
Incremental Design for Linear Circuits

Juan Flores
Facultad de Ingenieria Electrica

Universidad Michoacana
Morelia, Michoacan, 58030
juanf@zeus.ccu.umich.mx

Arthur M. Farley
Computer and Information Science Department

University of Oregon
Eugene, Oregon, 97403

art@cs.uoregon.edu

Abstract

In this paper, we present a framework for perform-
ing incremental design in the domain of linear cir-
cuits (Kerr 1977; Lancaster 1974; Walton 1987).
incremental design, we mean the modification of an
existing design to meet additional design goals while
not denying certain design constraints. We start with
a given circuit and want to modify aspects of its be-
havior while not changing others. Through means-ends
search, we add components to the circuit to achieve the
desired behavior without violating given constraints.
The means-ends solution is based on a constraint-based
model derived from circuit theory.
A given design problem is first solved in terms of a
qualitative model of the circuit. The framework we
present is also capable of determining numerical values
of parameters associated with the components added
by the design process. This is accomplished by us-
ing the operating conditions of the circuit as input and
the values of the parameters as output and running our
constraint propagation system to determine the output
values. This feature allows us to complete the design
process, combining qualitative and quantitative reason-
ing.

Introduction
The research reported here is a continuation of the
work presented by Flores and Farley in (Flores 8, Farley
1996). In that paper, we consider how a linear circuit
can be modeled by a set of constraints, as derived from
basic electro-magnetic theory. To produce a constraint-
based circuit model, we first decompose a given circuit
into parallel-series clusters, as suggested by Liu (Liu
Farley 1990). The resultant circuit structure (cluster-
ing) is traversed, and a list of constraints are produced
for each element and cluster. Figure 1 shows an ex-
ample circuit and part of its corresponding constraint-
based model. Finally, in (Flores & Farley 1996), a set
of applications for the methodology is proposed; among
others, design is mentioned as a goal and some initial
ideas are presented.

Flores (Flores 1996) then reports on an efficient im-
plementation of constraint propagation, for the partic-
ular needs of this reasoning task. We describe how
constraints can be represented in a form that allows

I 1̧
V$| = 7~t ISl VR2 = ZR2 IR20 vsl. 0 zst. 0 rsl = 0 0 vR2.0 zR2.0 la2 = 0

| Vgl = VRI + VL ~ VR2 luPh~.sc IR2

I VRI >VL {~,,:_~

" It , I Ip| I R2 C I7: - >

I-/ I ’ 1
Figure 1: Example circuit and part of its
constrMnt-based model

efficient value propagation, order of magnitude propa-
gation, and mixed propagation. We represent all values
as intervals, which offers the user the ability of provid-
ing information to the system gradually, as knowledge
about the circuit is acquired or as the knowledge be-
comes more specific. As a result of that earlier research,
we developed a software platform, called QPA, to model
and reason about linear electrical circuits in sinusoidal
steady state. A compilation of all these results can be
found in Flores’ dissertation (Flores 1997).

In this paper, we present the use of a constraint-based
circuit model to perform incremental or control design
on linear circuits. The primary contribution of the work
is a qualitative methodology for changing the structure
of a linear circuit to meet certain control goals. The
paper is organized as follows. The next section reviews
our earlier work on the qualitative representation and
reasoning about linear circuits. Next, we express the
problem of incremental or control design as a planning
problem and defines, based upon first principles, a set
of operators that allow us to modify a given circuit to
realize certain control goals. After that, we present
the incremental design algorithms based on the design

50 QR-98

From: AAAI Technical Report WS-98-01. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

operators. Next, some examples of qualitative designs
are presented; these results were obtained with the ap-
proach we have developed. We then describe and il-
lustrate how numeric values can be determined for the
new circuit elements by placing constraints that express
the operating conditions, and propagating those con-
straints over the interval representation. Finally, the
work is concluded.

Q̄PA
The electrical engineering community has been very
successful in predicting behavior of linear circuits in
steady state. The main tool they use in circuit analysis
is the phasor. Phasors are a mathematical transfor-
mation that maps sinusoids from the time domain to
the frequency domain, allowing us to replace compli-
cated simultaneous differential equations by algebraic
simultaneous equations in the complex domain. Be-
sides their power to solve linear circuits, phasors can
be expressed in an intuitive graphical form; as phasor
diagrams. These diagrams allow electrical engineers to
have a better understanding of what happens inside a
circuit and can be used to produce causal explanation
of physical phenomena.

