
To appear in Proceedings of QR98, May 1998, Cape Cod.

Distributed Coaching for an Intelligent Learning Environment

 Kenneth D. Forbus1, John O. Everett2, Leo Ureel1,
Mike Brokowski3, Julie Baher1, Sven E. Kuehne1

1 Institute for the Learning Sciences, Northwestern University {forbus ureel jbaher skuehne } @ils.nwu.edu
2 Xerox Palo Alto Research Center jeverett@parc.xerox.com
3 Department of Mechanical Engineering, Northwestern University brokowski@nwu.edu

Abstract
Several barriers hinder the widespread application of AI-based
educational software. School and student machines are often
underpowered, keeping software and case libraries updated can
be difficult, and customization typically requires AI expertise.
The widespread growth of Internet access, combined with ap-
propriate AI technologies, enables the creation of distributed
coaches that can help overcome these barriers. We describe a
distributed coaching system for a deployed intelligent learning
environment in engineering thermodynamics. Part of the coach
resides on the student's computer, with the rest residing in a
server accessed via email. The on-board coach handles common
kinds of contradictions in student's assumptions and makes sug-
gestions about parameter values based on its understanding of
the teleology of the student's design, derived via Bayesian rea-
soning. The email coach provides additional analysis help and
uses analogy for design coaching, providing step-by-step advice
on how principles in a web-based library can be applied to a
student's particular design. The distributed coach is currently
undergoing field testing.

1. Introduction
Artificial Intelligence techniques have already proven
themselves valuable in various types of educational soft-
ware [1,2]. In education and training, there are never
enough instructors to go around. Students often work at
odd hours, on highly variable schedules, and, with the
growing importance of distance learning, increasingly at
remote sites. Computer-based coaches typically are not as
good as the best human instructors, but they can be sur-
prisingly valuable (c.f. [3]), and the ability to make them
widely available at low cost makes them attractive. Typi-
cally such coaches are hard-wired into interactive learning
environments that sit on a student’s desktop. This leads to
problems typical of updating and maintaining software.
Worse, sophisticated coaches tend to require more mem-
ory and computational resources than many student and
school computers can provide. For researchers trying to
evaluate new kinds of educational software, the blessing of
widespread computers becomes the curse of being unable
to find out what students are actually doing with the soft-
ware. Data gathering, even with cooperative instructors,
can be quite difficult, and nearly impossible when a pro-
gram is distributed freely via the Web.

Fortunately, the growth of widespread Internet access,
combined with the right AI technologies, supports novel,
distributed educational software systems that can over-

come these problems. This paper describes such a system
we have built for CyclePad, an intelligent learning envi-
ronment for engineering thermodynamics. We begin by
briefly reviewing CyclePad, focusing on the mix of AI
technologies that make it work. We then outline the
problems encountered in deploying it, and the distributed
coaching architecture we developed to overcome these
problems. We describe the on-board coaching next. We
then discuss the email-based coaching, and highlight its
use of cognitively-motivated analogical processing to pro-
vide case-based advice. Finally, we discuss experience
with the system to date and plans for future work.

2. CyclePad
CyclePad is an articulate virtual laboratory (AVL) for
learning engineering thermodynamics by design. Design
tasks are highly motivating, and tie classroom learning to
real-world concerns. Students using CyclePad can design
power plants, refrigerators, engines, cryogenic systems,
and other types of single-substance thermodynamic cycles.
CyclePad’s conceptual CAD system supports carrying out
necessary calculations and making modeling assumptions,
including both thermodynamic and economic analyses of a
student’s design. AVLs also include coaches that scaffold
students, providing guidance in analysis and design.

CyclePad itself relies on several AI technologies:
§ Constraint propagation is used to derive the conse-

quences of student assumptions. Whereas conven-
tional analysis software can make it hard for stu-
dents to see how their assumptions are combined
with the laws of thermodynamics to yield results,
CyclePad’s constraint propagator is organized to
provide explanations and to reflect expert prefer-
ences in solutions. For example, CyclePad prefers
values from equations over those from property ta-
ble lookups when both are available because of the
relative loss of accuracy with each property table
calculation.

§ Logic-based truth maintenance provides explana-
tions of how consequences are derived from student
assumptions. CyclePad provides a dynamically
constructed hypertext explanation system based on
the dependency network that highlights critical
factors and suppresses uninformative details.

From: AAAI Technical Report WS-98-01. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

To appear in Proceedings of QR98, May 1998, Cape Cod.

