
Improved Infinity Filtering in Qualitative Simulation

A. C. Cem Say

Department of Computer Engineering
Boðaziçi University

Bebek 80815, Ýstanbul, Turkey

say@boun.edu.tr

Abstract
We present two modifications to the qualitative simulation
algorithm QSIM, which improve its performance in
reasoning tasks involving infinite values and infinite time.
The first modification corrects an error in the multiplication
filter which causes the algorithm to miss certain real
solutions of the simulated equation. The soundness
property, which is essential for qualitative simulators, is
therefore restored to QSIM. The second modification
augments the temporal attribute computation routine and
results in better identification of infinite time intervals by
the algorithm. This, in turn, helps our modified algorithm to
successfully eliminate some additional spurious behaviors.
Several famous examples from the qualitative reasoning
literature are handled with increased predictive accuracy by
the new algorithm.

Introduction

The QSIM algorithm (Kuipers 1994) finds solutions to
input families of ordinary differential equations by
simulating them using a qualitative representation. QSIM
has become a “standard” in the qualitative reasoning
community, because of the ready availability of its
implementations and the strong theoretical background on
which it is based. Several researchers, dealing with various
aspects of the field, have independently developed new
algorithms (see, for instance, (Weld 1988), (Weld 1990),
(Say & Kuru 1996), and (Say & Kuru 1997)) based on
QSIM, inheriting its appropriate theoretical properties.

We present two modifications to QSIM, which improve
its performance in cases when the algorithm’s output is
supposed to contain infinite time intervals or variables
reaching infinite limits. The first modification corrects an
error which causes the algorithm to miss certain real
solutions of the simulated equation. We show that
“standard” QSIM is not sound because of this error, unlike
our modified version. The second modification augments
the temporal attribute computation routine, and results in
better identification of infinite time intervals by the
algorithm. This, in turn, helps our modified algorithm to
successfully eliminate some additional spurious solutions.
We show that several famous qualitative physics problems
are handled with increased predictive accuracy by the new
algorithm.

This paper is an enhanced version of (Say 1997c). In the
following, we use the definitions and other terminological
and notational details of (Kuipers 1994), which is the
definitive reference for the standard QSIM algorithm.

Conservative Multiplication Filtering

Consider the naive physics problem depicted in Figure 1:
We are pulling a very small rock attached to a string
upward at constant speed. There is a lamppost of height h
on the left, so the rock’s shadow on the ground is moving
to the right. The position of the shadow (X) and the height
of the rock (Y) are variables in our system. The rock’s
takeoff point from the ground corresponds to 0 in both of
these variables’ quantity spaces. The foot of the lamppost is
d units to the left of the takeoff point. The scene extends
infinitely to the right. Light travels infinitely fast.

Lamp

↑
 Rock

 →
 0 Shadow

Figure 1: The rock-shadow system

The geometry of the situation imposes the following
relation when Y < h:

X

X +

Y

d h

= . (1)

Rearranging, we get

From: AAAI Technical Report WS-98-01. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

X
Y

- Y
=

∗d
h

. (2)

The only qualitative behavior starting from Y=0 which is
a solution of this model is presented in Table 1. (Note that
we use “fixed” variables to represent the constants in the
model.) Simulation terminates after t1, since X is not
reasonable over a larger interval.

time t0 (t0, t1) t1 < ∞
X 0, inc (0,∞), inc ∞, inc
Y 0, inc (0,h), inc h, inc
RockSpeed v, std v, std v, std
LampPos d, std d, std d, std
LampHeight h, std h, std h, std
(h−Y) (0,∞), dec (0,∞), dec 0, dec

(d∗Y) 0, inc (0,∞), inc (0,∞), inc

TABLE 1. Behavior of the Rock-Shadow System

But if we simulated this model with the algorithm as
described in (Kuipers 1994) from that initial state, there
would be no behaviors in the output. The program would
(incorrectly) state that the model and the initial state were
inconsistent, and terminate.

