
Preliminary Thoughts Towards a Practical Theory of Reformulation
for Reasoning about Physical Systems

Berthe Y. Choueiry, Sheila McIlraith~ Yumi Iwasaki
Tony Loeser, Todd Neller, Robert S. Engelmore, and Richard Fikes

Knowledge Systems Laboratory
Stanford University

Stanford, CA 94305-9020

Abstract

In this paper, we provide a practical framework for
characterizing, evaluating and selecting reformulation
techniques for reasoning about physical systems, with
the long-term goal of automating the selection and
application of these techniques. We view reformula-
tion as a mapping from one encoding of a problem
to another. A problem solving task is in turn accom-
plished by the application of a sequence of reformula-
tions to an initial problem encoding to produce a final
encoding that addresses the task. Our framework pro-
vides the terminology to specify the conditions under
which a particular reformulation technique is applica-
ble, the cost associated with performing the reformula-
tion, and the effects of the reformulation with respect
to the problem encoding. As such it provides the vo-
cabulary to characterize the selection of a sequence of
reformulation techniques as a planning problem. Our
framework is sufficiently flexible to accommodate pre-
viously proposed properties and metrics for reformu-
lation. We have used the framework to characterize a
variety of reformulation techniques, three of which are
presented in this paper.

1 Introduction
Reformulation plays an important role in various intel-
lectual activities and is ubiquitous in reasoning about
physical systems. Reformulation improves the effec-
tiveness of a mental or computational problem-solving
process by recasting a problem into a new one that is
tailored to a given task. The selection of reformulation
techniques must be carried out relative to a problem-
solving task. In this paper we examine the role of re-
formulation in reasoning about physical systems, and
provide a practical framework for evaluating various re-
formulation techniques applicable to this class of prob-
lems.

Informally, we define reformulation to be a mapping
from one encoding of a problem to another. A problem-
solving task is accomplished by the application of a
select sequence of reformulations to an initial problem
encoding to produce a final encoding that addresses

* and Xerox Palo Alto Research Center, 3333 Coyote
Hill Road, Palo Alto, CA 94304

the task. We use the term reformulation to subsume
the notions of abstraction and approximation, thereby
avoiding any lexical implication that the mapping gen-
eralizes or simplifies the domain theory. Given an en-
coding of a problem and a reasoning task, one may
choose to reformulate for any of the following reasons:
1. Engine-driven problem re-encoding: enabling the use

of a particular reasoning engine by satisfying its in-
put requirements, either because no engine exists
to address the initial problem, in order to improve
the performance of problem-solving, or to reduce the
cost of the reasoning.

2. Cognitive insight: improving the user’s understand-
ing of the problem or solution space.
In order to develop a framework with sufficient de-

tail to compare reformulation techniques, we focus on
a specific class of problems, namely reasoning about
physical systems. We require that the behavior of
the physical system be expressible as a set of lumped-
parameter hybrid (continuous and discrete) models,
containing algebraic or differential equations, but prob-
lem solving need not be restricted to a direct manip-
ulation of equations. Finally, we require that the task
be motivated by a specific query, thus constraining the
computational machinery necessary to carry it out.

The long-term goal of our research is to develop
an automatic task-driven capability that selects and
applies appropriate reformulation techniques in the
course of modeling and analyzing the behavior of phys-
ical systems. The contribution of this paper is a prac-
tical framework for evaluating specific reformulation
techniques with respect to the restricted class of prob-
lems we described above. The motivation for develop-
ing such a framework came from the observation that
much of the previous work on reformulation (including
abstraction and approximation) was either too specific
or too general to be of practical use in developing au-
tomated reformulation mechanisms. Our framework
provides a significant step towards this long-term goal
by defining general criteria for understanding the prop-
erties of various reformulation techniques.

The paper is organized as follows. Section 2 intro-
duces our conception of the processing stages involved

Choueiry 21

From: AAAI Technical Report WS-98-01. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

in reasoning about physical systems, setting the con-
text for our reformulation framework. Section 3 intro-
duces the framework itself and presents a set of evalua-
tots for assessing the effects of reformulation. Section 4
applies the framework to three examples of reformula-
tion techniques previously described in the literature.
Section 5 discusses related work, and Section 6 con-
cludes with a brief summary and outlines directions
for future research.

2 Reasoning about Physical Systems
In this section we describe the various processes that
may be executed in reasoning about physical systems.
We illustrate these processes in terms of several ex-
amples drawn from the literature. Starting with a de-
scription of the task of interest, we perceive the entire
endeavor as a progression through the three process-
ing stages illustrated in Fig. 1, namely: the model, the
equation and the solution processing stages. Identify-
ing these stages has proved instructive in distinguish-
ing and situating the various reformulation techniques
useful for reasoning about physical systems.

Task description
Scenario, query, domain

ltheory, modeling assumptions

-- _ _ _ Model_ o _sing
:(Model Building

[(Model Reformulation

’,__ _1 / _’ _
I

_ __ _ _E_q??_ti? _n _e_ o
(Equation Building

~Equations

Equation Reformulation1
_ _ [_Ref_orm_u_lated equations2

. _ _ 1_ _ SyP_tk°n _°c_ ng
Solution Building

(Solver) 1

ISolutions

(Solution Reformulation)~

- - tRe-f°rn~-ulate-d solutions 2
Task Completion

InpuffOutput
C::) ero~
*-_. -_ ~ Processing stage

Figure 1: Reasoning about physical systems. Stages and
their corresponding processes.

Z2 QR-98

Task description. Reasoning about physical systems
begins with a task description specified by the fol-
lowing four elements: the domain theory, the sce-
nario, the query and the modeling assumptions. The
domain theory is a corpus of knowledge correspond-
ing to heterogeneous, possibly redundant or contra-
dictory descriptions of a physical system, including
logical statements, symbolic equations, numeric pa-
rameters. The scenario is a description of a partic-
ular problem instance (e.g., a set of system compo-
nents and their physical structure, and the initial
conditions of the system). The query is an explicit
specification of the user’s question (e.g., variables,
their quantitative or qualitative values, direction of
change at specific time points). Finally, the model-
ing assumptions include assumptions that the prob-
lem solver may make in order to broadly delimit the
scope of the answer to the query (e.g., the temporal
and physical extent of its coverage, granularity).