These explanations help students gain insight into
the application of thermodynamic laws, and are es-
sential in tracking down physically inconsistent as-
sumptions.

§ Qualitative representations provide common sense
“reality checks” of student assumptions. For ex-
ample, substances cannot experience a drop in
temperature across a heater. Simple ordinal con-
straints produce contradictions when student as-
sumptions violate device models.

§ Compositional modeling provides explicit repre-
sentations of modeling assumptions. Instructors
find an understanding of which modeling assump-
tions are necessary and correct is a key hurdle in
learning thermodynamics. By explicitly repre-
senting modeling assumptions and their conse-
quences, CyclePad helps students understand what
assumptions make sense for particular components
and what consequences they entail.

How these technologies are combined in CyclePad is
described in [4].

3. Why Distributed Coaching?
CyclePad has been deployed experimentally in several
universities for three years, and is currently used by over
180 students per year. Instructor and student feedback has
been sufficiently positive that it is now publicly available
for download on the Web. However, due to our web-based
distribution mechanism, we only have partial knowledge
of who is using it for what4. We would like more interac-
tion with CyclePad end users to better gauge its educa-
tional impact.

Another difficulty arises because we have further devel-
opment plans for CyclePad. Feedback from our users in-
dicates that they would like more coaching facilities.
However, they do not want to see memory requirements
rise, and instructors who rely on it daily are adamant
about keeping it stable.

For our part, we would like to gather more data about
what students and instructors are doing with CyclePad for
formative evaluation. We currently work with instructors
from several remote sites to ensure robustness, but ex-
panding that pool is difficult. For instance, 1997-98 class-
room adoptions that we know about include a power plant
course at Rutgers (New Jersey, USA) and a thermody-
namics course in University of Queensland (Brisbane,
Australia). As the number of sites continues to grow,
travel budgets and time constraints preclude on-site data
gathering.

4 Our usage estimates are based on figures from our collabora-

tors and random sampling. From September 1997 to January
1998, for example, we had 568 distinct downloads from 40
countries, making extensive follow-up impractical.

Our solution to these dilemmas is to make the coaching
in CyclePad distributed. Although some lightweight
coaching facilities are bundled with the software, the
computationally-intensive coaching facilities are accessed
via email. Through a simple dialog menu, a student uses
CyclePad's integrated email facility to request help. The
student’s request and the associated design are sent to a
server at our site running a coach, the CyclePad Guru.
The Guru processes the student’s request, sending a reply
via email. The obvious disadvantages of this approach are
that it requires students to have access to email, and that
responses take more time than from an on-board coach.
However, it does solve the problems our users raise: we
can add complex new coaching facilities without increas-
ing the memory footprint on their machines, or indeed,
requiring any changes to their software at all. As a par-
ticular piece of coaching technology becomes solid
enough, it can be migrated to the onboard coach as appro-
priate. It also facilitates our data collection: students get
help with their work, in exchange for letting us examine
their designs.

4. The Onboard Coach
Quick response to some common problems students en-
counter is important. Therefore we have added light-
weight coaching facilities onboard which give advice for
handling contradictions and for adjusting parameters.

4.1 Help with Contradictions
Students often have difficulty understanding why a set of
assumptions is contradictory. CyclePad’s truth-
maintenance system includes a stack of contradiction han-
dlers [5]. Each handler responds to a class of incorrect
student assumptions. For example, the most common
source of problems is choosing parameter values outside
the property tables. The handler for this case presents a
table-boundary diagram and a dot showing the location of
the out-of-bounds value. The handler of last resort simply
provides a hypertext dialog that enables students to ex-
plore the assumptions underlying the contradiction.

4.2 Teleology for Coaching
Many problems with cycle design are not apparent to stu-
dents because their knowledge of cycles is so limited. For
example, an experienced designer will note that low qual-
ity in the working fluid exiting a heat engine's turbine is
likely to cause damage to the turbine blades and therefore
attempt to adjust the system's parameters to increase the
exit quality, or failing that, make a structural alteration to
the cycle. To spot problems like this and understand how
to fix them requires knowledge of how function relates to
structure. For example, low exit quality is only a problem
if the cycle is intended as a heat engine. A Carnot cycle

To appear in Proceedings of QR98, May 1998, Cape Cod.

deliberately disregards the engineering challenges of ex-
panding a saturated fluid through its turbine in order to
provide a theoretical benchmark for ideal performance,
and so by intention has low exit quality. In contrast, a
turbine may also be used in a cryogenic cycle to cool the
working fluid sufficiently to cause precipitation, because a
resisted expansion results in a greater drop in the working
fluid temperature than a throttled expansion, so in this
situation we might be trying to achieve low quality. Cy-
clePad now incorporates Everett’s CARNOT teleological
recognition system [6] to provide advice about values of
system parameters based on its understanding of the in-
tended function of the cycle.