The reason for this prediction failure is an error in the
qualitative direction consistency check employed for mult
constraints. QSIM requires ((Kuipers 1994), p. 56) that
variables appearing in each constraint of the form
(mul t A B C) satisfy the sign relation

[][] [][] []A B B A C′ + ′ = ′ . (3)

In our case, the constraint (mult X (h-Y) (d*Y))
requires that

[] () ()[][] ()X - Y - Y X * Yh h d
′ + ′ = ′

. (4)

Substituting the values at t1, we obtain

[][] [][] []+ - 0 + ++ = . (5)

When QSIM’s sign multiplication table is employed, one
gets

[] [] []- 0 ++ = , (6)

which is not part of the sign addition relation, and the state
at t1 is therefore filtered out. Since the state at (t0, t1) has no
other successors, it is deemed inconsistent. This
information is propagated back to t0, and therefore the
simulation ends with an empty tree.

Clearly, the cause of the problem is the usage of the sign
multiplication table, which unambiguously yields zero
whenever one of the operands is zero, regardless of the
other operand. When the nonzero operand has an infinite

value, like the derivative of X in our example, this
approach is wrong, and results in prediction failure.

In fact, this need for an exception to the multiplication
table has been recognized in the design of the magnitude
sign consistency check for the mult constraint of standard
QSIM. That routine correctly allows the magnitude triple
for X, (h-Y), and (d*Y) at t1, even though it is of the form
“positive*zero=positive”. The problem with the direction
check is that, unlike the magnitudes, only sign information
is represented for the directions, which loses the important
distinction between finiteness and infinity.

To restore the soundness property to QSIM, one can
either drop the currently nonconservative direction check
for mult altogether, or try to modify it so that it works
correctly even in the presence of infinite derivatives. Since
the former approach would dramatically increase the
number of spurious predictions, we adopted the latter one.

In our modified algorithm, the constraint filter for
(mult A B C) imposes the sign relation depicted in
Equation (3) only when all terms have unambiguous sign
values according to the magnitude and derivative
information available at that stage. A proposed tuple
automatically passes the direction consistency test when
one of the following conditions is satisfied for at least one
of the [P][Q´] terms in the imposed equation:
i. P is infinite and ′Q is zero, or,
ii. P is zero and ′Q is nonzero.
Only the tuples which do not satisfy these conditions are
tested using Equation (3). This weaker filter is clearly
conservative.

Note that condition (ii) above does not necessarily mean
that ′Q is infinite. If we have magnitude information about

′Q , we can, in some cases, compute an unambiguous sign
for the term in which it appears, and invoke Equation (3)
again to eliminate some spurious states. This is achievable
if there are some other constraints in the model that allow
one to write an expression for the magnitude of ′Q , which
can be evaluated by plugging in qualitative values of other
variables. We used this idea to incorporate a new global
filter to QSIM.

The global multiplication direction filter, which is
applied to candidate time point states, visits every variable
triple linked by a (mult A B C) constraint in the
current operating region. The triples automatically pass the
test if the magnitudes of both A and B are nonzero, since
such combinations have either been thoroughly tested and
approved in the local mult constraint, or they contribute at
least one term which satisfies condition (i), and are
therefore unfilterable. When, say, A, is zero, the algorithm
checks if an expression for B’s derivative’s magnitude in
terms of other system variables is available or not. (This
expression search need be performed only once for all
variables appearing in the first two places of mult
constraints at the beginning of the simulation.) Some of the
rules employed by this routine are presented in Table 2.
See (Say 1998) for a more detailed discussion of these
rules and the expression search.

Expression if constraints of this form
are in the model

′B = D (d/dt B D)

′B = -E (minus B D) and
(d/dt D E)

′B = R + S (add P Q B) ,
(d/dt P R) , and
(d/dt Q S)

′B = P * S + Q * R (mult P Q B) ,
(d/dt P R) , and
(d/dt Q S)

′B =
dB

dD
E

(M± B D) and
(d/dt D E)

TABLE 2. Expression Derivation Rules

If such an expression is available for the derivative’s
magnitude, and if its evaluation results in an
unambiguously finite value, the algorithm inserts zero for
the value of [A][B´]. If both terms on the left hand side of
Equation (3) can be disambiguated, that equation is
imposed on the variable triple to possibly filter it out.