Model processing. Given a task description, the
model building process assembles the relevant as-
pects of the domain theory to produce a model,
which is an instantiation of a subset of the domain
theory that is both consistent and sufficient to ad-
dress the query. A model at this point often consists
of knowledge of the physical structure (components
and their topology, for example) as well as knowl-
edge of the relevant physical phenomena (including
the conditions under which they are active), in con-
trast to the purely mathematical model of the fol-
lowing stage. A typical example of a model build-
ing process is compositional modeling as in [4; 15;
12] and in the modeling algorithm of TRIPEL [19].
This process can be followed by a model reformu-
lation process. Model reformulation may involve
structural consolidation [23], time scale selection
[19], or simplification [16] or expansion of a model
through addition, deletion, or replacement of a de-
scription of components or phenomena.

Equation processing. Equation building produces
an equation model1 either directly from a task de-
scription or through reformulation of a model into
a set of mathematical equations describing the be-
havior of the system. For example, the Qualitative
Physics Compiler [5] converts a model expressed in
QP Theory [6] into a set of qualitative differential
equations.
An equation reformulation process may then be car-
ried out. An equation reformulation is primarily mo-
tivated by a desire to transform the present equation
model into a form that is amenable to a particular
problem-solving engine. Many reformulations oper-
ate at this stage, such as mapping polar to Carte-

tWe distinguish between non-equational models and
equational ones in order to be able to represent the var-
ious possibilities for manipulating models reported to date
in the literature for reasoning about physical systems.

sian coordinates, mapping a time domain to a fre-
quency domain, reformulating ordinary differential
equations as qualitative differential equations, drop-
ping insignificant terms, linearizing, and aggregating
nearly decomposable systems.

Solution processing. The solution building process
is often a problem-solving engine acting on either
the model (e.g., QPE [7]) or the equations (e.g.,
QSIM [11] and Mathlab@) to produce one or more
solutions to the query.

A solution reformulation process may subsequently
be performed to enhance cognitive insight. Exam-
ples of such reformulations are summarization [14]
and explanation by generation of active documen-
tation [9]. Solution reformulation may also be ap-
plied for engine-driven problem re-encoding. For ex-
ample, Clancy and Kuipers [1] interleave a QSIM
simulation with the aggregation of partial solutions
corresponding to chatter in a qualitative simulation.
In so doing, they significantly improve the overall
performance of QSIM on their problem.

Note that reasoning need not necessarily transition
through every processing stage, nor through every pro-
cess within a stage. For example, a particular problem-
solving task may go from task description directly to
the equation processing stage, or from the model pro-
cessing stage directly to the solution processing stage.
Moreover, a problem-solving task may loop any num-
ber of times through one or more of the individual
processes. In the example of solution reformulation
reported above, Clancy and Kuipers [1] loop over the
solution building and solution reformulation processes.
During the simulation of the behavior of a dynamical
system, the operating conditions may change as a re-
sult of system dynamics. The model used for simu-
lation must then be updated to comply with the new
assumptions. In such situations, the reasoning process
may involve a cycle of model processing, equation pro-
cessing and solution processing as the system sequen-
tially transitions from one discrete state to another.

In Section 4, we provide one example of reformula-
tion at each of the model, equation, and solution pro-
cessing stages.

3 Proposed framework

In this section we introduce a framework and a termi-
nology for characterizing and evaluating reformulation
techniques for reasoning about physical systems. Sec-
tion 3.1 introduces the components of the framework.
Section 3.2 shows how selection of a sequence of refor-
mulations can be reduced to a planning task. Finally,
Section 3.3 introduces the attributes necessary to char-
acterize a reformulation technique, so that selection
can be performed.

3.1 Components of the framework

Reformulation is a mapping of an original problem into
a new problem, as shown in Fig. 2.

Pr°bleml [Reformulation~ Pr°blem2
QuerYl =1

I’roc I----’-~ Query2
Assmptl [Cond j Assmpt2
Form1

Form2

Figure 2: Reformulation.

We distinguish two primary components, the prob-
lem and the reformulation, and a composite compo-
nent, the strategy, obtained from composing the former
two.

3.1.1 Problem

We define a problem as a three-tuple: Problem =
(Query, Form, Aaamptn). Query specifies the question
that the user is trying to answer. Form denotes the for-
mulation, i.e. the conceptualization of the domain. Fi-
nally, kasmptn designates the conditions under which
the formulation is valid, e.g. the domain of applicabil-
ity and the temporal granularity. In Fig. 3, the prob-
lem P1 is represented as a node.

®
Figure 3: Problem, P1.

3.1.2 Reformulation

A reformulation technique is applied to an original
problem Problem1 = (Query1, Forint, Assmptn1), to
produce the reformulated problem, Problem2. We
describe the reformulation technique as a tuple:
Reformulation ---- (Cond, Proc). Cond denotes the ap-
plicability conditions and Proc denotes the procedure
that maps the original problem into a reformulated
one. Cond is a set of conditions that must be satis-
fied by Problem1 for the reformulation method to be
technically applicable. It must be noted that Cond is a
necessary condition for the applicability of Proc. Proc
is a computable procedure that realizes a mapping. In
Fig. 4, the reformulation Ro is illustrated as a tran-
sition between nodes representing two problems P1 to
P2.

Figure 4: Applying reformulation 1~ to an initial problem
to produce a reformulated problem.

As mentioned in the introduction, the decision to
perform a reformulation may be motivated by the
availability of a suitable problem-solving engine and its

Choueiry 23

performance for solving a problem2. A solution engine
is applied to a problem to produce a result as an an-
swer to the query. We use the term "engine" broadly
to include anything from an algorithm, to a special-
purpose simulation program, to a general-purpose so-
lution pacl~ge such as Mathematica®. There could be
multiple engines at one’s disposal to solve the original
or reformulated problems. Alternately, there may be
none, when the problem is too difficult.

