
Model-Based Identification of Systematic Errors in Measurements

H. de Jong, V.J. de Wit, N.J.I. Mars, P.E. van der Vet

Department of Computer Science
University of Twente

P.O. Box 217, 7500 AE Enschede, the Netherlands
Phone: -{-31-53-4894622 Fax: +31-53-4892927

Email: hdejong@cs.utwente.nl, wit@cs.utwente.nl, mars@cs.utwente.nl, vet@cs.utwente.nl

Abstract

Large-scale databases and knowledge bases with prop-
erty measurements obtained in scientific experiments
or at observation sites have become available in the
past decade. With the growing use of these so-called
measurement bases, the task of ascertaining the accu-
racy of measurements is becoming increasingly impor-
tant. We introduce an implemented method for the
model-based identification of systematic errors which
has been applied in a case-study in materials science.
The method is formalized in terms of QR and MBD
techniques, which provides correctness guarantees and
facilitates extensions.

Introduction

In the past decade large-scale databases and knowledge
bases have become available to researchers working in
a range of scientific disciplines. In many cases these
databases and knowledge bases contain measurements
of properties of (physical) objects obtained in exper-
iments or at observation sites. As examples, one can
think of databases with molecular structures in crys-
tallography and mechanical property databases in ma-
terials science.

These large collections of measurements, henceforth
called measurement bases, form interesting resources
for scientific research. By analyzing the contents of a
measurement base, one may be able to find patterns
that are of practical and theoretical importance (e.g.,
Fayyad, Haussler & Stolorz [1996]). The discovery of 
sudden change in the temperature dependency of a cer-
tain material above 1000 K, for instance, may call for
a scientific explanation or affect the use of the material
at high temperatures.

An important task accompanying the use of mea-
surement bases is the identification of systematic errors
in measurements of a certain property. The occurrence
of systematic errors detracts from the accuracy of mea-
surements and compromises any patterns found in the
measurement base.

Statistical treatments of measurement focus on ran-
dom errors and usually brush aside the problem of
systematic errors with general recommendations like:

"The detection of... systematic errors ... depends on
the observer’s alertness and knowledge of the natural,
instrumental, and personal factors that can influence
his procedures." (Barry [1978], p. 13). In order 
identify systematic errors we have to take recourse to
knowledge about the experiments in which the mea-
surements were conducted and knowledge about the
processes occurring in the physical systems investi-
gated. Although in some situations it will suffice to
quickly locate a systematic error by means of heuris-
tic rules acquired through experience, in others it is
necessary to gain a deeper understanding of the source
of a systematic error by using appropriate models of
the experiments. The latter situations will interest us
here.

Given the large and increasing scale of measurement
bases, in which a corresponding high numbers of sys-
tematic errors are expected, it would be highly desir-
able to develop computer support for the model-based
identification of systematic errors. We will introduce
a method which has been implemented in a system
called KIMA. Given a property measurement, models
of the physical systems created and controlled in the
actual and in the ideal experiment, and supplementary
measurements of quantities, our method generates all
possible systematic errors in the reported value of the
property.

The method employs concepts and techniques from
the fields of qualitative reasoning (QR) and model-
based diagnosis (MBD). The algorithm generating the
possible systematic errors is formalized in terms of QR
techniques for the qualitative simulation and compar-
ative analysis of dynamical systems (Kuipers [1994];
Weld [1990]; de Jong & van Raalte [1997]). In addi-
tion, it incorporates the basic MBD principle of pre-
dicting behaviors from the models of a physical system
and matching the predictions with available measure-
ments (Davis & Hamscher [1988]). The work described
in this paper thus establishes an interesting connec-
tion between measurement analysis problems on the
one hand and QR and MBD techniques on the other.

