contexts like the
approximation of the kinetic of molecules and drugs,
whenever the relationships between variables are so
complex that parameter identification in conventional
m6deling is very troublesome.

ThPK P-tratt.~,ra.~¢

Th ThMP ThPP ThTP

"l’hMPa.ve TIiPPuse Th’lT’a,re

(A)

f’53~ f

~1

’ f ~ I

Intestine Cells

........... i ...........................

MP~f o4

f 42

(B)

Figure 3: (A) - The Thiamine intracellular cycle. The
arcs are labelled by the enzyme which is responsible
for the chemical reaction. (B) - Compartmental model
of the Thiamine kinetics in the intestine tissue.

In this paper we consider the problem of describing
the dynamics of Thiamine (vitamin B1) and its phos-
phoesters in the cells of the intestine tissue. Thiamine
is transformed within the cells through an enzyme-
mediated chemical reaction in a higher energy form
that is used in the carbohydrates metabolism. The
chemical reaction is nonlinear, and modeling through
ordinary differential equations is hampered by identi-
fication problems. By using FS-QM we build an ap-
proximator of the system dynamics, that can be used
to describe the different metabolic response of subjects
with different pathological conditions.

Modeling intracellular Thiamine kinetics

Thiamine is transported in the extracellular fluids
(blood and vessels) in two different chemical forms,
simple Thiamine (wh) and Thiamine Mono-Phosphate
(ThMP). As mentioned above, after passing through
the cell membrane, the Th molecules are modified
in order to be used in the carbohydrate metabolism.
Fig. 3A shows the chemical reaction cycle: Th is di-
rectly transformed into the Thiamine Pyro-Phosphate
(ThPP); ThPP is in equilibrium with Thiamine Tri-
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Phosphate (ThTe). ThMP is firstly transformed into
Th, and then from Th to Thee. Finally, Thep is dephos-
phorilated to ThMP. Only the lower energetic forms of
Thiamine, Th and ThMP can be transported out of the
cellular membrane and hence catabolized.

A simulator of the intracellular distribution of Thi-
amine carl be of crucial help in describing syndromes
with Thiamine deficiency, like severe liver diseases. A
complete model of the human metabolism is quite dif-
ficult to derive, also because the data on intracellular
Thiamine distribution cannot bc measured ’in vivo’.
So, the researchers in the field are trying to identify a
model on animals that are known to have a human-like
Thiamine metabolism.

As described above, chemical processes are mediated
by cnzylnes; since the quantity of enzyme available in
the time unit is limited, these reactions are saturable:
the resulting models should hence be naturally nonlin-
ear.

A compartmental model of the Thiamine kinetics in
tile intestine tissue is shown in Fig. 3B. In that model
(Rindi et al. 1980), the ThTP form is not considered,
since it is known that its quantity is quite small, and
very difficult to be measured. The variables U1 and U2
represent tile amount of Th and ThMP in the plasma,
respectively. The flows (fij, i = 0,..,5, j = 1,..,5)
(chemical reactions) express nonlinear relationships
between quantities entering and leaving a compart-
ment. [n the literature, only linear compartmental
models has been exploited to describe the Thiamine
transformation process, since the nonlinear model is
hardly identifiable. On the other hand, the models
identified with the linear approximation are quite un-
satisfactory in terms of curve fitting, and consequently
as simulator of the system kinetics.

We aim at providing for an approximator of the in-
tracellular Thiamine distribution that takes into ac-
count the overall complexity of the chemical reactions
involved.

An approximator of the intracellular
Thiamine kinetics
The data set available for the identification of the ap-
t)roximator is quite rich as we have data on each state
variable of the model in Fig. 3B. We can completely
express the Thiamine intracellular kinetics by subdi-
viding the overall identification phase into the identi-
fication of three approximators as follows:

Tht+l = Yl(Tht, 7’hMPt, Ult) (5)
ThMPt+I = Y2(ThMPt, ThPPt, U2,) (6)
ThPP~+t = Y.3(ThPPt, Th,) (7)

The approximators (5), (6), (7) can be easily 
ploited as a simulator when only the inputs (U1 and
U2) are given. In the following we will describe in de-
tail how the approximator of ThPP has been derived.

’ , f(Th)
Th ’ * ThPP

f(ThPP)
ThMP

p ......

Figure 4: Compartmental model of the Th-ThPP path-
way. f(Th) and f(thPP) are labeled in Fig. 3B as fha
and f45, respectively.