The modified algorithm correctly presents the behavior
in Table 1 as its single prediction for the rock-shadow
system.

Improved Recognition of Infinite Intervals

The Technique
We will begin our explanation of our second modification
to QSIM by presenting an example of one kind of spurious
prediction that it eliminates. Consider the model (Fouché &
Kuipers 1992) depicted in Table 3: The simulation involves
a ball being thrown upward in air from ground level at t0.
The acceleration due to gravity is a negative constant,
whereas the acceleration due to air friction is inversely
related to the velocity of the ball.

When standard QSIM performs this simulation, it
outputs the three behaviors shown in Tables 4-6. In Table
4, the ball has not reached its terminal velocity when it hits
the ground. The difference between Tables 5 and 6 is
whether it reaches the terminal velocity at or before the
moment of hitting the ground. As mentioned in (Fouché &
Kuipers 1992), only Table 4 is a real solution of this QDE;
the other two behaviors are spurious.

Name Explanation
Y ball height
V velocity (upward) (d/dt Y V)
F acceleration due to friction ((M- V F) (0 0) (-∞ ∞) (∞ -∞))
G acceleration due to gravity (constant G g < 0)
A acceleration (upward) (d/dt V A), (add G F A)

TABLE 3. The Ball-Friction Model

time t0 (t0, t1) t1 (t1, t2) t2 < ∞
Y 0, inc (0,∞),inc y*, std (0,y*), dec 0, dec
V (0,∞), dec (0,∞), dec 0, dec (-∞,0), dec (-∞,0), dec
F (-∞,0), inc (-∞,0), inc 0, inc (0,∞), inc (0,∞), inc
G g, std g, std g, std g, std g, std
A (-∞,0), inc (-∞,0), inc (-∞,0), inc (-∞,0), inc (-∞,0), inc

TABLE 4. Prediction #1 for the Ball-Friction Model

time t0 (t0, t1) t1 (t1, t2) t2 < ∞
Y 0, inc (0,∞),inc y*, std (0,y*), dec 0, dec
V (0,∞), dec (0,∞), dec 0, dec (-∞,0), dec v*, std
F (-∞,0), inc (-∞,0), inc 0, inc (0,∞), inc f*, std
G g, std g, std g, std g, std g, std
A (-∞,0), inc (-∞,0), inc (-∞,0), inc (-∞,0), inc 0, std

TABLE 5. Prediction #2 (Spurious) for the Ball-Friction Model

time t0 (t0, t1) t1 (t1, t2) t2 (t2, t3) t3 < ∞
Y 0, inc (0,∞),inc y*, std (0,y*), dec (0,y*), dec (0,y*), dec 0, dec
V (0,∞), dec (0,∞), dec 0, dec (-∞,0), dec v*, std v*, std v*, std
F (-∞,0), inc (-∞,0), inc 0, inc (0,∞), inc f*, std f*, std f*, std
G g, std g, std g, std g, std g, std g, std g, std
A (-∞,0), inc (-∞,0), inc (-∞,0), inc (-∞,0), inc 0, std 0, std 0, std

TABLE 6. Prediction #3 (Spurious) for the Ball-Friction Model

In (Fouché & Kuipers 1992), the authors say that one
can use QSIM’s optional (and nonconservative) “analytic-
function” constraint if one wishes fewer spurious
predictions in this case. This constraint (Kuipers 1994)
eliminates any behavior in which a variable is constant in at
least one interval and has a nonzero derivative sometime
else in the same behavior. When this constraint is switched
on, the spurious behavior of Table 6 is no longer predicted,
but the one in Table 5 is still in the output.

We now present a modification to the “infinity control”
component of QSIM which improves the algorithm’s
ability to recognize infinite intervals. As a side-effect of
this modification, both spurious behaviors are eliminated in
the ball-friction example without the need for user
intervention and at no risk of eliminating genuine
behaviors.