After an introduction of some basic concepts, we
will briefly review the QSIM and CEC* techniques for
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qualitative simulation and comparative analysis. The
next section defines the algorithm for error identifica-
tion and shows that it produces all possible genuine
systematic errors but occassionally spurious errors as
well. We will then present the results of the application
of the method in a case-study in a realistic domain, the
fracture strength of brittle materials. This is followed
by a discussion of the method and its results in the
context of related work.

Experimental systems and systematic

errors

The measurements that are stored in a measurement
base are assumed to be measurements of properties
of physical objects obtained in scientific experiments.
An experiment will here be viewed as the activity of
creating and sustaining a controlled physical system,
also referred to as an experimentM system (de Jong
[1998]). Control over a physical system is achieved
by experimenters who attempt to actively create and
maintain the structure of the system and regulate its
behavior by imposing certain experimental conditions.

Measurements are determinations of the quantities
of an experimental system at a certain time-point in
the interval on which the system is investigated. If
several quantities are measured at a time-point, we ob-
tain a (partially) measured state of the system. The
measurements are not made in an arbitrary way, but
they are directed at the determination of properties
of a physical object, such as the fracture strength of
a material. A property measurement can be seen as
the determination of the value of a certain quantity
when an experimental system has been brought into a
certain state.

A systematic error is the (significant) deviation 
the measured value from the true value of a property.
The true value is the value that would have been ob-
tained if the measurement had been carried out on an
ideal experimental system, that is, an experimental
system with an ideal structure and an ideal behav-
ior exhibited under ideal conditions. What counts as
’ideal’ is dependent upon the aim of the measurement,
e.g., the approximation of an idealized theoretical sit-
uation or specific service conditions. It will often be
impossible to realize an ideal experimental system in
an experiment. In other words, the ideal experimental
system is a hypothetical system and the true value of
the property a hypothetical value.

The causes of a systematic error are assumed to lie
in differences between the structure of the actual and
ideal experimental system, and differences in the ex-
perimental conditions imposed upon the systems. The
task of error identification is concerned with analyzing
these differences in order to predict possible systematic
errors.

Simulation and comparative analysis of

experimental systems
The conceptualization of experimental systems as con-
trolled physical systems has the advantage of suggest-
ing a fruitful way of modeling the structure and be-
havior of experimental systems. We will use differen-
tial equations, more specifically qualitative differential
equations (QDEs), for this purpose (Kuipers [1994]).
QDEs are appropriate devices for describing experi-
mental systems, since in many cases much of the knowl-
edge will be qualitative in nature, especially when cer-
tain idealized circumstances cannot be realized.

Once an experimental system has been modeled by a
QDE, a qualitative simulation algorithm can be used to
infer the possible qualitative behaviors QB1,... , QBm
of the system from an initial qualitative state QS(init)
which represents the experimental conditions. We
have employed the QSIM algorithm for this purpose
(Kuipers [1994]). A qualitative behavior is a sequence
of qualitative states of the system.

The QSIM algorithm can be seen as a theorem
prover deriving theorems of the following form:

QDE A QS(init) --* 1 V... V QBm.
QSIM is sound and incomplete in that the disjunc-

tion of possible qualitative behaviors contains all gen-
uine behaviors of the system, but occassionally spuri-
ous behaviors as well (see theorem 6 and the discussion
in sec. 5.6.2 in Kuipers [1994]).

In order to compare the behavior of two experi-
mental systems described by QDEs one can perform
a comparative analysis. Given a qualitative model
and behavior of the first system (QDE and QB)
and a qualitative model and behavior of the second
system(QDE and Q~B), the comparative analysis al-
gorithm CEC* derives the possible comparative be-
haviors CB1,... , CBn of the two systems from an ini-
tial comparative state CS(init). The comparative be-
haviors are contained in a comparative envisionment
(de Jong, Mars 8z van der Vet [1996]; de Jong 
van l~aalte [1997]; de Jong [1998]).