Modeling the Th-ThPP pathway

The chemical reactions from Th to ThPP and from ThPP
to ThMP can be modeled through a single compart-
ment, as shown in the Fig. 4. Such reactions are de-
noted by f(Th) and f(ThPP). Th, simple Thiamine
in the cells, acts as input to the subsystem considered.
The qualitative model of the system dynamics is de-
scribed by:

dThPP
dt - f(Th) - f(ThPP) (8)

where

1. Th is a triangular shaped function, which represents
the input signal. Its quantity space is defined as
(0 Th* oo), where Th* is the saturation threshold of
f(Th).

2. ThPP has quantity space (0 ThPP* oo), where
ThPP* is the saturation threshold of f(ThPP).

3. Both f(Th) and f(ThPP) are represented in QSlM
by the functional constraint S+. From the physiol-
ogy, we know that f(Th*) > f(ThPP*).

Th
QV LV (nCi/g) ~(nCi/g)
0 Zero 0 2
(0,Th*) Low 15 7
Th* Medium 35 8
(Th*,oo) High 65 12

ThPP
QV LV (nCi/g) #(nai/g)
0 Zero 0 8
(0,ThPP*) Low 3O 11
ThPP* Medium 9O 20
(ThPP*,oo) High 170 30

Table i: Correspondence between qualitative values
(QV), linguistic values (LV) and fuzzy sets. & 
denote Mean Values and Standard Deviations, respec-
tively, which define Gaussian membership functions.
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1.

2.
3.
4.
5.
6.
I.
8.
9.
10.
II.
12.
13.
14.
15.

If Tht
If Tht
If Tht
If Tht
If Tht
If Tht
If Tht
If Tht
If Tht
" If Th
" If Tlt
" If Th
"If Th
"If Th
"If Th

is Zero and ThPPt is Zero then ThPPt+I is Low"
is Low and ThPPt is Low then ThPPt+I is Medium"
is Low and ThPPt is Medium then ThPPt+I is High"
is Low and ThPPt is High then ThPPt+I is High"
is Medium and ThPPt is High then ThPPt+I is High"
is High and ThPPt is High then ThPPt+I is High"
is Low and ThPPt is High then ThPPt+I is Medium"
is Low and ThPPt is Medium then ThPPt+I is Low"
is Low and ThPPt is Low then ThPPt+I is Low"
is Zero and ThPPt is Low then ThPPt+I is Low"
is Zero and ThPPt is Low then ThPPt+I is Zero"
is Low and ThPPt is Low then ThPPt+I is Zero"
is Medium and ThPPt is Low then ThPPt+I is Low"
is High and ThPPt is Low then ThPPt+I is Medium"
is High and ThPPt is Medium then ThPPt+I is High"

Table 2: FRB derived from the simulated behaviors in Fig. 6

$~’~¢a1.: (*** *Th--ThPP pathway model ****
Sirtm~m from I ¢omptot, ini’fialimtictt.
A It~l M 36 behtviort.

}---,,---C ± ~--C ± ~

Figure 5: Qualitative simulation results of the Th -
ThPP pathway model: behavior tree.

The Fit8 automatically derived from the qualitative
simulation of the model exploits Tht and ThPPt as
antecedents and ThPPt+I as consequent. Then, the
quantity spaces of both Th and ThPP are mapped
into their fuzzy representation (see Table 1): the cen-
ters and the standard deviations of the membership
functions have been derived on the basis of the avail-
able physiological knowledge.

Since the data used for the system identification
come from experiments with tracers, the initial value
of the variables involved in the simulation is set to 0.

The simulation of the QS1M model produces a tree of

I,, ,’ .........., :tI
Ttop

Figure 6: Qualitative simulation results of the Th -
ThPP pathway model: each row reports the plot of
a representative behaviors of the dynamics of Th and
ThPP.
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Figure 7: Identification phase - The plot compares the
results obtained with 30 loops of sP by applying both
FS-QM and FS-BB on the experimental data set.

36 quiescent behaviors (Fig. 5): 16 of them are filtered
out as physiologically inconsistent with the hypothesis
f(Th*) > f(ThPP*). Among the remaining behav-
iors, four of them (Fig. 6) are representative of all the
possible dynamics of Th and ThPP.

The complete FItS automatically derived from the
qualitative behaviors is shown in Table 2.

Results

In this application problem, the main goal is to build
a good simulator of the intracellular Thiamine dynam-
ics. Such a goal has been achieved through two phases:
all identification phase, in which the parameters of the
derived FS are refined by using sP algorithm on a first
set of data, and a forecasting phase, in which the iden-
tified FS has been used as simulator, and the results
are matched for validation against a new data set.

The data used for identification come from an ex-
periment on a group of rats whose intestine tissue was
analyzed aft~,r an intravenous bolus of 30#g of thiazole-
[214C]Thiaminc, with a radioactivity of 1.25 #Ci, for a
period of 240 h, sampled with irregular time intervals.