In a circuit excited by a sinusoidal voltage source, of
frequency w, all variables are also sinusoidals oscillat-
ing at the same frequency. Each variable V(t) can be
expressed as the real part of a complex quantity. That
is

V(t) = Re([Y[(cos(wt + LY)+ jsin(wt /V)))

= Ivl cos (0~t + zv)
where V(t) represents a (real) function of time,
V represents its corresponding phasor in the frequency
domain. If we represent all variables in a circuit by a
phasor, they will rotate at the same angular frequency,
as if fastened together. So a phasor diagram can be
seen, at any given moment, as a snapshot of the set
of rotating phasors that represent all the quantities in
the circuit. The solution to the circuit can be obtained
by taking the real part of each phasor (i.e. make all
phasors rotate at the same frequency as the source and
take each phasor’s projection over the real axis).

To determine the set of algebraic constraints cor-
responding to a given circuit, we represent the cir-
cuit as a structure of series-parMlel clusters. We
then can recursively traverse that structure, gener-
ating constraints for each cluster or component we
encounter. The set of constraints can be parti-
tioned into subsets of several types: Definitions (e.g.
(DEFINITION(= VR~ (* Zn~ IR~)))), Order
Magnitude (e.g. (> Im Iv) or (>> Im Iv)),
Phase Angle (e.g. (IN_PHASE Vn2 In~)), value
(e.g. (VALUE Vc (+L90))), and Confluences (e.g.
(CONFLUENCE (+ (0 VR)) (- (0 ZR)) (-

As described above, our implemented system QPA
will generate a set of constraints for each component
and cluster of the circuit. The resulting constraints

constitute what we call the Basic Circuit Model. Once
this has been generated, propagation is used to obtain
the transitive closure of the constraints and their im-
plications. For instance, from constraints (= Is~ I/z1)
and (= Is, IL) we can derive (= I/h IL).

If the user has further information about features of
the circuit, these can be expressed as additional con-
straints. For instance, consider a capacitor C in parallel
with a resistor R to create a cluster P1. The user can tell
QPA that (< ZR ZG); propagation will indicate any
implied constraints, such as (< Iv In). The user can
also ask if a certain property holds. For example, if the
user asks if (ANGLE Ip1 VpI) can be 90 degrees, the
system can respond with the following answer "No. You
told me that (< Z/z ZG), which implies that (< Iv I/z),
and therefore (VALUE (ANGLE Ip~ Vp~) (0 45))."
An important aspect of constraint propagation is the
interaction between magnitude and phase angle vari-
ables. For simple elements, the phase angle is precisely
defined, but when components of different kinds are
combined, phasor addition may be ambiguous, depend-
ing on what we know regarding magnitudes of the ele-
ments involved.

All values in QPA are represented as intervals: num-
bers are point intervals (e.g. 5 = [5,5]), uncertain
values are intervals with open or closed limits, and
symbolic values are translated into intervals as well
(e.g. positive = (0, oo)). This approach integrates
value propagation with order propagation. For in-
stance, given constraints X = [0, 10], Y = [5, 15], and
(= X Y), we can refine the values of X and Y to be
both equal to [5, 10]. This feature allows QPA’s solu-
tions to default to the solutions of conventional circuit
solvers in the case when all values are precisely defined.
We will use this feature in incremental design, taking a
qualitative solution to a design problem and making it
more precise by determining parameter values to meet
more precise design goals.