Whereas a qualitative behavior consists of a se-
quence of qualitative states of a single system, a com-
parative behavior is a graph of comparative states of
two systems. Each comparative state CS(pci) repre-
sents the difference in value of shared quantities of the
experimental systems at a pair of comparison pci. A
pair of comparison is a pair of time-points from the
qualitative behavior of the first and second system at
which the systems can be (meaningfully) compared.
The difference between a shared system variable q at
pair of comparison pci is expressed as a relative value
RV(q,pc~) which can be # (greater), [I (equal), 
(smaller). RV(q, pci) =~ abbreviates to q~pc,.

The pairs of comparison arising from the compari-
son of two qualitative behaviors are partially ordered.
This ordering contains a pair of comparison pco re-
ferring to the initial time-points of the behaviors and
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a pair of comparison pcn referring to the final time-
points. The comparative behaviors produced by CEC*
show either how given differences in response at pCn
can be explained by differences in initial conditions at
pco (explanatory comparative analysis) or which differ-
ences in response at pcn can be predicted from given
differences in initial conditions at pco (predictive com-
parative analysis).

CEC* derives theorems of the following form:

[QDEAQB]A[QDEAt~B]ACS(init) ---, CBI V. ..VCBn.

Just like QSIM, CEC* is sound and incomplete. It
generates all genuine comparative behaviors, but is not
guaranteed to exclude spurious comparative behaviors
(theorems 15 and 16 in de Jong [1998]).

An important feature of CEC* is that the technique
is able to compare behaviors of systems with a differ-
ent structure, that is, of systems described by different
QDEs. This ability is important for error identifica-
tion, since an experiment may be carried out in such
a way as to give rise to an experimental system struc-
turally different from the ideal experimental system.

Error identification method

Error identification starts with a property measure-
meat from a measurement base. The property mea-
surement is accompanied by candidate models of the
experimental system investigated, candidate descrip-
tions of the experimental conditions imposed upon the
system, and a sequence of measured states. It is con-
fronted with a specification of the ideal property mea-
surement in the form of a model of the ideal experimen-
tal system and a description of the ideal experimental
conditions. The result of error identification is a set
of possible systematic errors in the property measure-
ment. The systematic errors are explained in terms of
differences in the structure and differences in the ex-
perimental conditions of the systems. Fig. 1 provides a
schematic overview of the error identification method.

Candidate models and candidate
behaviors of experimental system

Due to a lack of information about the execution of
an experiment, it is often not possible to unambigu-
ously determine the structure of the experimental sys-
tem and the conditions under which it has been inves-
tigated. For instance, a bend test might be performed
on a material specimen with or without surface dam-
age, at or well above room temperature. Therefore,
the property measurement specifies a set C~/of tuples
of a candidate model of the experimental system and
candidate experimentM conditions. Each tuple repre-
sents a different possible structure of the system and a
different possible set of experimental conditions.

For every pair (QDE, QS(init)) E C~I, one can pre-
dict a set of candidate behaviors of the experimen-
tal system by performing a qualitative simulation and

then eliminating the qualitative behaviors which do
not agree with the measured states of the system. The
candidate behaviors are alternative qualitative descrip-
tions of the behavior of the physical system investi-
gated in the experiment.

In order to count as a candidate behavior of the ex-
perimental system, a behavior QB resulting from sim-
ulation must be consistent with the sequence of mea-
sured states of the system. This consistency check
lies at the heart of work on measurement interpreta-
tion (Forbus [1987]; DeCoste [1991]; Dvorak & Kuipers
[1991]) and is here performed by a simple algorithm
given in de Jong [1998]. The information about the
experimental system provided by the measured states
may occasionally rule out all qualitative behaviors for
a particular candidate model Q[gE. Assuming that
the measurements are correct, this implies that the ex-
perimental system cannot adequately be described by
QDE and QS(init), and we must remove the tuple

{Q1)E, QS(init)) from the set C~M of candidate mod-
els.