It follows from our definition of reformulation that
a solution engine is nothing but a reformulation that
partially or completely answers a query. More specif-
ically, the information necessary to answer the query
exists implicitly in the problem encoding (i.e., formu-
lation, query, and assumptions). A solution engine
merely manipulates the problem to make this implicit
answer explicit. As a consequence, all subsequent dis-
cussion of the general notion of a reformulation proce-
dure also pertains to what has traditionally been called
a problem-solving engine or solution engine.

3.1.3 Strategy

A reformulation is simply a mapping from one problem
encoding to another. Thus, a reformulation can be un-
derstood as a step towards providing an answer to the
query. A sequence of reformulations, which may in-
clude one or more engines, constitutes one strategy for
addressing a task. Execution of a strategy constitutes
problem solving.

Figure 5: Strategy.

We define a strategy Si, denoted Si =
[P1Ra...RzPi], to be a sequence of reformula-
tions, [Ra...Rx] that is applied to an original
problem P1- The path [P1RaP2... RxPi] in Fig. 5 is
an example of such a strategy. Any subsequence, St,,
of Si, starting at P1 and stopping at any intermediary
problem Pk, between P1 and Pi, is also a strategy,
and is called a sub-strategy of Si.

3.2 Reasoning as plan execution

We perceive reasoning about physical systems to pro-
ceed according to processes identified in Fig. 1. Ac-
cording to this figure, the content of the initial input,
i.e. the task description, is gradually modified by a
combination of any number of processes culminating
in an answer to the query. Given our definition of
reformulation, any of these processes is a reformula-
tion. The stage of processing distinguishes whether

2In this paper, we do not address reformulations that
apply to the engine itself, as proposed in [8], because such
reformulations do not seem to arise in the class of problems
we address.

24 QR-98

the reformulation is applied to a collection of model
fragments, an equational model, or to one or more so-
lutions. Reasoning about physical systems is thus a
successive application of reformulation procedures that
transforms an initial problem encoding.

Problem solving involves the successive application
of reformulation procedures to an initial problem en-
coding to produce a final problem encoding. Clearly
there may be multiple sequences of reformulations that
may be applied to address the problem solving task,
as illustrated in the figure below. Identifying such se-
quences of reformulation procedures can be viewed as
a planning problem in which the states are problem en-
codings, the transition (or actions) are reformulations,
and the plans are strategies. Hence, the task of rea-
soning about physical systems becomes an execution
of the selected plan.

R L:~

Figure 6: Reasoning about physical systems is a plan exe-
cution.

In Fig, 6, we illustrate a tree of four alternative
strategies. In practice, as for planning, resources may
be limited, and one may want to associate a utility or
objective function to the problem solving task. We ex-
pect the user to provide the goal of the problem-solving
task in terms of a goal test and of an objective function
that specifies the importance of some desired features
of the problem and the resources available. In this con-
text, selecting an optimal plan or strategy becomes a
multi-criteria optimization problem.

3.3 Evaluating and comparing
components

To articulate the goal driving this planning process, we
identify features of a problem, of a reformulation, and
of the application of a reformulation to a problem that
are relevant to selection of reformulation procedures.
These features are divided into sets, relative to the
components of our framework. The sets of features are
incrementally augmented and refined as one explores,
defines, and proposes new reformulation procedures.
There are three main categories of sets, depending on
whether they evaluate a component of the framework
(called evaluators, denoted Evals), assess the change
due to a reformulation (called change indicators, de-
noted D iff s), or compare components obtained by dis-
tinct strategies (called comparators, denoted Compars).
We first introduce these sets, then we discuss each of

them in further details for each of the components to
which they apply.

Evaluators. For comparing the reformulation tech-
niques described in the literature, and for assessing
and comparing reformulation techniques in the con-
text of problem solving, we must first define mea-
sures or evaluators that designate relevant charac-
teristics of problem and the reformulation or their
inter-relationships. We distinguish three sets of such
evaluators, Evalsprob, Evalsr.for~, and Evalsstrat
corresponding to evaluators that assess aspects of a
problem, a reformulation technique, and a strategy
respectively.

Change indicators. For tracking the evolution of
a problem-solving task along successive reformula-
tions, it is important to be able to characterize the
changes that occur in the problem as the result of
reformulation. One way to capture these changes
is to measure the difference in the values returned
by the evaluators before and after one or more re-
formulations. Another way is to measure changes
between the application of different strategies to the
same initial problem encoding. The values returned
by change indicators are not necessarily quantita-
tive; they could be qualitative or logical, but must
at least capture some notion of change or evolution.
We identify two sets of change indicators, DiffSprob,
and Dif fSstrat.

Comparators. An essential aspect of our framework
is the ability to articulate the relative merits of alter-
native strategies for problem-solving by comparing
between their components. We introduce two sets of
comparators, ComparSprob, and Comparsstrat.

3.3.1 Problem
Below we introduce the terminology for characterizing
and comparing problems. We illustrate this vocabulary
in Fig. 7.

1. Evalsprob(Pi) denotes the set of evaluators for as-
sessing some aspects of a problem Pi, including the
quality of the answer ’contained’ in Pi.
In the most general case, the elements in this set
can be defined with respect to any of the three el-
ements of the problem, i.e. the formulation, query,
or assumptions. In examining a wide collection of
reformulation techniques, we have found that the
query and assumptions often remain unchanged be-
fore and after reformulation, and that most evalua-
tors are functions applied exclusively to the formula-
tion. Counterexamples do exist and will be discussed
in a forthcoming technical report.
These evaluators usually provide a quantitative as-
sessment of some aspect of the formulation (e.g.,
size) or of its logical properties (e.g., provability and
refutation). They can also address qualitative, less
quantifiable, aspects of the formulation (e.g., expres-
sive power). For a system of equations, an example

.

......... comp, b

¯ ’. ..."