CARNOT originally used dependency-directed search
to infer function from structure. This was far too slow to
be deployed. Also, it often produced a plethora of very
similar solutions that varied only in minor details, making
the principled choice of an interpretation to use for gener-
ating advice problematic. CARNOT now uses evidential
rules and Bayesian inference to suggest plausible func-
tional roles for each component in a student’s cycle [7].
CARNOT’s algorithm is quadratic in the size of the cycle,
analyzing a 49 component cycle (far larger than any stu-
dent has attempted, to our knowledge) in about two min-
utes on a midrange Pentium. CARNOT achieves broad
coverage of the domain of single-substance, closed ther-
modynamic systems with 107 evidential rules.

The notion of role is crucial in CARNOT’s construal of
function. Each type of component in thermodynamic cy-
cles can play between one and five functional roles. For
example, a mixer may act as a simple way to join flows, as
a heat-exchanger, or as a jet-ejector, in which a high-
velocity jet of fluid entrains and compresses another inlet
stream. The evidential rules provide evidence either for or
against a particular role. The ability to suppress the like-
lihood of a role greatly enhances the expressive power of
our representation. Each piece of evidence has a subjec-
tively assigned likelihood5, which is used to update the
prior probability of each role for each component. The
evidential reasoning is included in CyclePad’s explanation
system, so that students can find out why (and with what
certainty) a particular role is believed and get an explana-
tion of why other potential roles were rejected.

CyclePad’s onboard Analysis Coach combines
CARNOT’s teleological inferences with norms to generate
advice for adjusting parameters. A norm is a range for a
component’s parameter that is appropriate based on the
component's functional role. For example, the tempera-
ture of the steam leaving a Rankine cycle boiler typically

5 Subjective assignment of these values turns out to be

straightforward for a domain expert, and the introduction of
significant amounts of noise into these estimates does not mate-
rially affect the outcome.

falls in the range of 300-600ºC. Lower temperatures re-
sult in inadequate efficiency whereas higher temperatures
require uneconomically expensive materials in the down-
stream components. Likewise there is a normal range of
pressures. Our knowledge base currently contains eight-
een norms, between two and six per component depending
on the number of potential roles for that component.
When the Analysis Coach is invoked, CARNOT infers the
teleology of the cycle. The functional roles assigned to
each component are used to retrieve applicable norms,
which are checked against known parameter values. Any
violations or suggestions are noted using CyclePad’s ex-
planation system, providing explanatory text associated
with each norm. In addition to being used to provide on-
board advice, CARNOT’s teleological representations also
play a critical role in design coaching (see Section 5.3).

Figure 1: Information flow in the CyclePad Guru

5. The CyclePad Guru
The CyclePad Guru is part of a RoboTA agent colony [8],
a TA agent that provides help for CyclePad users via
email. The email dialog in CyclePad offers five choices:
Students can turn in an assignment, ask for help with their
analysis, ask for help figuring out a contradiction, ask for
help in improving their design, or report a bug. When
requesting design improvement help, the extra informa-
tion is filled out via pull-down menus whose contents are
based on the student’s design (i.e., <increase/decrease>

Case Library

Web Site

MAC/FAC

Student Design

Triage

CyclePad

Contradiction Coach

Analysis Coach

Design Coach

Response
Generator

To appear in Proceedings of QR98, May 1998, Cape Cod.

the <parameter> of <device/cycle>). There is also the
ability to add free-form comments, but these are not used
by the Guru. Bug reports are passed on to the developers
and turned-in assignments are currently ignored (but see
Section 7). For all other requests, the Guru first does tri-
age by using CyclePad to analyze the student’s design.
For example, if the student requests design help but the
analysis is incomplete, the Guru provides help on finish-
ing the analysis instead. Any discrepancy between the
help requested and that provided is noted in the reply.
The information flow within the CyclePad Guru is illus-
trated in Figure 1.