Our modification is based on the following idea: Assume
that you have a constraint (d/dt P Q) in your model. In
the simulation output, you see an interval (ti, ti+1) in which
Q is nearing zero. In the next time point, that is, ti+1, Q
arrives at zero. You also happen to know that there is a
reasonable function between Q and P for their values in
(ti, ti+1], dQ/dP is negative for the values of P in (ti, ti+1),
and it is finite at P(ti+1). With this information, you can
safely deduce that ti+1 = ∞.

The proof is simple: In (ti, ti+1), the chain rule allows us
to write

dQ

dP

dP

dt

dQ

dt
= . (7)

Using the d/dt constraint and separating the variables,
one obtains

dQ

dP
dt

dQ

Q
= , (8)

which, when solved, yields

F(t) = ln |Q(t)| + C, (9)

where F is a function whose derivative is negative all
through its domain, with the possible exception of the
endpoint t = ti+1, and C is an arbitrary constant. Taking the
limit, we deduce that

lim F(t)
t→ +

= −∞
t
i 1

. (10)

Equation (9) and information about Q’s value can be
used to show that the function F is finite in (ti, ti+1). Using
the fact that dQ/dP (that is, ′F ,) is finite at ti+1, we can
safely conclude that ti+1 = ∞. (This last step is based on the
same kind of reasoning as standard QSIM’s infinite time
detection mechanism; see (Kuipers 1986, Kuipers 1994).) •

To make use of this opportunity of detecting infinite
intervals, we have made the following modifications to
QSIM:

1. Before the start of simulation, the algorithm checks the
constraint model to see if an M- relationship can be
deduced (using the simplifying techniques of (Kuipers
1984)) between pairs of variables which occur together
in (d/dt P Q) constraints. Since M- functions are
not guaranteed to have finite derivatives at the
endpoints of their ranges, variable range and
corresponding value information about each such
derived relationship are additionally checked to see if
the point where Q = 0 lies in the interior of the obtained
monotonic function’s domain. If this restriction is also
satisfied, the variable Q is noted for future use.

2. The timepoint labeling routine has been modified so
that the temporal attribute =∞ can be asserted for
timepoint ti+1 if a derivative variable Q that has been
noted in part (1) above is zero at ti+1 and nonzero in
(ti, ti+1).

3. The temporal attribute consistency filter has been
augmented so that, in every proposed system state at
timepoint ti+1, the following constraint has to be
satisfied for every derivative variable Q noted in part
(1):

ti+1 < ∞ → [Q(ti+1)=0 → Q(ti, ti+1)=0]

The justification for the last implication in the above
constraint is that Q may have been steady at zero since the
initial state; there is no inconsistency in such a case.

Returning to the ball-friction example, the algorithm
performs the deductions shown in Table 7 at the initial
stage. The corresponding value structure of the derived M-
relationship between V and A indicates that dA/dV is
certain to be finite at the point where A=0, so A is recorded
as a potential infinity indicator. Note that generalized CV
tuples, possibly including interval as well as point values
(Say & Kuru 1993), are derived and used during the
identification of the M-.

From the
constraints

with CV tuples Derive the
constraint

with CV tuples

(constant G) G < 0
(add G F A) (M+ F A) (-∞ -∞) (∞ ∞) ((0 ∞) 0)

(M+ F A) (-∞ -∞) (∞ ∞) ((0 ∞) 0))
(M- V F) (0 0) (-∞ ∞) (∞ -∞)

((-∞ 0) (0 ∞)) ((0 ∞) (-∞ 0)) (M- V A) (∞ -∞) (-∞ ∞) ((-∞ 0) 0)

TABLE 7. Derivation of M-(V,A) in the Ball-Friction Model

When the states at time point t2 are being generated for
the behaviors in Tables 5 and 6, two things may happen:
a. The timepoint labeling routine may check A in the

manner described above, and assert t2 = ∞. In this case,
the temporal attribute consistency filter will detect that
variable Y has a finite value and a nonzero derivative in
this state, which is inconsistent if t = ∞, and the state
will be filtered out.

b. Depending on the order in which the variables appear
in the input, the timepoint labeler may assert t2 < ∞,
based on the fact that Y is finite and changing. In this
case, the temporal attribute consistency filter will delete
the state, since A, which is not supposed to reach zero
in a finite time, has obtained that value.