EvalSprob D|ffSprob

Figure 7: Evaluating and comparing problems.

of a quantitative evaluator is the number of equa-
tions or variables, or the number of terms per equa-
tion; an example of a qualitative evaluator is adher-
ence of the equations to some canonical form. Other
evaluators of the formulation that appear in the lit-
erature include scope [22] (which is the range of phe-
nomena that it can describe), expressiveness, syntac-
tic form, simplicity, generality, relevance, absence of
irrelevant information, and language restriction to
familiar terms. It is important to define an evalu-
ator in sufficient detail. In the case of simplicity,
for example, we must define the specifics of how it
is measured (e.g., the number of variables/equations
in a equation set, or the number of components in a
model).
Some of the evaluators in Evalsprob are dedicated
to assessing the result to the query as it is made
explicit in Form. Examples of such evaluators are
the soundness of the result, and its precision. These
are typically the evaluators to use in the test that
determines whether the goal of the planning process
is achieved.

DiffSprob(Pi, Pj) denotes a set of effects of the refor-
mulation, thus measuring a change in some feature
of the problem. Any element in this set measures
the change between the corresponding elements in
Evalsprob(Pi) and Evalsprob(Pj), such that Pi and
Pj are situated along the same strategy Sk. When
Pi and Pj are adjacent in Sk, DiffSprob(Pi, Pj) in-
dicates the effects of applying a reformulation to Pi.
When Pi and Pj are not adjacent in Sk, it indicates
the effects of the application of a sequence of refor-
mulations.
One possible effect of reformulation on the prob-
lem is to improve cognitive insight; this is com-
mon at the solution reformulation stage, see Fig. 1.
For example, if the original formulation is too com-
plex for a user to understand, reformulation may
produce a description better suited to human un-
derstanding. Other examples of effects on the
formulation are the following properties theorem
increasing/decreasing/constant, upward/downward
solution [21], upward/downward-failure [23], ordered
monotonicity [10], and safety [2].
Similarly to the case of EvalSprob (Pi), some elements
of DiffSp~ob(P~,Pj) are dedicated to assessing the
change of some features of the result. An example

Choueiry 25

of such an effect is a 10% loss in the accuracy of the
result.
The change between two problems, Pi and Pj, re-
flects the effect of a reformulation (alternatively,
sequence of reformulations) on Pi. This outcome can
also be predicted from considering the mathematical
properties of the reformulation itself when applied to
Pi (alternatively, the composition of the properties
of the sequence of reformulations). There are, thus,
two redundant ways of expressing this change, ei-
ther as Diff%rob(Pi, Pj) or as Effect%rob(Rk, P~),
which simply captures the effects of applying the re-
formulation Rk to Pi. For instance, Struss [20] con-
siders reformulations procedures, called representa-
tional transformations, that are surjective, and not
injective; Giunchiglia and Walsh [8] study proce-
dures that are computable surjective total functions
between two formal systems. The relationship be-
tween Effectsprol~, Evalsprob and Dill%rob, can be
described as follows:

Z~oct,,.ob(Rk. P~) = f(Zva1,,~ob(Pj))
---- g(Evalsp,ob(P#), DiffSp,ob (Pi,

where f and g are functions to be defined. For
instance, one may want to state that a reformu-
lation Rk doubles the size of P~, thus specifying
EffeCtSprob(Rk,Pi), or that the size of Pj is twice
that of P~ by taking the ratio of the elements ’size’
in Evalsprob(Pj) and Eval%rob(Pi), referring
to an element of Diffsp~ob(Pi, Pj). We choose
include both representations and to not arbitrarily
favor one possibility over the other.

3. Comparsp~ob(Pi,Pj) denotes a set of effects of two
distinct strategies St~ and St applied to a given prob-
lem by measuring a change in some features between
Pi and Pj resulting from applying Sk and St to the
problem. It measures the relative merits, with re-
spect to the problem, of two alternative reasoning
strategies.

Similarly to Eval%rob and DiffSprob, Comparsprob
encompass elements dedicated to comparing some
features of the results in the problems obtained by
the two alternative strategies.

3.3.2 Reformulation

For the reformulation, we introduce Evals~,f a set of
evaluators for assessing the reformulation, i.e. the con-
ditions and the procedure.

This set is somehow complex. It contains evalua-
tots that describe the reformulation technique in abso-
lute terms (e.g., the size of the code, the programming
language it is written in, the price of a commercial
software, the human effort required to exploit it, and
perhaps whether it requires a special hardware or a
human expert).

Moreover, Evals~o~ includes functions that assess
the behavior of the reformulation technique relative
to a given problem, for instance, its time complexity

when applied to the problem. An example of an eval-
uator that applies to the conditions of the reformula-
tion, Cond, is the tractability of verifying them. A typi-
cal and important evaluator is the computational com-
plexity of the procedure, Proc, with respect to the orig-
inal problem, denoted Complexity(Proc, Probleml).

3.3.3 Strategy

Below we introduce the evaluators, change indicators
and comparators applicable to strategies, while illus-
trating them in Fig. 8.

E TalSstrat

Compm’Sstrat

.̄.~__ ~__’t~_ ~__~__.,..’-a~;

II~tra¢

Figure 8: Evaluating and comparing strategies.

I. Evals,t~,t(S~) denotes a set of evaluators for assess-
ing some aspects of a problem-solving strategy Si.
An element in this set is obtained by considering,
over a given path, some combination of the values of
an element Evals~o~, which measure features of the
reformulation technique as introduced above. En ex-
ample of such an evaluator is the cost of the strat-
egy, assessed as the sum of the costs of applying
the reformulations to the corresponding problem and
the absolute cost of the procedures (e.g., commercial
price).
These are typically the evaluators to use in the ob-
jective function that expresses the preferences and
manages the resources of the planning process.

2. Diffs,trat(Si,Sj) denotes a set of the effects of ex-
tending a strategy Si by one or more reformulation
steps into a strategy Sj. Any element in this set
measures the change between the corresponding el-
ements in Evals,tr,t(S~) and Evals,trat(Sj),
that Si is a sub-strategy of Sj. Examples of such
elements are increase in cost, loss of time, and con-
sumption of available resources.