5.1 Analysis Help
Students analyze their designs by making modeling as-
sumptions and exploring choices for parameter values.
The complexity of even medium-scale cycles often makes
it hard to know what to do next.

The onboard Analysis Coach is the student’s first resort,
providing advice linked to the intended purpose of the
cycle. The Guru provides complementary assistance with
strategies for analyzing cycles. The Guru has a domain-
specific expert model of how to nudge students, based on
observing our instructor-collaborators. First, it checks to
see if a working fluid has been chosen, and if not, advises
that as a good first step. Second, it examines the design to
see what aspects remain unknown. It then presents a list
of questions that the student should consider in thinking
about the design (i.e., if not all modeling assumptions
have been made, it suggests doing so). Since users often
miss useful features in software, the Guru also runs the
Analysis Coach on the student’s design to see if it can
provide advice, and if so includes instructions for using it.
If none of these strategies is applicable, it responds with
general canned text6.

5.2 Contradiction Help
Since we have already built into CyclePad handlers for all
of the common causes of contradictions that we know
about, the Guru currently responds with a canned text
about strategies for finding contradictions. Our distrib-
uted coaching approach will help us gather data about
other contradictions arising in student use, and we will
prototype handlers for new contradictions by incorporating
them into the Guru first. Once they prove their worth and
stability, such handlers will be moved onboard as appro-
priate.

5.3 Design Help
For now, we are limiting design help to the specific case
of improving some quantitative aspect of the system. Of
course, engineering design is complex, since it involves

6 Hence the name “Guru.”

tradeoffs in both thermodynamics and economics that may
require structural as well as numerical decisions. Our
goal in giving design advice is to nudge students in useful
directions so that they will learn, rather than to solve the
problem for them. Consequently, we provide plausible
specific suggestions, but do not attempt to validate these
suggestions in the students' context. (Understanding why
a suggestion will or will not work in a particular circum-
stance is an important learning experience.) Design
coaching is described in the next section.

5.4 Coaching via Analogy
Advice for design requests is generated by a case-based
coach, using cognitively-motivated analogical processing
techniques [9]. Case-based coaching (c.f. [9,10]) is useful
in educational software because it helps students tie their
work to real-world examples. For that reason, case li-
braries for education tend to be media-heavy. Such sys-
tems have relied almost exclusively on hand-generated
representations of cases. Cases often consist solely of
user-interpretable media (e.g., videos) with the only for-
mal representations being feature-based descriptors used
for indexing. Cases are typically encoded and woven into
a case library by hand. This lack of rich formal represen-
tations (e.g., proofs or causal arguments) limits the ability
of a coach to show just how the principles explained in the
case could be applied to a student’s situation.

In the CyclePad Guru, we overcome these limitations in
two ways. First, our cases are generated automatically
from instructor input by a case compiler that uses Cy-
clePad to build the necessary representations. Second, we
use analogical processing techniques, drawn from Cogni-
tive Science research, that can handle rich, structured rep-
resentations. In particular, we use MAC/FAC, a model of
similarity-based reminding [11] to retrieve cases relevant
to a student’s design. We start by describing how we re-
trieve cases and generate advice from them, then summa-
rize how the case compiler works, and discuss some prop-
erties of our case library.

5.4.1 Retrieving cases and generating advice
MAC/FAC produces remindings in a two-stage process.

The first stage (MAC) is a computationally efficient filter
that selects from a large case memory a handful of cases
for further processing. MAC uses a specialized feature
vector that is automatically constructed from the struc-
tured representations in a case memory. The dot product
of these vectors is an estimate of the size of match that the
second stage will produce. The second stage uses the
Structure-Mapping Engine (SME) [12], an analogical
matcher based on Gentner’s structure-mapping theory
[13]. SME compares each case produced by MAC to the
student’s design and returns the best structural match,

To appear in Proceedings of QR98, May 1998, Cape Cod.

plus one or two others, if close, as remindings. When
SME compares two descriptions, it produces one or two
mappings that consist of correspondences linking par-
ticular items in the student’s design to the case, and can-
didate inferences that are statements in the case that may

be transferable to the student’s design. These inferences
are used to generate specific advice about how the case
can be applied to the student’s design. While SME and
MAC/FAC have been tested in a variety of cognitive
simulation studies (c.f. [14,15]) to our knowledge this is
their first application in a system used routinely by a large
community.