Model and behavior of ideal experimental
system

A property measurement is evaluated by comparing
the measured value with the value that would have
been obtained if the measurement had been conducted
on a reference system, the ideal experimental system.
The behavior of the ideal experimental system is de-
rived from a user-specified pair (QDE, QS(init)}, rep-
resenting the structure and experimental conditions
of the ideal experimental system. If several qualita-
tive behaviors result from the simulation of QDE with
QS(init), the user is invited to select one of these.

Systematic errors in measurements

From the information provided with the property mea-
surements we thus derive a triple (QDE, QS(init), 
of the model, conditions, and behavior of the ideal
experimental system and a set CI~IB of triples

(QDE, (~S(init), of acandidate model, candi date
conditions, and candidate behavior of the actual ex-
perimental system.

A property value will be seen as the value of a certain
definition quantity qdef when the experimental system
has reached its final state. A systematic error can
hence be viewed as a differential final response of the
actual and ideal experimental system. Error identifi-
cation can then be reformulated as performing a pre-
dictive comparative analysis. The goal of this analysis
is to predict whether the response of the experimen-
tal system actually investigated would differ from the
response of the ideal experimental system if the latter
were realized in an experiment. The model QDE and
behavior QB of the ideal experimental system have
to be compared with every candidate model-behavior
triple in CI~IB, since different assumptions about the
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Figure 1: Schematic overview of model-based error identification.

model and behavior of the actual physical system may
yield different predictions of the systematic error.

A predictive comparative analysis by means of CEC*
starts with a set CS(init) of RVs at the first pair of
comparison pc0 which represents differences in the ex-
perimental conditions of the systems. In the case of
error identification, initial RVs can be derived by com-
paring measurements of the initial state of the actual
system with a quantitative specification of the ideal
experimental conditions. If the values of a quantity q
are significantly different according to a statistical or
heuristic criterion (de Jong [1998]), we obtain q~pco or
q ~pco, depending on the sign of the difference. Other-
wise, we have q Ilpco. Additional RVs in CS(init) might
be directly supplied by the user.

For each combination of the model QDE and the be-
havior QB of the ideal system and a candidate model
Q£)E and a candidate behavior Q~B of the actual sys-
tem, CEC* will return a comparative envisionment
consisting of comparative behaviors CB1, . . . , CBm. A
possible systematic error in a measured property value
appears as a relative value ]~ or ~ for qde.f at pcn in
a comparative behavior. 1 More precisely, the RV of
qdef is a qualitative abstraction of the systematic er-

1If the l:tV is II, the systematic error in the measured
property value equals O. Adhering to common usage of the

ror. The comparative behavior explains how deviations
from the ideal experimental conditions at pc0, added
to deviations from the structure and behavior of the
ideal experimental system, result in a systematic error
at pcn.

The notion of systematic error is formally captured
as follows.

Definition 1 (Systematic error)Given an ideal
property measurement and an actual property mea-
surement. The experimental systems of the prop-
erty measurements are described by a model-behavior
triple (QDE, QS(init), QB) and a set of candidate
model-behavior triples CMB, respectively. Suppose a
predictive comparative analysis is carried out involv-
ing ( QDE, QS( init), QB) and ( Q£)E, QS( init), (~B) 

CMB. In addition, we have a set CS(init) of initial
RVs at the first pair of comparison pc0. The compara-
tive euvisionment constructed has comparative behav-
iors CB1,... , CBm.

Let qdef be the definition quantity of the property.
Each comparative behavior CBk, 1 < k < m, in which
qdef ~pc~ or qde/ ~pc~ indicates a possible systematic
error in the measured value of the property, qdef ~pc,~

term, we will say that there is no systematic error in this
case.
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or qdel ~pc, is the qualitative abstraction of this sys-
tematic error. []

It is important to emphasize that different compar-
ative behaviors in a comparative envisionment may
point at different systematic errors, even when they
have the same RV. RV(qdey,pcn) is a qualitative ab-
straction of a numerical systematic error which is not
guaranteed to be the same in different comparative be-
haviors. If in one melting-temperature experiment the
specimen reacts with its container (a source of system-
atic error) and in another the specimen reacts with its
container and has a low purity in addition (another
source of systematic error), there will be a systematic
error in both observed melting temperatures. However,
these systematic errors do not have to be the same.