3. Compars,trat(Si, Sj) denotes the set of effects of two
distinct reasoning strategies on an original prob-
lem by measuring a change of some feature in
Evals,t~t(Si) and Evals,t~t(Sj), thus yielding
assessment of the relative merits of the strategies.
An element in this set is obtained by measuring the
difference, or ratio, of an element of Evals,trat for
each path.
Traditionally, a reformulation is said to be cost-wise
beneficial when the cost of reformulating the prob-
lem and that of solving the reformulated problem do

26 QR-98

not exceed the cost of solving the original problem.
This is typically an element of Comparsstrat.
Since one of the goals of reformulation is to improve
overall problem-solving performance, the reformula-
tion procedure itself should not significantly add to
the computational cost. However, sometimes there
is no solution engine applicable to the original prob-
lem, and consequently any amount of effort to re-
formulate to make it solvable is justifiable. A cost-
intensive reformulation may also be justified when
it is performed off-line to improve runtime perfor-
mance of a system.

3.3.4 Remark
Observe that the evaluators for the problem, refor-
mulation, and strategy are not necessarily indepen-
dent. For example, simplification of a set of equa-
tions often reduces the size of the formulation (mea-
sured by Eval~rob) and reduces the cost of the refor-
mulation (measured by Evalare~ and consequently by
Evals.trat), at the expense of also reducing the preci-
sion of the result (measured again by Evalsprob).

4 Illustrative examples

In this section, we examine three reformulation tech-
niques described in the literature from the perspective
of our framework for reformulation. These techniques
are representative of the types of reformulation that
can occur at the three stages of reasoning about phys-
ical systems. Each of the reviewed examples consists
of a summary of the reformulation technique and the
desiderata, followed by a characterization of the refor-
mulation procedure in terms of our framework. Due
to space limitations, effects are mostly summarized in
prose rather than exact and detailed definitions of rel-
evant evaluators. Moreover, the authors do not pro-
vide a comparison of their techniques with other pro-
cedures, possibly because none exists. Thus, we will
not discuss comparators of problems and strategies in
the context of these examples.

4.1 Model reformulation: Simplification

Nayak and Joskowicz [16] propose a model reformula-
tion technique that simplifies a compositional model
of a device, while maintaining its ability to provide
a causal explanation of the expected behavior of the
device.

The primary objective of their work is to perform
efficient compositional modeling for generating parsi-
monious causal explanations of the functioning of a
device. They provide tools for model-fragment library
indexing and selection to support the construction of
device models. The reformulation procedure is applied
to the model thus built in order to simplify it. We
focus here on this simplification process.

Given a device description, the expected behavior of
a device, and the above mentioned tools, the authors
provide a model building algorithm that composes an

initial adequate model of the device. This initial model
is adequate in that it explains the expected behavior,
includes significant phenomena, and excludes insignif-
icant and irrelevant phenomena. However, it may not
be as parsimonious as it could be; that is, it may be
possible to further approximate the model fragments,
according to the causal approximations defined in the
library, while maintaining the structural and behav-
ioral constraints of the device, and the ability of the
model to explain the expected behavior. The refor-
mulation procedure transforms the composed adequate
model into one that is both adequate and parsimo-
nious. This procedure is predicated on the fact that
all model fragment approximations provided in the li-
brary are causal and acyclic.

The reformulation procedure is portrayed in our
framework as follows. Generating causal explanations
is the stated problem-solving objective, but the au-
thors do not propose a specific problem solver. As a
consequence, we do not evaluate this model reformu-
lation in the context of a larger strategy that includes
the generation of causal explanations, and we restrict
our evaluation to only one transition, corresponding to
the model simplification. As a result, we will not dis-
cuss evaluators that apply to the strategy, but only to
the problem and reformulation. Nevertheless, the au-
thors observe that their notion of simplicity "does not
guarantee that a simpler model will be more efficient
to simulate or will produce simpler causal explanations
than more complex ones." Thus, their choice for sim-
plicity strongly affects the quality of the explanation
generated by the overall strategy. The metric for eval-
uating the reformulation procedure is parsimony of the
problem formulation.

Characteristics of the problem:

Form1 comprises:

¯ an adequate model of a device that consists of or-
dinary differential equations, algebraic equations
and qualitative equations,

¯ the expected behavior of the device,

¯ structural and behavioral constraints, and
¯ a library of model fragment approximations, in

which approximations are causal and the approx-
imation relation is acyclic.

Form2: A parsimonious adequate model of a device
and the above-mentioned library.

Query1 = Query2: Generate a causal explanation of
the specified expected behavior.

hssmptn1 = hssmptn2: The equations are restricted
to time-varying and equilibrium lumped parameter
models.

Characteristics of the reformulation:

Choueiry 27

Proc: Input to the reformulation procedure is an ade-
quate compositional model that may contain unnec-
essary model fragments and may not be as approxi-
mated as possible.
The reformulation procedure exploits two operators:
(1) Replacement of a model fragment by one of its
immediate approximations, as defined in the model
fragment library; and (2) Removal of an unneces-
sary model fragment. The first operator is applied
repeatedly ensuring that the resultant model can ex-
plain the expected behavior. This is achieved by an
order of magnitude reasoner. The second operator is
then applied, again ensuring that the expected be-
havior can be explained and that all the structural
and behavioral coherence constraints are satisfied.
Note that the reformulation procedure generates one
simplest adequate model. More than one may exist
but the procedure stops after finding the first.

Con& The approximations in the model fragment li-
brary must be causal and the approximation relation
acyclic.

Evaluators and effects:
EVa.lBprob: The problem is evaluated with respect to

the parsimony of the problem formulation. The ef-
fect of reformulation on the problem, E:~:fectsprob,
is the simplest compositional device model that will
explain the expected behavior.