In both cases, the modified algorithm eliminates all
spurious behaviors successfully.

Further Examples

Bathtub. A liquid tank (or “bathtub”) with constant
inflow, where the possibility of overflow is deliberately
overlooked, can be modeled with the following constraints:

(constant Inflow i*)
((M+ Amount Outflow) (0 0) (∞ ∞))
(d/dt Amount Netflow)
(add Netflow Outflow Inflow)

If the tank is specified to be empty at the initial state,
standard QSIM will compute the behavior shown in Table
8 for this model. As can be seen, no temporal attribute has
been assigned to the equilibrium instant t1. Our modified
algorithm would derive the implicit constraint
M_(Amount, Netflow), check its corresponding value
structure, and correctly label t1 to be infinite.

time t0 (t0, t1) t1
Amount 0, inc (0,∞),inc a*, std
Outflow 0, inc (0,∞),inc out*, std
Netflow (0,∞),dec (0,∞),dec 0, std
Inflow i*, std i*, std i*, std

TABLE 8. Standard QSIM Prediction for the Bathtub with
Nonzero Inflow

This additional precision comes handy in the analysis of
the two-tank cascade system, which is obtained by placing
another tank below this tank’s hole. As explained in
(Kuipers 1994), QSIM predicts a spurious behavior in
which the upper tank reaches equilibrium before the lower
tank during the simulation of this system, unless the
analytic function constraint is employed. The modified
infinity control routine would, of course, eliminate this
problem.

What if there was no inflow and we started with some
liquid in the single tank? In this case, we cannot deduce
that the tank empties at t = ∞. The algorithm still derives an
M- constraint between Amount and Netflow, but the
corresponding values are now (0 0) and (∞ -∞), and hence
there is no guarantee that dNetflow/dAmount would have a
finite limit at Netflow = 0. In fact, it is easy to show that
this limit is infinite for all real-world tanks. (Only a proper
subset of the functions abstracted by the
M+(Amount, Outflow) constraint are realizable; see (Say
1997a) for the details.)
Heat Exchanger. The heat exchanger (Figure 2) model to
be used in this example is from (Weld 1988). There is cold
water in the bath shown as the box in the figure. Hot liquid
enters from one end of the pipe and leaves, cooler because
of the heat flow, from the other end. The QSIM model is
shown in Table 9. The entry end of the pipe corresponds to
the negative landmark x* in the quantity space of variable
X. The exit end is 0. The surplus heat Q has a positive
value at the start of the simulation, and becomes 0 when
thermal equilibrium is reached. (Note that the physics has
been somewhat simplified for the sake of brevity.)

cool water

hot liquid

Figure 2: The heat exchanger

Name Explanation
X position of liquid in the pipe
V velocity of the flowing liquid (d/dt X V) (constant V v > 0)
Q surplus heat of liquid
K thermal conductivity (constant K k < 0)
F the heat flow in the liquid (d/dt Q F) (mult Q K F)

TABLE 9. The Heat Exchanger Model

There are three different behaviors, determined by
whether the heat flow stops when the unit volume of liquid
that we are interested in is in the pipe, and if so, where.
(Tables 10-12)

time t0 (t0, t1) t1< ∞
X x*, inc (x*, 0), inc 0, inc
V v, std v, std v, std
Q q*, dec (0, q*), dec 0, std
K k, std k, std k, std
F f* , inc (f* , 0), inc 0, std

TABLE 10. Behavior #1 in heat exchanger simulation

time t0 (t0, t1) t1< ∞
X x*, inc (x*, 0), inc 0, inc
V v, std v, std v, std
Q q*, dec (0, q*), dec (0, q*), dec
K k, std k, std k, std
F f* , inc (f* , 0), inc (f* , 0), inc