Algorithm for error identification

The algorithm for error identification given below sum-
marizes how a measurement can be evaluated by de-
tecting possible systematic errors in the reported value
of the property. Notice that since an ideal experiment
is assumed to be a hypothetical experiment, no mea-
sured states of the experimental system are available.

Algorithm 1 (Error identification) Given an ac-
tual property measurement and an ideal property mea-
surement. The ideal property measurement refers to
a hypothetical experimental system described by the
qualitative model QDE and considered under experi-
mental conditions QS(init). The actual property mea-
surement specifies the set C~/ of tuples of candidate
models and candidate conditions, and the sequence
M~SS of measured states. The following algorithm de-
tects possible systematic errors in the measured value
of the property:

Step 1 Perform a qualitative simulation for every tu-
pie (QDE, QS(init)) E C~I. Call the resulting sets
of candidate model-behavior triples CI~IB. Similarly,
determine a behavior QB for the ideal experimental
system from QDE and QS(init).

Step 2 Use the measured states M~SS to reduce the
sets of candidate model-behavior triples CiQB. Can-
didate behaviors and models that are not consistent
with the measurements are eliminated.

Step 3 Perform a predictive comparative analysis for
the model-behavior triple (QDE, QS(init), 
and every candidate model-behavior pair
(QDE, Q,S(init), Q,B) E CiQB. The initial compar-
ative state information CS(init) is obtained from
the ideal experimental conditions and the measured
states MASS supplemented by user-specified RVs.

Step 4 Return the comparative envisionments gener-
ated in the previous step. Each comparative behav-
ior in which qdet ~pe,~ or qde.f ~pcr~ indicates a possible
systematic error.

The algorithm may occasionally produce empty
comparative envisionments. Under the assumptions
that the measurements are correct and the specifica-
tion of the ideal experimental system is consistent,
we must conclude that the combination of a candi-
date model QDE and candidate behavior (~B does not
adequately describe the structure and behavior of the
experimental system realized in the experiment.

Properties of the algorithm
The reliability of the algorithm for error identification
can be assessed by inquiring into its ability to find
all and only possible systematic errors in a measured
property value. Obviously, a systematic error origi-
nating from a spurious comparative behavior is not
possible, since a spurious comparative behavior does
not adequately describe differences in the behaviors of
the actual and ideal experimental system. This insight
under~e definition of spurious and genuine sys-
tematic errors.

Definition 2 (Spurious systematic error) Given
a comparative behavior CB indicating a possible
systematic error by predicting that qdef ~pc~ or
qg~f ~pcn. The systematic error is spurious, iff CB is a
spurious comparative behavior. A genuine systematic
error is a systematic error that is not spurious. []

This definition allows one to prove the following
guarantees on the outcome of an error identification.

Proposition 1 The algorithm for error identification
generates all genuine systematic errors in a measured
property value. []

Proposition 2 The algorithm for error identification
may occasionally generate spurious systematic errors
in a measured property value. []

The propositions are obvious consequences of the
soundness and incompleteness properties of QSIM and
CEC* that we as mentioned above.

The computational complexity of the error identifi-
cation algorithm is determined by the computational
complexity of CEC*. The number of comparative
states generated by the algorithm, a good metric of its
complexity, is the product of the number of compara-
tive envisionments generated and the number of com-
parative states generated to construct each of them.
The first number is a product of the sizes of the sets

CMB and C~IB, whereas the second number is of the
order O(n3rq), with n representing the number of pairs
of comparison, q the (maximum) number of shared
quantities of the experimental systems, and r the max-
imum number of predecessors in the graph of ordered
pairs of comparison (de Jong [1998]).