Confluences represent algebraic constraints about
change. For instance, for Ohm’s law in a resistor
VR = Z/ZI/Z, we have the qualitative counterpart OV/Z-
OZ/Z - OI/z = 0. This confluence indicates, for ex-
ample, that if ZR decreases and V/z does not change,
I/z increases. First-order reasoning is important if we
want to be able to explain or to design changes in
a circuit’s behavior. Confluences capture the interac-
tion among different variables in the circuit and how
changes in one variable can produce changes in other
variables. In our parallel cluster, if the user asks "what
happens if R decreases?" (expressed as the constraint
(VALUE (0 R) -)), the system replies

"If R decreases, ZR decreases, which causes IR to
increase. The increase in I/z, in turn, causes Ipx’s
magnitude to increase, and Ip1 ’s phase angle to
decrease. "

QPA also handles order of magnitude constraints.
Order of magnitude constraints can be used to sim-
plify a circuit, when appropriate. For example, if af-

Flores 51

ter running propagation it is determined that a current
(voltage) is near or at zero, it can substitute that ele-
ment by an open (short) circuit. Opening an element
or cluster is equivalent to removing it from the circuit;
short-circuiting is equivalent to removing that element
or cluster and to collapsing both nodes into one. After
these structural modifications, a new model of the cir-
cuit is rebuilt, and propagation on the given constraints
are recomputed. This is similar to what we will do in
incremental design.

Incremental Design

By incremental design we mean the process of modi-
fying the existing design of an artifact to meet further
goals under certain constraints. As such, incremental
design answers questions about change. As an example,
for the circuit of Figure 1, an incremental design goal
could be "How can I get the phase angle of cluster S, to
decrease?". In some cases, given one or more variable
parameters, we can solve such questions by adjusting
the parameters to meet the given goals. In other cases,
however, there exists no adjustment of design parame-
ters that will achieve the given goal(s). Furthermore,
may want to constrain acceptable solutions to a given
incremental design problem. For the example of Fig-
ure 1, "How can I get the phase angle of cluster $1 to
decrease, without changing Vsl?". This again may not
be solvable by simple first-order reasoning over given
parameters.

One type of incremental design typically addressed in
the domain of electrical circuits is that of control design.
A control design problem can be defined in terms of an
existing circuit, a set of goals to be achieved, and a set
of constraints to be kept satisfiable. The design goals
are specified as desired changes in the circuit’s variables,
involving either magnitudes, angles, or both. For the
circuit of Figure 1, a design goal could be O/Zs1 = -,
subject to the design constraint OVs~ = O. To solve a
control design problem, we must find modifications to
the given circuit that entail the goals without violat-
ing the design constraints. Based upon our qualitative
representation of circuits developed as part of QPA, we
find a natural form for stating control design tasks as
two sets of qualitative constraints, one representing the
design goals and the other the design constraints.

An incremental design problem can be seen to be a
planning problem, where the given circuit, represented
as a set of constraints, is the initial state, the given
circuit plus the design goals and constraints is the goal
state, and a set of circuit modification actions are the
operators. The problem is to find a sequence of such
operators (i.e., a set of modifications to the circuit),
such that the resulting circuit satisfies the goals and
constraints of the task definition.

Our design operators will be adding an element to
the circuit either in parallel or in series with an exist-
ing cluster or element. For instance, Figure 2 shows
a situation where a capacitor C is short-circuited by
placing a resistor Rd in parallel.

I]
I Co

Figure 2: A capacitor short-circuited by a resistor.

The capacitor has been renamed Co and the new par-
allel cluster corresponds to the modified capacitor, now
called C. The phasor diagram shows the current before
the modification/co, the current in the design element
Ink, and the total current Ic. The current’s angle and
magnitude are drawn relative to the cluster’s voltage V.
A change in the ratio Vc/Ic -- Zc indicates a decrease
in impedance magnitude and an increase in impedance
angle.

To define our design operators, we must specify what
happens to affected circuit values when they are ap-
plied. Some of the operator definitions are given in Fig-
ure 3. Each operator definition indicates the changes in
impedance Z, both angle and magnitude, that result in
the new cluster relative to the original impedance.

Preconditions Action Effects

Capacitor(C) Parallel(C, Rd)
cgZc = -
O/Zc = +

Capacitor(C) Parallel(C, Ca)
, OZc=- ,

OZZc = 0

IndCluster(C/) Series(C/, Rd) OZcl = +
azzcl = -

IndChster(C/) Parallel(C/, Cd) azcl = +
cg L Zcl = 0

Figure 3: Selected Design Operators

The operator definitions reflect a qualitative applica-
tion of the standard circuit theory. We consider short
and open circuits as special situations. In both cases,
the current in the immediately affected element is zero;
the difference is that in a short circuit, the voltage is
also zero.