Evalsro~orm: The reformulation is evaluated with
respect to the complexity of the reformula-
tion procedure relative to the problem encoding.
With respect to this problem and reformulation,
Complexity(Proc, Pt) is assessed to be tractable,
provided the order of magnitude reasoning used to
verify that the simplified model still explains the ex-
pected behavior is approximated to be polynomial.
The reason for the tractability of the procedure is
as follows. Because of the compositional modeling
paradigm and the provision of causal approxima-
tions, the reformulation algorithm need not consider
all combinations of model fragments during simpli-
fication. It considers each model fragment indepen-
dently, and replaces it by one of its immediate sim-
plifications according to the causal approximation
relation. The algorithm computes the simplest ad-
equate model (where simplest means that no model
fragment can be replaced by a simpler one that satis-
fies the expected behavior), and it stops after finding
the first adequate simplest model.

4.2 Equation reformulation and solution
building: linearization and stability

This example illustrates a problem-solving strategy
that exploits linearization to determine the stability of
a particular class of nonlinear systems. The problem-
solving strategy consists of two sequential reformu-
lations - an equation reformulation Ra which maps

28 QR-98

problem encoding Pl into problem encoding P2, and
a problem-solver reformulation Rb which maps P2 into
P3.

Linearization is a strategy commonly used to evalu-
ate the stability of a nonlinear system near one of its
equilibrium points. The reformulation is used to facili-
tate the inference of this stability property: it replaces
the analysis of the stability of the nonlinear system by
that of the linear system, derived by linearization of the
equations of the nonlinear system. The stability of the
resulting linear system is determined by the location
of the eigenvalues of the system matrix in the complex
plane. The main rationale for exploiting this strat-
egy is that "for small deviations from the equilibrium
point, the performance of the system is approximately
governed by the linear terms. These terms dominate
and thus determine stabihty-provided that the linear
terms do not vanish" [13]. If this is not the case, a
separate analysis is required.

In general, no problem-solver reformulation is avail-
able to directly determine the stability of nonlinear
systems3. Hence, the motivation for performing this
sequence of reformulations is engine-driven problem
re-encoding. The metric for evaluating the strategy
is with respect to the ’answerability’ of the stability
question. The strategy is deemed to be successful if an
answer to the stability question can always be given
and a stability region near an equilibrium point esti-
mated. The reformulation procedures are portrayed in
our framework as follows.

Characteristics of the problem:
Forint comprises:

¯ a set of nonlinear differential equations x(t)
f(x(t)) of n variables,

¯ an equilibrium point for the nonlinear system.

Form2 is a set of time-invariant linear differential equa-
tions of n variables that approximate Form1 at an
equilibrium point.
The system matrix of the linearized system is the
Jacobian of the nonlinear system computed at the
equilibrium point. It has the same number of vari-
ables and equations as Form1.

Form3 is Form2 plus the result, i.e. one symbol of
(stable, unstable, unknown}.

Queryt = Query2 = Query3: Determine the stability
properties near an equilibrium point.

Assmptnt: The equations are time-invariant4.

3Unless one is given a Liapunov function that can be
used to prove stability within a region containing the equi-
librium point.

4The dynamic behavior of a continuous system of n vari-
ables is described by a set of differential equations of the
following general form: ±(t) = f(x(t), t). The system is
to be time-invariant when the functions f do not depend
explicitly on time, i.e. x(t) = f(x(t)).

Assmptn2 = hssmpl;n3: None.

Characteristics of the reformulations:

Proca comprises the following steps: (1) Computation
of the Jacobian of the nonlinear system. (2) Evalu-
ation of the Jacobian at the equilibrium point.

Conda: Input must conform to Form1, and the equa-
tions must be time-invariant.

Procb determine the stability near a specific equilib-
rium point, the eigenvalues, Ai, of the system matrix
of the linearized system are determined. The stabil-
ity of the original system is inferred from that of the
linearized version as follows:

. If at least one eigenvalue is found to be
in the right-hand side of the complex plane
(3i, Re(Ai) > 0), the nonlinear system is unstable.

¯ If all eigenvalues are in the left-hand side of the
complex plane (Vi, Re(A~) < 0), the nonlinear
tem is stable.

¯ If all eigenvalues are in the left-hand side of the
complex plane, but at least one has a zero real
value (3i, Re(Ai) = 0), then no conclusions
be drawn for the stability of the nonlinear system,
and one must analyze the higher order terms of
the function f.

Condb: The problem must be formulated as described
in Form2.

Evaluators and effects:

Evalsp,ob(P2): Following equation reformulation, the
problem is evaluated with respect to the syntac-
tic form of the problem formulation. The ef-
fects of the equation reformulation on the problem,
Effect~rob(P2), are that the set of equations is now
linear. The system matrix of the linearized system
is the Jacobian of the nonlinear system computed at
the equilibrium point.

Evals~.~o~ffi(Ra): The reformulation is evaluated with
respect to the complexity of the reformula-
tion procedure relative to the problem encoding,
Complexity(Proc,, PI), which is O(n3).

Evalspro~(P3): Following solution building, the prob-
lem is evaluated with respect to whether the stabil-
ity of the system near an equilibrium point is es-
tablished, refuted, or remains undetermined. This
will depend on the problem. This technique cannot
specify the boundaries of the stability region near
the equilibrium point. Moreover, sometimes P3 is
not conclusive and one must analyze the effects of
neglected higher-order terms.

Evalsr,~or,(Rb): The solution building procedure
computes the eigenvalues of a system matrix
and it is evaluated with respect to complexity,
Complexity(PrOcb, P2), which is O(n3).

4.3 Solution reformulation: Behavior
abstraction for explanation

In [14], Mallory et al. propose to summarize the re-
suits of the qualitative simulation of a physical system
in order to help users recognize "basic patterns of be-
havior." Their goal is to support human understanding
of the solution space. This reformulation is a typical
instance of solution reformulation.