Although the worst-case behavior of the error identi-
fication algorithm is exponential, the average-case be-
havior will be much more agreeable. The estimation of
the number of comparative states by O(n3rq) is quite
conservative, since it assumes that the variables are not
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constrained in any way, a rare event. This is confirmed
by our practical experience with the algorithm, which
will be discussed below.

Results
The error identification algorithm has been fully im-
plemented in Common Lisp as a part of the KIMA
system for Knowledge-Intensive Measurement Analy-
sis (de Jong [1998]; de Wit & de Jong [1998]). The
KIMA system is built on top of the implementations of
QSIM and CEC* whose main functions are repeatedly
called. Apart from error identification, the system also
carries out the tasks of conflict detection and conflict
resolution. Roughly, a conflict between two property
measurements is resolved by systematically comparing
the candidate models and candidate behaviors of the
two experimental systems in question.

KIMA has been successfully applied on realistic
though simplified problems in a case-study in the do-
main of materials science: the analysis of measure-
ments of the fracture strength of brittle materials. We
have used KIMA to identify possible systematic errors
in a dozen of strength measurements of a brittle mate-
rial assumed to have been obtained in tension tests and
four-point bend tests (de Jong [1998]). KIMA has been
able to reproduce a number of interesting empirically
established relations, pointed out by domain scientists,
between measured property values and features of the
experiments. We will show how it deals with an ex-
ample of a systematic error in a strength measurement
from a tension test (fig. 2).

The fracture strength of a brittle material is the
nominal stress a~ applied at the initiation of fracture.
A systematic error in a measured stength value can
be traced back to deviations from desired micro- and
macro-structural characteristics of the material sam-
ples and deviatons from the preferred loading condi-
tions in the tension test. For example, a sample might
be damaged at the surface as a consequence of certain
machining operations. Further, it might be eccentri-
cally instead of concentrically loaded, which causes a
non-uniform stress distribution (fig. 2(b)-(c)). Surface
damage and eccentric loading tend to give rise to mea-
sured fracture strengths that are too low.

By studying the literature on brittle fracture (e.g.,
Davidge [1979]) and tension tests (e.g., Marschall 
Rudnick [1974]), and by additional consultation of 
domain expert, we have constructed a space of quali-
tative models and associated initial qualitative states.
Each QDE in the model space is a possible description
of the structure of a physical system created in a ten-
sion test and each initial qualitative state QS(init) is
a possible description of the experimental conditions
under which the system evolves.

Consider a measurement of the strength of alumina
(400 4- 5 MPa) which has been obtained in an experi-
ment in which the specimens are damaged, and hence
are likely to have fractured through a large machining

crack at the surface. In addition, eccentric loading of
the specimens may have occurred. This gives rise to
the following candidate models and candidate condi-
tions for the experimental system (fig.3):

C]VI = { ( QDE~sur/, QS( init )~ts~,r/ 

( QbEueccsur/, QS(init)~teccs~rI) 

In the ideal case, specimens without surface damage
are tested under concentric loading. Since even with-
out machining damage fracture is likely to initiate at
the surface of the specimen, QDEtts~,~/ describes the
structure of the ideal experimental system. Except for
surface damage and possibly eccentric loading, the ac-
tual and ideal experiment are believed to have been
carried out in the same way.

After simulation with the appropriate experimental
conditions, each of the candidate models of the actual
experimental system gives rise to a single candidate be-
havior which is assumed to be consistent with the mea-
sured states. The behaviors predicted from the models
agree with each other as to the main features of the
dynamics of the system (see fig. 4 for a few key quan-
tities). As can be seen, the stress and strain increase
until the the maximum stress at the crack tip reaches
the theoretical strength (tim = O’th, the Orowan cri-
terion), after which the material fails almost instanta-
neously. The fracture stress is the value of aa at tl.
The behavior of the ideal experimental system is also
given by fig. 4.