When the Guru determines that the student’s request for
design advice is reasonable (i.e., the analysis has been
completed and the design assumptions are non-
contradictory), it uses the structural and teleological as-
pects of its representation of the student’s design as a
probe to MAC/FAC to generate candidate remindings.
The numerical aspects of the description are not used for
retrieval because we found that level of information to be
basically irrelevant for this task. A case includes a de-
scription of a design, a problem with that design, and a
transformation that modifies the original design in a way
that solves the original problem. Each case that
MAC/FAC is reminded of has, as part of that reminding,
an analogical match between the student’s design and that
case. Since SME can generate multiple construals of a
comparison (e.g., a plan to improve efficiency by increas-
ing turbine inlet temperature is applicable in three differ-
ent ways to a design that has three turbines), each re-
minding can generate several suggestions. Recall that a
candidate inference of a mapping is a statement in the
base (here, the case) that is suggested by the correspon-
dences of the mappings as possibly holding in the target
(here, the student’s design). Candidate inferences are the
source of advice. Figure 2 shows the candidate inferences
when the Guru is reminded of reheat given a Rankine
Cycle.

Suggestions are filtered for relevance in two ways.
First, the candidate inferences must include the case’s
design transformation – otherwise, there is no advice to
give. Second, the candidate inferences must include a
statement of the form

(implies <structural/functional
 properties of cycle>
 (applicable <plan of case>))

Each case is guaranteed to include a statement of this
form (see below), and the antecedents are exactly those
things that must be true for the case’s transformation to
make sense. For example, neither of the cases retrieved in
Figure 1 would be relevant for cycles lacking turbines.
Therefore, a suggestion that does not include a candidate
inference of this form, and correspondences for each of the
antecedents of this inference, cannot be applied to the stu-
dent’s situation.

Next, the suggestions are prioritized according to the
complexity of the transformation they suggest (with sim-
pler transformations being preferred) and the structural
quality of the candidate inference [16]. Finally, at most
two suggestions are selected to serve as the basis for de-
sign advice. Limiting the advice to two suggestions pre-
vents students from being overloaded with advice.

Figure 3 shows the advice generated from the candidate
inferences in Figure 2. The advice generator splits out

Suggestions for <Desc WM of Rankine Cycle>:
Suggestion <Use INCREASE-RANKINE-BOILER-T>:
 1 step
 support=.085 extrapolation = 0.66
 normalized = 0.45 overlap = .408
 combined = .944
<Mapping 153 Candidate Inferences>
(BOILER htr1)
(CONDENSER clr1)
(IMPLIES (AND (TURBINE tur1 s2 s3)
 (HEATER htr1 s1 s2))
 (APPLICABLE (:SKOLEM :dsn-tr)))
(TRANSFORMATION-OF (:SKOLEM :dsn-tr)
 (STEPS (ASSIGN (T s2) (:SKOLEM :+))))
Suggestion <Use REHEAT-RANKINE-CYCLE>:
 16 steps
 support=0.03 extrapolation = .846
 normalized = .404 overlap = .134
 combined = .567
<Mapping 172 Candidate Inferences>
(BOILER htr1)
(CONDENSER clr1)
(IMPLIES (AND (TURBINE tur1 s2 s3)
 (COOLER clr1 s3 s4))
 (APPLICABLE (:SKOLEM :dsn-tr)))
(TRANSFORMATION-OF (:SKOLEM :dsn-tr)
 (STEPS (DISCONNECT (OUT tur1) (IN clr1) s3)
 (INSERT-DEVICE (:SKOLEM heater)
 (:SKOLEM htr2))
 (CONNECT (OUT tur1) (IN (:SKOLEM htr2))
 (:SKOLEM s5))
 (INSERT-DEVICE (:SKOLEM turbine)
 (:SKOLEM tur2))
 (CONNECT (OUT (:SKOLEM htr2))
 (IN (:SKOLEM tur2))
 (:SKOLEM s6))
 (CONNECT (OUT (:SKOLEM tur2)) (IN clr1)
 (:SKOLEM s7))
 (INVOKE-ASN (SATURATED (:SKOLEM s5)))
 (ASSIGN (DRYNESS (:SKOLEM s5))
 (:SKOLEM 1.0))
 (INVOKE-ASN (REHEATER (:SKOLEM htr2)))
 (INVOKE-ASN (ISOBARIC (:SKOLEM htr2)))
 (INVOKE-ASN (MATERIAL-OF (:SKOLEM htr2)
 (:SKOLEM molybdenum)))
 (INVOKE-ASN (FUEL-OF (:SKOLEM htr2)
 (:SKOLEM natural-gas)))
 (INVOKE-ASN (ISENTROPIC (:SKOLEM tur2)))
 (INVOKE-ASN (MATERIAL-OF (:SKOLEM tur2)
 (:SKOLEM molybdenum)))
 (INVOKE-ASN (SATURATED (:SKOLEM s7)))
 (ASSIGN (DRYNESS (:SKOLEM s7))
 (:SKOLEM 1))))
Figure 2: Candidate inferences for the cases retrieved