Incremental Design Algorithm

In this section, we discuss the pseudo-code for our de-
sign algorithm, as presented in Figures 4 and 5. An
incremental design task is stated as a set of design
goals to be satisfied and a set of design constraints that
must be satisfiable. For a given design task, we first
select a goal to be achieved and select the design oper-
ator(s) that contain that goal as a consequence. This
is the means-ends aspect of the search process. When
applying an .operator, the consequences indicate what
changes in variable values the operator makes to the
current circuit. To compute all of the ramifications of

52 QR-98

Design-Step(dtask<C,Rg,Sg,DC,IC,H>, goal)
if Rg

rules = select-rules(goal)
result = nil
for each (rule E rules)

init-conds -- suspend-values(this-goal,IC)
new-constraints = assert(init- conds+consequences(rule)+Sg)
if not (error? (new-constraints))

rel-constralnts = (consequences(rule) + new- constraints)
N (Rg + Sg)

new-Rg -- Rg - rel-constraints
new-Sg -- Sg + rel-constraints
new-H = H + <rule#el-constraints>
result + = <new-C,new-Rg,new-Sg,init-conds,new-I-I>

Figure 4: Pseudo-Code for Design-Step

Incremental-Design(dtask< C,Rg,Sg,DC,H>)
result = nil
queue = dtask
while q

dt<C,Rg,Sg,DC,H> = remove(q)
selected-goal = select-goal(Rg)
new-designs -- design-step(dt, selected-goal)
for each new-dt E new-designs

if not violates-constraints(sol-dt Sg(new-dt))
look-for-satisfied-goals(new-dt
if not(Rg(new-dt))

if [HI <= *max-depth*
q + = Design-Step(dt)

else
if not (violates-constraints C, DC)

if [result I = *hum-designs*
return result

else
result + = dt

else
q + = violated-constraint-to-goal(dt)

return result

Figure 5: Pseudo-Code for Incremental Design

Flores 53

the operator, we update our circuit model and assert
the operator effects in the circuit model, However, this
will normally cause inconsistencies in our set of deriva-
tive values determined prior to the change.

For instance, if we know that the impedance of a
cluster does not change (under normal conditions) and
the operator says it will decrease (under the given cir-
cuit modification), an inconsistency will be discovered
immediately. To solve this problem, we suspend all
confluence-related values for the cluster in question and
for all its components; i.e. we make it a black box. We
can now assert the consequences of the operator and run
propagation in QPA without producing inconsistencies.

The asserted operator consequences entail some of
the goals but may violate one or more design con-
straints. The application of each operator reduces the
number of initial goals to be achieved. As each operator
is applied, it generates a subsequent design task to be
considered. These design tasks are placed on a queue
of pending tasks, resulting in a breadth-first search for
a solution. Each design task keeps a record of which
design goals have been satisfied so far. To avoid loops,
if a new design step violates a previously satisfied goal,
we prune the search tree at that node. At each design
step, we record the operator used and its relevant con-
sequences. Relevant consequences are the intersection
of the consequences of the operator with design goals
and constraints of the incremental design task. This in-
formation is used to generate an explanation sequence
of the design process.

A design task can be formalized as a tuple
<C,Rg,Sg,DC,IC,H>, where C is a circuit, Rg are the
remaining goals, Sg the satisfied goals, DC the design
constraints, IC the initial conditions, and H the history
list. The procedure Design-Step, shown in Figure 4,
takes as input dtask, a design task as formulated above,
and returns a list of all design tasks derived by satis-
fying one of dtask’s remaining goals by application of a
design operator.

As noted, we implement a breadth-first exploration
of the search space. A queue of remaining design tasks
starts with only one element, the initial design task.
Each application of a Design-Step produces a set of new
design taks, one for each applicable rule. A design task
is removed from the queue; using Design-Step, its de-
scendants are computed and then enqueued to be ex-
plored later. If all the goals of a design task have been
achieved, we then check to see whether any of the de-
sign constraints are violated. If any design constraint
is violated, the system generates a new goal that would
reverse the undesirable effects. We then must continue
the search process.