The possible systematic errors in the strength mea-
surement are identified by comparing the model and
behavior of the ideal system with the candidate mod-
els and candidate behaviors of the actual system. Two
comparisons need to be made: (1) a concentrically
loaded sample with no surface damage vs. a concen-
trically loaded sample with surface damage and (2) 
concentrically loaded sample with no surface damage
vs. an eccentrically loaded sample with surface dam-
age. In the former case we compare two behaviors that
are both derived from QDEusur/, whereas in the latter
case we compare a behavior derived from QDEu~ff
with a behavior derived from QDEu~cc~r/. In both
cases CEC* finds two pairs of comparison: pco involv-
ing the initial time-points and pcl involving the final
time-points of the behaviors. The RVs in CS(init) are
derived from the measured states and from information
about the experiment: sc ~pco, E [[pco, l0 Hp~o, d Hp~o,

7 live0, lr [[pc0, a0 Hpco.2 8c #pco accounts for the dif-
ference in surface condition and is justified by the fact
that cracks produced by machining damage tend to be
larger than inherent cracks (Davidge [1979]).

Comparative analyses performed with this input
lead to the comparative behaviors shown in fig. 5(a)

2In order not to clutter the envisionment with compara-
tive behaviors expressing distinctions that do not add much
to the overall picture, the crack shape parameter sc = c/p
has been used here.
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Figure 2: (a) Schematic representation of the tension test. (b)-(c) Stress distribution achieved in a concentrically
and eccentrically loaded specimen, respectively (adapted from Marschall & Rudnick [1974]).

and (b). In both instances, the measured property
value is predicted to be lower than the true value. In
(b) the effect of eccentric loading is seen to amplify the
effect of surface damage. Both comparative behaviors
hypothesize the relative duration RV(T) of the inter-
vals between pco and pc1 to be ~. In other words, it
would take longer in the ideal experiment to break the
sample.

Now suppose instead that the specimens used in
the actual experiment are stiffer than desired, i.e.
E ~pco. This might be caused by a lower volume
fraction porosity of the specimens (Dhrre & Hiibner
[1984]). On repeating the comparative analyses with
the new CS(init), the envisionments in fig. 5(c) and
(d) are obtained. Whereas a higher elasticity mod-
ulus increases ath, and thus tends to make the mea-
sured fracture strength too high, surface damage and
eccentric loading tend to make it too low. The ef-
fect of the higher elasticity modulus counteracts the
effects of surface damage and eccentric loading, which
causes ambiguities. As shown in the figure, there may
be a positive systematic error in the measured value
(aa ~pcl), a negative systematic error (aa J~pc,), or 
systematic error at all due to the masking of one er-
ror by another (aa Ilpcl). In a similar way, ambiguities
about the relative durations of the ideal and actual
experiments arise.

Whereas in the first example only two possible sys-
tematic errors are identified (both in the same direc-
tion), the second example leads to a sum total of 12
possible systematic errors (in opposite directions). 
the one hand, the potentially large number of ambigu-

ities points at a weakness of using purely qualitative
knowledge about the experimental systems. On the
other hand, the complexity of the example at hand
should be emphasized. The actual experiment may
deviate from the ideal experiment in three respects:
surface damage, eccentric loading, and too high stiff-
ness. Given the available information, all systematic
errors generated by the algorithm are reM systematic
errors.

Discussion and related work

An interpretation of the model-based identification of
systematic errors within an MBD framework helps to
clarify both the problem and the method. Gener-
ally speaking, model-based diagnosis is concerned with
finding explanations for deviations of the behavior of
an observed system from that of a known reference sys-
tem. The MBD approach proceeds by hypothezising
fault models and fault conditions for the observed sys-
tem, making predictions from these models and con-
ditions, and matching the predictions with the mea-
sured states of the system. There are many ways
to realize this general approach when diagnosing dy-
namical systems, using a variety of techniques, such
as semi-quantitative simulation (Dvorak &: Kuipers
[1991]), qualitative simulation and comparative analy-
sis (Neitzke [1997]), or state consistency checking with-
out simulation (Malik & Struss [1996]).