via MAC/FAC that are turned into suggestions

To appear in Proceedings of QR98, May 1998, Cape Cod.

structural transformations from other suggestions, keeping
other assumptions separate as advice that may or may not
be relevant to the student’s particular situation. (Thinking
about which of these suggestions is relevant is good exer-
cise for the student. For instance, Figure 2 includes a
suggestion to specify that certain devices be made of mo-

lybdenum, which a student should recognize as unusual
and expensive.) If the advice is purely in terms of pa-
rameter changes, qualitative descriptions of relative
change are used in the plan and to generate advice. The

Guru’s advice includes a URL describing the general prin-
ciples behind the design transformation, in addition to the
specific instructions on how to apply it to their situation.

5.4.2 Automatic compilation of cases
New cases in the Guru’s design library are automati-

cally generated by a case compiler. To add a case, in-
structors provide two snapshots of a CyclePad design, one
before and one after their transformation. They also spec-
ify the goals of the transformation, in terms of changes in
parameter values (i.e., what parameters must have in-
creased or decreased), some strings to be used in tem-
plates, and a URL pointing to a detailed rationale for that
case. While we insist that the web page for the case in-
clude an explanation of the case, this explanation is in
natural language: case authors only need to be thermody-
namics experts, not AI experts. The case compiler uses
CyclePad to analyze the before and after design snapshot.
It uses a record of user actions stored internally with each
dumped design to construct the description of the trans-
formation that leads from one to the other, and augments
the case description with this plan, the problems it is in-
tended to solve, and the applicability condition described
above. (It also checks to ensure that the transformation
actually achieves the claimed goals, since even experts can
make mistakes.) Adding the new case to the MAC/FAC
memory is trivial, since no indexing is required: The
structured representations needed to support reasoning
also suffice for retrieval.

5.4.3 The case library
Our case library currently consists of 14 cases, averag-

ing 74 expressions involving 23 entities each. Retrieval
and advice generation is very quick: less than five seconds
on the average, with no more than six seconds at most, on
a 200 MHz Pentium Pro. This performance comes from
two factors. First, the MAC stage provides significant
filtering, with only two or three cases proposed for proc-
essing by SME each time. Second, SME now uses a poly-
nomial-time greedy algorithm in its merge step, making
its overall complexity quadratic in the size of descriptions
compared [12].

The potential value of a distributed coach becomes es-
pecially apparent when considering the issue of extending
and maintaining a case library. A large, rich case library
with lots of associated media (e.g., pictures of the real
physical systems corresponding to the CyclePad design) is
probably best treated as a network resource, rather than
installed on each student machine. Instructors and ther-
modynamics experts can author new cases with nothing
more than CyclePad plus an HTML editor, since CyclePad
and our case compiler take care of generating the formal
representations, and MAC/FAC handles retrieval. We are

I have 2 suggestions.
===
Suggestion #1
Your problem reminds me of a method: increasing
boiler temperature in a Rankine cycle. Increa s-
ing the boiler temperature increases the eff i-
ciency of the cycle.
You can find out more about this at
http://www.qrg.ils.nwu.edu/thermo/design-
library/turank.htm.
Here is how you might apply this to your design:
1. Increase T(S2).
===
Suggestion #2
Your problem reminds me of a method: reheat in a
Rankine cycle. Reheat adds another heater and
another turbine. The second heater, a reheater,
heats up the working fluid at the turbine
outlet, and the second turbine extracts yet more
work from that. This increases efficiency
because more heat is being added when the steam
is still at a reasonably high temperature.
You can find out more about this at
http://www.qrg.ils.nwu.edu/thermo/design-
library/reheat.htm.