Incremental design is intended to make relatively lim-
ited adjustments to a given design to meet new de-
sign goals. As such, we limit the search process to a
fixed, maximum depth (i.e. the maximum number of
elements to be added in the design). The user can in-
dicate how many modifications are to be allowed and
also how many solutions to find; the number of so-

54 QR-98

lutions is typically one or all, but may be any num-
ber. Figure 5 presents the general search algorithm
Incremental-Design in pseudo code form for incremen-
tal design.

Examples

Figure 6 shows an example of the definition of a con-
trol design task, together with a transcript of two of the
design solutions. To specify a design task, we merely
name a circuit, for which a QPA type model (as a set
of constraints) is expected to already exist, and provide
lists of design goals to be met and design constraints
not be contradicted. These lists present partial deriva-
tives of model variables in terms of magnitude and angle
each element, being of the form ((P ivar~, (imagnitude~,
L iangle~.)). In our example, we ask that the angle

(def-dtask
:circuit exOl
:rem-goals (((P ZSl) (? L
:constraints (((P VSI) CO L ?))))

Solution: Soll
((PARALLEL Sl Cd)
provides (((P ZSI) (?

((P VSi) (? L ?))))
Solution: So12

((PARALLEL Sl Rdl)
provides (((P ZSl) (?

((P VSi) (- L ?)))
((PARALLEL Pl Rd2)
provides (((P ZPI) (-

((P IPI) (+ L
((P ISI) (+ L
((P VSI) (+ L

Figure 6: Design Task #1 and Solution

variableZsl be increased while maintaining the mag-
nitude of Vsl unchanged. A ’?’ entry in the problem
specification means we do not care what happens to
that value; in our example, we do not care what hap-
pens to the magnitude of Z81.

The first solution to our problem causes Zsl to de-
crease, leaving the magnitude undetermined. This
causes the voltage Vs1 to be undetermined, therefore
not violating the constraint. That is, there remains a
setting for the inserted capacitor that makes the angle
of S] decrease, without altering its voltage. The first
element of the second solution causes the phase angle
of $1 to decrease, but also makes Vsl decrease. As a
result, another resistor is inserted in parallel with/’1,
which makes $1 ’s current and voltage increase. This ef-
fect adds to the previous one, making the total outcome
ambiguous; this indicates that there again remains a
setting for parameters of the design elements that re-
sults in the constraint not being violated. Figure 7

shows the circuit diagram for solution Sol1 of Figure 6.

+

I

,’’ I tr
)1 Cd Iki,
I

SII
I

$2

I

Figure 7: Diagram for Solution 1

Figure 8 presents another control design example,
with two goals and one constraint, and part of its solu-
tion. It is important to note that every time the design

(def-dtask
:circuit ex01
:rem-goals (((P ZSl) (? L

((P IPI) L ?))
:constraints (((P VSl) (0 L ?)))))

Solution:
((PARALLEL Si
provides (((P ZSl) (-

((P ZS2) (- L
((P ISI) (+ L
((P IPI) (+ L

((PARALLEL P1
provides (((P ZPI) (-

((P ZS2) (- L
((P VS1) L ?))

Figure 8: Design Task ~2 and Solution

algorithm inserts an element, it computes all its conse-
quences. It may be the case that some additional goals
and/or constraints can be satisfied by the same opera-
tor. In this example we see that inserting a resistor in
parallel with $1 causes OZsl = (-L-) which in turn
causes OZs, = (-L-). This makes the currents 181
and Iv, increase. By trying to meet one design goal,
we have satisfied both. However, the design constraint
is violated, and an action is needed to ensure that con-
straint can be satisfied. The system suggests the in-
sertion of a resistor in parallel with P1, completing the
qualitative design for this particular solution.

Parameter Design.

An interesting property of constraint programming and
propagation is that any variable can be used as input or
output at any time in the computation, a variable can

(assert-constraint

((= w 60)
(= vs2 i00)
(=RI [5, 25])
(= [0.i, 2])
(= R2 [i0, 503)
(= ISl ([1.583, 1.9703

L [287.044, 291.736]))
(= IR2 ([0.386, 0.536]

L [211.37i, 217.320]))
(= VR2 ([9.707, 13.360]

L [211.371, 217.320])))
soil)

Series cluster: S2 (I, O)

Componentl:
Parallel cluster: Sl (I, 3)
Componentl:

Series cluster: Sld (i, 3)