The performance of the approximator y(_x) obtained
by using FS-QM has been compared with that one iden-
tified by using only the data (denoted by FS-SB), 
proposed by Wang (Wang 1994). The comparison has
been performed through the calculation, in both L2
and L~o norms, of the absolute errors between the data
and the calculated values.

If the number of BP loops (nl) is kept low (< 25), 
get absolutely better results of the FS-QM over FS-BB
both in the identification and forecasting phase. For
a greater number of loops, both methods show similar
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Figure 8: Forecasting phase - The plot compares the
performance of the two approximators in forecasting
the dynamics of ThPP in diabetic rats. Both approx-
imators have been obtained with 100 loops of BP.

performance (Fig. 7): for nl ~ co, the errors calcu-
lated go to zero in both cases with a slight difference
in convergence velocity.

In spite of the comparable identification perfor-
mance, in the forecasting phase y(x) performs quite
well, whereas the approximator obtained by FS-BS is
not able to reproduce the data of ThPP measured in
different experimental settings. This is not surprising
and may be explained by two occurrences: the data
are noisy, and the number of samples is smaller than
the number of parameters to be identified. This means
that FS-BB, which learns only from data, is more likely
driven to identify also the noise.

Fig. 8 and Fig. 9 compare the results obtained by
both methods when applied to simulate the dynamics
of ThPP in response to two different input values for
Th, which correspond to the values of Th injected on
two groups of diabetic rats, one of them under therapy.

As it is highlighted by the plot comparison, the per-
formance of the FS-QM approximator is good, while
the FS-BB approximator does not reproduce at all the
dynamics of ThPP.

Open problems and conclusion

The application of the presented framework to both
the problem of predicting and simulating the dynam-
ics of nonlinear systems has given good results which
confirm its validity in terms of efficiency and robust-
hess. However, several methodological problems are
still open, and they will need further work. First of
all, the method requires for a better mathematical for-
malization which defines its range of validity and ap-
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Figure 9: Forecasting phase - The plot compares the
performance of the two approximators in forecasting
the dynamics of ThPP in diabetic rats under therapy.
Both approximators have been obtained with 100 loops
of BP.

plicability. Important issues which need a thorough
study are listed below:

Membership functions
The choice of the membership functions is an impor-
tant step of the design of a FS, and becomes crucial
when the FS has to be tuned on a set of experimental
data. We have chosen Gaussian Membership Functions
(G-MFs) as they possess the universal approximation
properties (Wang 1994), and they are functions of only
two parameters (mean and variance), that can be esti-
mated using the BP-technique. Moreover, G-MFs pro-
vide for good generalization properties as they ensure
completeness (V.Z E U, #(x_) > 0), even when the fuzzy
rule base spans only a subset of the Cartesian prod-
ucts of the input space. On the other hand, G-MFs are
symmetric and with a maximum value located in a sin-
gle point: this means that some desirable properties,
such as different shapes of the #i associated with ei-
ther a landmark or an interval, cannot be represented.
In order to preserve the advantages coming from G-
MFs but to improve the capability of expressing prior
knowledge, in the future we will investigate the use of
pseudo-trapezoidal functions (Zeng & Singh 1996).

Time
The major problem deals with the definition of the
mapping of the sampling time set into the qualitative
time set, i.e. of the mapping of the measuring grid into
the "event" one. This is feasible only if the experiment
has been designed so that the data set is informative
enough to produce the system dynamics. Such an issue
would be facilitated if semi-quantitative information on

qualitative times would be available.

Hybrid models
The more complete is the a-priori knowledge ex-
ploited in modeling, the more close to the solution
is the initial guess generated, with a consequent im-
proved efficiency of FS-QM. A semi-quantitative for-
mulation and simulation of the model (Kuipers 1994;
Shen L: Leitch 1993) is hence preferable. Unfortu-
nately, the quantitative information may be insufficient
for a semi-quantitative formulation with the mentioned
approaches. Therefore, methods for dealing with hy-
brid models, where different knowledge sources can co-
exist would be the ideal way to get as much information
as possible from the prior knowledge.

Other identification procedures

^J and J of the membership func-If the parameters, xi cri ,
tions in the equation (3) are fixed to their prior val-
ues, the identification of the FS turns from a nonlinear
problem into a linear one. This choice provides for a
clear advantage from a computational point of view,
and also allows us to preserve the structure of the FS
initialized on the basis of the a-priori knowledge cap-
tured by the qualitative model. But, since the FS is
fixed, this choice could prevent from identifying a re-
ally "good" approximation of the unknown function.
Therefore, possible solutions could be given by two-
step identification procedures.
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