Though closely related, the problem addressed here
differs in two essential aspects from the problems usu-
ally addressed by MBD. In the first place, the refer-
ence system used for error analysis is a hypothetical
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Figure 3: QDEusur/ describes a specimen which is loaded along the neutral axis in a tension test, whereas
QDEtt~cc~ff describes a specimen which is eccentrically loaded (differences with the former in bold). The vari-
ables have the following interpretation: a~ nominal applied stress, ac applied stress near crack, F applied force,
A cross-sectional area of specimen, I and l0 instantaneous and initial length, r radius, ea nominal strain, c crack
half-length, "), surface energy per unit area, E Young’s modulus, ath theoretical strength, am maximum stress at
crack tip, a0 interatomic distance, p crack tip radius, e eccentricity, x distance between crack and neutral axis, fec
stress concentration factor, lr elongation rate. The crack shape parameter sc = p/c is also used.
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Figure 4: Qualitative behavior obtained by simulation of the models in fig. 3.
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Figure 5: The comparative envisionments arising from the comparison of (a) a concentrically loaded sample with
no surface damage (QDEtts~,ry) vs. a concentrically loaded sample with surface damage (QL)Ettsu~j) and (b) 
concentrically loaded sample with no surface damage (QDE,ts~rf) vs. an eccentrically loaded sample with surface
damage (QbEttsu~]). In (c) and (d) the same comparisons are carried out with the additional deviation E 
few distinctive RVs are indicated at the comparative states.

system. Since the ideal experiment has not been car-
ried out, the true value of the property is not known
and a discrepancy between the true value and mea-
sured value cannot be directly detected. The unavail-
ability of the true value leads to a second difference,
a difference in the kind of solution that is expected.
Whereas model-based diagnosis attempts to explain
observed deviations from the behavior of the reference
system, model-based error identification is directed at
the prediction of deviations that would be observed if
the ideal experiment were carried out.

The formalization of model-based error identifica-
tion within a QR and MBD framework has the advan-
tage of suggesting improvements and extensions of the
method. One improvement would be the generaliza-
tion of the method to a semi-quantitative approach,
in which quantitative knowledge about the actual and
ideal physical system, when available, is taken advan-
tage of. This would allow one to reduce the number
of ambiguities, and thus the number of possible sys-
tematic errors, and derive more precise estimations
of the errors. The formalization of the method in
terms of mathematically well-founded QR techniques

facilitates this extension. Techniques for the semi-
quantitative simulation of dynamical systems already
exist (e.g., Berleant & Kuipers [1997]), and de Jong 
van Raalte [1997] suggest how to generalize CEC* to
a semi-quantitative approach.

The remark in Davis & Hamscher [1988] that "all
model-based reasoning is only as good as the model"
points at an aspect of model-based error identification
that has been largely neglected in this paper. The
systematic errors found by the algorithm depend on
the specific models that are used to describe the ex-
perimental systems. This raises a host of modeling
issues, as we need to configure adequate models from
a description of the experiment and from background
knowledge about the domain and the test. Together,
the models in the model space should cover all sources
of error that are currently deemed to be relevant (bear-
ing in mind that the list is open-ended in principle).
Work on the automated modeling of physical systems
(e.g., Iwasaki & Levy [1994]; Nayak [1995]; Farquhar
[1994]; Falkenhainer & Forbus [1991}) seems to provide
an interesting starting-point for the automatic genera-
tion of models of experimental systems.
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Conclusions
An implemented method for the model-based iden-
tification of systematic errors in measurement bases
has been introduced and successfully applied to a
case-study in materials science. The formalization of
the algorithm in terms of QR and MBD techniques
has the advantage of providing guarantees on the
results of the method and facilitating improvements
and extensions. In time, a tool for the identification
of systematic errors could become part of developing
computer-supported discovery environments in science
(de Jong ~ Rip [1997]), alongside tools for model
building, model revision, and data mining.
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