Given the user’s query and the complete behavior
tree of a simulation, generated by QSIM [11], the re-
formulation procedure summarizes the behavior of the
system by generating a behavior graph that retains
only those aspects of the behavior tree relevant to
the query. The procedure examines the labels of the
nodes in the original tree, discards irrelevant informa-
tion from the labels, and merges adjacent nodes ac-
cording to a well-defined strategy. The task of inducing
patterns of behaviors and producing a higher-level de-
scription of the resulting graph is currently entrusted
to the user, but the authors plan to extend their work
in this direction.

The motivation here is to enhance cognitive insight
into the solution space, i.e. the formulation. The qual-
ity of the formulation is measured by (1) the size of the
behavior graph and its tractability with respect to ma-
nipulation and understanding by a human user; (2)
user’s subjective opinion of the quality of the summary
provided by the behavior graph; and (3) soundness and
completeness of the behavior graph with respect to the
original behavior tree, defined as follows. Soundness:
any reformulated behavior corresponds to at least one
original behavior. Completeness: all original behav-
iors are represented in the abstract graph. The refor-
mulation procedure is portrayed in our framework as
follows.

Characteristics of the problem:
Formi: A behavior tree representing the qualitative

simulation of the behavior of a physical system.
Each node of the tree represents a qualitative state
of the system.

Form2: A graph whose nodes are either nodes or ag-
gregates of two or more nodes of the original tree.

query1 = [~uery2: Summarize the behavior of a speci-
fied subset of quantities/variables in terms of a spec-
ified subset of their so-called "methods" (e.g., qual-
itative values and direction of change).

Assmptni = Assmptn2: None.

Characteristics of reformulation:

Proc comprises the following steps: (1) Label each
node in the tree with the values and methods of the
specified variables. (2) Generate a graph by aggre-
gating nodes that have the same labels and satisfy
some adjacency conditions. The authors provide a
definition for the adjacency of nodes that guarantees

Choueiry 29

that all significant behaviors in the original behavior
tree are reproduced in the behavior graph.

Cond: Input must conform to Fermi.

Evaluators and effects:

EvalSprob: The problem is evaluated relative to
the solution formulation. As explained above,
the following are evaluators for the problem:
Size, Understandability, Soundness, and
Completeness.
The following general observations can be made rel-
ative to various differences and effects, Effectsp~ob
and DiffSprob on the evaluators. With respect to
Size, the size of the abstracted-behavior graph is
smaller than or equal to that of the original one.
With respect to Soundness and Completeness, the
abstracted behavior graph is guaranteed to keep only
those states pertinent to the query, and the authors
provide a proof of the soundness and correctness of
the reformulation procedure. Finally, as an obser-
vation with respect to Understandability, the au-
thors report that the user may have to experiment
with different specifications of the query in order to
achieve a satisfactory summary of the behavior of
interest.

Evals~o~or=: The reformulation is evaluated with re-
spect to the complexity of the solution reformula-
tion procedure relative to the problem encoding.
With respect to this problem and reformulation,
Complexity(Proc, Px) is polynomial.

5 Related work
Various theories of reformulation including abstraction
and approximation have been proposed in the litera-
ture. Some of these theories provide an encompassing
high-level characterization. Others restrict their scope
to some specific aspect (e.g., cost or faithfulness of re-
sults). These theories proved to be essential to our
understanding of reformulation, but we found them to
be of limited practical use in automating the selection
and application of reformulation techniques.

Giunchiglia and Walsh [8] introduced a general the-
ory of abstraction. They introduced a general charac-
terization of reformulation and its properties. Both
Cremonini et al. [2] and Nayak and Levy [17] ex-
plored abstraction theories that are restricted to logical
systems and to abstraction techniques that preserve
consistency and correctness of proofs. None of these
theories make extensive analysis of complexity issues,
nor do they provide the terminology for quantitatively
evaluating the effects of reformulation. In contrast,
the body of research on approximations in the compu-
tational complexity community [18], provides rigorous
evaluation criteria with respect to cost while neglecting
to address issues of expressiveness of representations,
which are fundamental in artificial intelligence.

30 QR-98

In [23], Weld and Addanki take a task-driven ap-
proach to reformulation and adopt Tenenberg’s vocab-
ulary [21] for describing the effects of the reformula-
tion on the formulation, only. In [3], Davis studies ap-
proximation and abstraction and focuses on the prac-
tical application of reformulation techniques applied
to reasoning about solid object kinematics. Davis too
stresses that the selection of the reformulation tech-
nique must be task-driven and in order to satisfy some
well-defined criteria. Neither works, however, provides
a general framework for reformulation, or identifies at-
tributes for describing and evaluating reformulation
techniques.

As a final note, multiple perspectives are commonly
sought in automated reasoning to improve performance
of the reasoning. We view generation of such perspec-
tives as a reformulation only when the mapping from
one perspective to another is well articulated.

6 Conclusions
In this paper we provide a practical framework for
characterizing, evaluating, and selecting reformulation
techniques, with the long-term goal of automating
their selection and application in the context of rea-
soning about physical systems. While the focus of our
research has been on reasoning about physical systems,
and hence all our examples are drawn from this do-
main, the framework developed appears to be applica-
ble to a broad range of tasks and domains.

We identify the three stages of reasoning about phys-
ical systems at which interesting reformulations may
be performed. However, we do not require that the
reasoning transition through all stages, or that it do so
sequentially. Our study uncovered two simple, not yet
articulated, observations. First, solving engines can
naturally be cast as reformulations, eliminating the
implicit distinction between reformulations and solv-
ing engines. Second, the task of selecting a sequence
of reformulations to achieve the goal of problem solving
can be cast as a planning problem. Hence, reasoning
about physical systems can be reduced to execution of
the selected plan.

Our framework provides the terminology to specify
and assess the three components in a complex reformu-
lation process (namely, the problem, the reformulation,
and the strategy) by providing evaluators of the prop-
erties of these components, and comparators of their
relative merits. We believe that our framework is suf-
ficiently flexible to accommodate previously proposed
properties and metrics for reformulation. We have also
collected a variety of evaluators reported in the litera-
ture, and structured them according to our framework.
The evaluators discussed here are not intended to be
exhaustive and will certainly need to be augmented
when the framework is extended to comprise reformu-
lation of solution engines or to apply in other types of
problem domains.