Here is how you might do this with your design:

1. Disconnect the outlet of TUR1 from the inlet
of CLR1.
2. Create a new heater, which we'll call HTR2.
3. Connect the outlet of TUR1 to the inlet of
HTR2. Let's refer to the properties of the
working fluid there as S5.
4. Create a new turbine, which we'll call TUR2.
5. Connect the outlet of HTR2 to the inlet of
TUR2. Let's refer to the properties of the
working fluid there as S6.
6. Connect the outlet of TUR2 to the inlet of
CLR1. Let's refer to the properties of the
working fluid there as S7.

You might find the following assumptions relevant
or useful:

1. Assume that the working fluid at S5 is
saturated.
2. Assume quality(S5) = 1.0000[0-1]
3. Assume that HTR2 is a reheater.
4. Assume that HTR2 works isobarically.
5. Assume that HTR2 is made of molybdenum.
6. Assume that HTR2 burns natural-gas.
7. Assume that TUR2 works isentropically.
8. Assume that TUR2 is made of molybdenum.
9. Assume that the working fluid at S7 is
saturated.
10. Assume quality(S7) = 1.0000[0-1]
===

Figure 3: Design advice from the Guru

To appear in Proceedings of QR98, May 1998, Cape Cod.

forming an editorial board for the web-based design li-
brary, to ensure quality control, and encouraging submis-
sions from CyclePad experts worldwide, much in the
manner of the Eureka community-maintained database of
service tips [17] developed at Xerox PARC.

6. Deployment
At this writing (April 1998) RoboTA and the CyclePad
Guru have undergone in-house testing for several weeks
(e.g., bombardment with large numbers of email requests,
odd requests, etc.) and have been on-line almost continu-
ously for the last four months. The contents of the case
library are evolving and expanding, as we gain experience
with the system, and we expect this process to continue for
some time. However, the system is already robust enough
that we have now made the distributed coaching version of
CyclePad publicly available via the Web on an experi-
mental basis. The CyclePad Guru is fast enough that we
believe our current configuration (200MHz Pentium Pro
for the Guru) will handle the volume of requests from our
collaborators’ students and others. If server swamping
becomes a problem, the RoboTA architecture is designed
to support adding additional agents on extra CPUs to han-
dle the load.

7. Discussion
Successful AI applications in education have typically
used on-board tutors and coaches to supply advice and
guidance. We believe that the widespread availability of
Internet access facilitates the deployment of even more
sophisticated coaching, by allowing the use of distributed
coaches. We have described the distributed coach we have
built for CyclePad, adding Bayesian inference and
analogical processing to the mix of constraint propaga-
tion, qualitative physics, logic-based truth maintenance,
and compositional modeling that CyclePad already uses.
The use of cognitively-motivated analogical techniques in
educational software systems, rather than the usual fea-
ture-based techniques typically employed in case-based
coaching, enables us to directly employ structured repre-
sentations. This means that cases can be automatically
compiled from CyclePad descriptions and other instructor-
supplied materials, automatically retrieved as appropriate,
and used to generate step-by-step advice on how the prin-
ciple embodied in a case can be applied to the student’s
problem. The distributed coach enables us to extend and
experiment with new coaching strategies and methods,
without increasing memory requirements or creating in-
stability for our users. It also enables us to gather the data
we need for the educational component of the research and
formative evaluations of the software

We are also working on an additional incentive for in-
structors to send us data: helping them with grading. We
are nearly ready to deploy a grading support system to the
CyclePad/RoboTA system, designed with extensive input
from our instructor-collaborators. It works like this: in-
structors use CyclePad to author assignments, using an
additional wizard-style interface that enables them to ex-
press constraints on the assignment. Examples of con-
straints include requiring that particular substances be
used as working fluids, establishing minimum and maxi-
mum criteria for cycle parameters, and restricting the
kinds of parameters about which legitimate assumptions
can be made (i.e., you can’t create a cycle of a particular
efficiency just by assuming that it has that efficiency).
Students will then hand in their assignments by emailing
them to RoboTA, which will use the assignment’s con-
straints to check the student’s work. The results will be
provided to instructors by email or via a private web site,
as they choose. The grading support system will not as-
sign grades – that is the province of the instructor – but it
will ensure that a student’s design is correctly analyzed
and determine how well it meets the specification of the
assignment. This should give instructors more time to
focus on providing students with the higher-level feedback
usually made impractical by the time-consuming nature of
checking numerical accuracy in assignments (e.g., how
elegant and creative are students designs? Do students
repeat the same mistakes or make more interesting ones?).