Component2:
Capacitor: Cd (1, 3)
C = [0.0019, 0.0034]
ZC = ([4.9680, 8.9924]

L 270.0000)
VC = ([9.7073, 13.3605]

L [211.3713, 217.3201])
IC = ([1.4858, 1.9540]

L [301.3713, 307.3201])
Component2:

Figure 9: Example of Parameter Design

"\

Flores 55

even change its role during one execution. This makes
the QPA system ideal for situations where a user knows
some desired operating conditions and parameters and
wants to design an acceptable range of values for other
parameters. In this case, the user can express the de-
sired operating conditions as value constraints. QPA
computes the range of values that the rest of the pa-
rameters may take on to achieve the goal state.

Figure 9 shows an example of parameter design for
the circuit in Figure 7. The idea is that after solving
a given control design problem qualitatively, the user
can choose the desired circuit structure and then ask
that the solution be made more precise by providing
further, quantitative constraints on the design. In this
example, the user provides values for all parameters but
Cd, and some desired values for currents and voltages.
A range for Cd and some other circuit variables are com-
puted. This can be further refined, as interval propa-
gation allows us the bridge the gap between qualitative
and quantitative solutions in stages, as desired.

Conclusions

QPA has been implemented in Allegro Common Lisp.
The system is capable of designing solutions to incre-
mental design problems applicable to linear circuits
in sinusoidal steady state. To solve such control de-
sign problems, we use a means-ends analysis technique,
where the states are represented by a constraint-based
model of the circuit, and the operators were derived by
first principles from circuit theory. The process of in-
cremental design is completed by performing numerical
design of the parameters that the planner qualitatively
selects. The numeric computation is performed by con-
straint propagation. Since our representation is based
on intervals, we can determine the value of the param-
eters with as much precision as provided by the user.

An immediate application of this technique can be
found in the area of power systems, where QPA can
solve such common problems as phase angle correc-
tion, power routing, etc. A power system modeler was
developed to test QPA on power system design prob-
lems. QPA’s solutions to control design problems in the
area of power systems contained solutions prescribed
by engineers and engineering textbooks (GSnen 1988;
Grainger & Stevenson 1994).

More work needs to be done in the determining the
complexity of the algorithms used in the circuit mod-
eling and design processes. As we limit the depth of
search in incremental design to a relatively small depth,
while exponential, the search may remain feasible. The
derivation of an expression for complexity would yield
a good figure of how scalable this approach is for do-
mains with many operators and more complex design
structures. Our testing to date has been on relatively
small, linear circuits without active elements (e.g., tran-
sistors).

Not much work has been done on the analysis, design,
and diagnosis for linear circuits in sinusoidal steady
state. QPA compiles and extends the work from earlier

56 QR-98

efforts in qualitative physics in general, applying state
of the art techniques to effectively reason about and
modify linear circuits. The present work contributes
by extending the range of problems that can be solved
by qualitative reasoning and by providing a definition
and framework for the solution of incremental design
problems.

References
Flores, J. J., and Farley, A. M. 1996. Qualitative pha-
sor analysis. In Proc. lOth Int. Workshop on Qualita-
tive Reasoning About Physical Systems.

Flores, J. J. 1996. Hybrid representation constraint
propagation. In In Proceedings of the Nineth Interna-
tional Symposium on Artificial Intelligence, 340-347.

Flores, J. J. 1997. Reasoning about Linear Circuits in
Sinusoidal Steady State. Ph.D. Dissertation, Univer-
sity of Oregon.
G6nen, T. 1988. Modern Power System Analysis. New
York: John Wiley and Sons.

Gralnger, J. J., and Stevenson, W. D. 1994. Power
System Analysis. New York: McGraw-Hill.
Kerr, R. B. 1977. Electrical Network Science. Engle-
wood Cliffs, N J: Prentice-Hall.
Lancaster, G. 1974. DC and AC Circuits. Oxford:
Calendar Press.
Liu, Z., and Farley, A. 1990. Shifting ontologi-
cal perspectives in reasoning about physical systems.
In Proc. 8th National Conf. on Artificial Intelligence
(AAAI-90). Menlo Park, Cambridge, London: AAAI
Press/The MIT Press.
Walton, A. K. 1987. Network Analysis and Practice.
Cambridge MA: Cambridge University Press.