In an effort to evaluate this framework, we have used

it to characterize numerous reformulation techniques,
three of which we have presented in this paper. This
process was not straightforward, especially since we
were initially introducing a conceptual distinction be-
tween reformulations and solving engines. The cur-
rent framework is the result of countless iterations over
the analysis of the examples, and our perception of
problem-solving goals and strategies. Further evalua-
tions still need to be carried out, which we intend to
report in a forthcoming technical report.

There are numerous avenues for future work: (1) ex-
tend our framework to encompass engine reformula-
tion; (2) assess the usefulness of our framework for
tasks other than query answering (e.g., design) and
disciplines other than automated reasoning (e.g., cog-
nitive modeling); and (3) study, in more detail
more formally, the composition and inverse mapping
of reformulations.

Acknowledgments
The authors are grateful to William Buchanan for var-
ious discussions, to Lee S. Brownston for proofread-
ing an early version of this document, and to AAAI
anonymous reviewers for constructive comments. B.
Y. Choueiry is supported by a fellowship for advanced
researchers from the Swiss National Science Founda-
tion. S. McIlraith was supported by the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC) and by Xerox Palo Alto Research Center.

References
[1] Daniel J. Clancy and Benjamin Kuipers. Static and

Dynamic Abstraction Solves the Problem of Chatter
in Qualitative S!mulation. In Proc. of AAAI-97, pages
118-125, Providence, Rhode Island, 1997.

[2] Roberto Cremonini, Kim Marriott, and Harald Sen-
dergaard. A General Theory of Abstraction. In Pro-
ceedings of the 4th Australian Joint Conference on Ar-
tificial Intelligence, pages 121-134, Australia, 1990.

[3] Ernest Davis. Approximation and Abstraction in Solid
Object Kinematics. Technical Report TR706, New
York University, New York, NY, 1995.

[4] Brian Falkenhainer and Kenneth D. Forbus. Composi-
tional Modeling: Finding the Right Model for the Job.
Artificial Intelligence, 51:95-143, 1991.

[5] Adam Farquhar. A Qualitative Physics Compiler.
In Proc. of AAAI-94, pages 1168-1174, Seattle, WA,
1994.

[6] Kenneth D. Forbus. Qualitatite Process Theory. Ar-
tificial Intelligence, 24:85-168, 1984.

[7] Kenneth D. Forbus. The Qualitative Process Engine.
In Daniel S. Weld and Johan de Kleer, editors, Read-
ings in Qualitative Reasoning about Physical Systems,
pages 220-235. Morgan Kanfmann, San Mateo, CA,
1990.

[8] Fausto Giunchiglia and Toby Walsh. A Theory of Ab-
straction. Artificial Intelligence, 57:323-389, 1992.

[9] Tom R. Gruber and Pierre O. Gautier. Machine-
generated Explanations of Engineering Models: a
Compositional Modeling Approach. In Proc. of the
13 ~h IJCAI, pages 1502-1508, Chamb6ry, France,
1993.

[10] Craig A. Knoblock, Josh D. Tenenberg, and Qiang
Yang. Characterizing Abstraction Hierarchies for
Planning. In Proc. of AAAI-91, pages 692-697, Ana-
heim, CA, 1991.

[11] Benjamin Kuipers. Qualitative Simulation. Artificial
Intelligence, 29:289--338, 1986.

[12] Alon Y. Levy, Yumi Iwasaki, and Richard Fikes. Au-
tomated Model Selection for Simulation Based on Rel-
evance Reasoning. Artificial Intelligence, 96:351-394,
1997.

[13] David G. Luenberger. Introduction to Dynamic Sys-
tems : theory, models, and applications, chapter Anal-
ysis of Nonlinear Systems. Wiley, New York, 1979.

[14l Richard S. Mallory, Bruce W. Porter, and Benjamin J.
Kuipers. Comprehending Complex Behavior Graphs
through Abstractions. In Tenth International Work-
shop on Qualitative Physics. AAAI Technical Report
WS-96-01, pages 137-146, Fallen Leaf Lake, CA, 1996.

[15] P. Pandurang Nayak. Causal approximations. Artifi-
cial Intelligence, 70:27"/-334, 1994.

[16] P. Pandurang Nayak and Leo Joskowicz. Efficient
Compositional Modeling for Generating Causal Expla-
nations. Artificial Intelligence, 83:193-227, 1996.

[17] P. Pandurang Nayak and Alon Y. Levy. A Semantic
Theory of Abstractions. In Proc. of the 14 th IJCAL
pages 196-203, Montreal, Canada, 1995.

[18] Christos H. Papadimitriou. Computational Complex-
ity, chapter Approximation and Complexity, pages
299-328. Addison-Wesley Publishing Company, Read-
ing, Massachusetts, 1994.

[19] Jeff Rickel and Bruce Porter. Automated Modeling for
Answering Prediction Questions: Selecting the Time
Scale and System Boundary. In Proc. of AAAI-9.~,
pages 1191-1198, Seattle, WA, 1994.

[20] Peter Struss. On Temporal Abstraction in Qualita-
tive Reasoning (A Preliminary report). In Proceedings
of the Seventh International Workshop on Qualitative
Reasoning about Physical Systems, pages 219-227, Or-
cas Island, Wa, 1993.

[21] Josh D. Tenenberg. Inheritance in Automated Plan-
ning. In First International Conference on Knowl-
edge Representation and Reasoning, pages 475-485,
Toronto, Canada, 1989.

[22] Daniel S. Weld. Reasoning about Model Accuracy.
Artificial Intelligence, 56:255-300, 1992.

[23] Daniel S. Weld and Sanjaya Addanki. Task-Driven
Model Abstraction. In 4th International Workshop
on Qualitative Physics, pages 16-30, Lugano, Switzer-
land, 1990.

Choueiry 31