We believe this form of learner support system will be-
come a common pattern for educational practice. By
opening up the architecture, instructors can contribute
cases, assignments, and other materials customized to
meet their needs. Distributed coaches could provide extra
encouragement for the formation of learning communities,
by providing opportunities for participants to author mate-
rials that are automatically woven into the advice given to
students. Instead of just browsing, AI techniques could
enable software to help bring participants together, based
on shared interests.

Acknowledgements
This research is supported by the Applications of Ad-
vanced Technology program of the National Science
Foundation and by the Cognitive Science and Artificial
Intelligence Programs of the Office of Naval Research.
We thank Peter Whalley (University of Oxford), Bob Wu
and Sheila Palmer (United States Naval Academy), and
David Mintzer and Siavash Sohrab (Northwestern Univer-
sity), for providing thermodynamics expertise, feedback
on our software, and for letting us try things out with them
and their students.

To appear in Proceedings of QR98, May 1998, Cape Cod.

References

1 Woolf, B. 1991. Representing, acquiring, and reasoning
about tutoring knowledge. In J. W. P. C. L. R. H. Burns
(Ed.), Intelligent Tutoring Systems . Hillsdale, NJ: Erl-
baum.
2 Lesgold, L., Bunzo & Eggan. 1992. SHERLOCK: A
Coached Practice Environment. In R. W. C. Jill H. Larkin
(Ed.), Computer-Assisted Instruction and Intelligent Tu-
toring Systems: Shared Goals and Complementary Ap-
proaches. Hillsdale, N.J.: Lawrence Erlbaum Associates.
3 Koedinger, K. R., Anderson, J.R., Hadley, W.H., &
Mark, M. A. 1997. Intelligent tutoring goes to school in
the big city. International Journal of Artificial Intelli-
gence in Education, 8, 30-43.
4 Forbus, K. and Whalley, P. 1994 Using qualitative
physics to build articulate software for thermodynamics
education. Proceedings of AAAI-94, Seattle.
5 Forbus, K. and de Kleer, J., 1993. Building Problem
Solvers, MIT Press.
6 Everett, J. O. 1995. A Theory of Mapping from Struc-
ture to Function Applied to Engineering Domains. 14th
International Joint Conference on Artificial Intelligence,
Montreal, Morgan Kaufmann.
7 Everett, J.O. 1997. Topological Inference of Teleology:
Deriving Function from Structure via Evidential Reason-
ing Doctoral Dissertation, Computer Science Department,
Northwestern University.
8 Forbus, K. and Kuehne, S. RoboTA: An agent colony
architecture for supporting education. 1998. Proceedings
of Agents 98.
9 Schank, R. and Cleary, C. 1994. Engines for Education.
Erlbaum.
10 Leake, D. (Ed.) 1996. Case-Based Reasoning: Experi-
ences, Lessons, and Future Directions, MIT Press.
11 Forbus, K. D., Gentner, D., & Law. 1995. MAC/FAC:
A model of similarity-based retrieval. Cognitive Science,
19(2), 141-205.
12 Forbus, K. D., Ferguson, R. W., and Gentner, D.
1994. Incremental Structure Mapping. In Proceedings of
the Sixteenth Annual Conference of the Cognitive Science
Society. Hillsdale, NJ: Erlbaum.
13 Gentner, D. 1983. Structure-mapping: a theoretical
framework for analogy. Cognitive Science, 23, 155-170.
14 Gentner, D., Falkenhainer, B., & Skorstad, J. 1987.
Metaphor: The good, the bad and the ugly. In Proceedings
of the Third Conference on Theoretical Issues in Natural
Language Processing, Las Cruces, New Mexico.
15 Gentner, D., Rattermann, M.J., Markman, A.B., &
Kotovsky, L. 1995. Two forces in the development of re-
lational structure. In T. Simon & G. Halford (Eds) Devel-

oping cognitive competence: New approaches to process
modeling. Hillsdale, NJ: Erlbaum.
16 Forbus, K., Everett, J., Gentner, D., and Wu, M. 1997.
Towards a computational model of evaluating and using
analogical inference. Proceedings of CogSci97, Erlbaum.
17 Bell, D.G., Bobrow, D.G., Raiman, O., and Shirley,
M.H., 1996. "Dynamic Documents and Situated Processes:
Building on local knowledge in field service," IPIC'96,
The International Working Conference on Integration of
Enterprise Information and Processes, "Rethinking Docu-
ments", Cambridge, MA.