TABLE 11. Behavior #2 in heat exchanger simulation

In this case too, the implicit constraint M-(Q,F) leads to
the conclusion that variable F can reach zero only at t = ∞,
and behaviors #1 and #3 are eliminated by the infinity
filter. It turns out that, according to this model, we can
never cool our liquid down to the temperature of the
coolant.
U-tube. Another famous qualitative physics example is the
U-tube, consisting of two tanks at the same level connected
by a pipe. (Figure 3) The model is presented in Table 13.
Again overlooking the possibility of overflow, if we start
with a state in which there is liquid in tank A and tank B is
empty, the single QSIM prediction depicts the system
reaching equilibrium at a time point for which there is no
attribute information.

A B

Figure 3: U-tube in operating region NORMAL

time t0 (t0, t1) t1 (t1, t2) t2 < ∞
X x*, inc (x*, 0), inc (x*, 0), inc (x*, 0), inc 0, inc
V v, std v, std v, std v, std v, std
Q q*, dec (0, q*), dec 0, std 0, std 0, std
K k, std k, std k, std k, std k, std
F f* , inc (f* , 0), inc 0, std 0, std 0, std

TABLE 12. Behavior #3 in heat exchanger simulation

Name Explanation
A amount of liquid in tank A
B amount of liquid in tank B
total total amount of liquid (add A B total)

(constant total tot* > 0)
pA pressure at bottom of tank A ((M+ A pA) (0 0) (∞ ∞))
pB pressure at bottom of tank B ((M+ B pB) (0 0) (∞ ∞))
pAB pA - pB (add pB pAB pA)
fAB flow from A to B (d/dt B fAB)

((M+ pAB fAB) (-∞ -∞) (0 0) (∞ ∞))
fBA flow from B to A (d/dt A fBA)

(minus fAB fBA)

TABLE 13. The U-tube Model

From the
constraints

with CV tuples Derive the
constraint

with CV tuples

(constant total) tot* > 0
(add A B total) (M- A B) (0 (0 ∞)) ((0 ∞) 0)

(M- A B) (0 (0 ∞)) ((0 ∞) 0)
(M+ A pA) (0 0) (∞ ∞) (M- B pA) (0 (0 ∞)) ((0 ∞) 0)

(M- B pA) (0 (0 ∞)) ((0 ∞) 0)
(add pB pAB pA)
(M+ B pB) (0 0) (∞ ∞) (M- B pAB) (0 (0 ∞)) ((0 ∞) (-∞ 0))

(M- B pAB) (0 (0 ∞)) ((0 ∞) (-∞ 0))
(M+ pAB fAB) (-∞ -∞) (0 0) (∞ ∞) (M- B fAB) (0 (0 ∞)) ((0 ∞) (-∞ 0))

TABLE 14. Derivation of M-(B,fAB) in the U-tube Model

Table 14 shows how our algorithm derives the
M_(B, fAB) constraint used to deduce that fAB can reach
zero only at t = ∞. The accordingly improved behavior
prediction is presented in Table 15.

time t0 (t0, t1) t1 = ∞
A (0, ∞), dec (0, ∞), dec a*, std
B 0, inc (0, ∞), inc b*, std
total tot*, std tot*, std tot*, std
pA (0, ∞), dec (0, ∞), dec pa*, std
pB 0, inc (0, ∞), inc pb*, std
pAB (0, ∞), dec (0, ∞), dec 0, std
fAB (0, ∞), dec (0, ∞), dec 0, std
fBA (-∞, 0), inc (-∞, 0), inc 0, std

TABLE 15. Improved Prediction for U-tube System

Summary and Future Work

We presented two modifications to the QSIM algorithm
which help it perform better when reasoning about infinite
values and times. The first modification rids QSIM of an
error in the qualitative direction filter of the mult constraint
and therefore restores the soundness property to the
algorithm. The second modification improves the
algorithm’s ability to recognize subsystems that can reach
quiescence only in infinite time, and hence helps in the
elimination of a class of spurious behaviors that are caused
when this information is not used.

Both the derivation of expressions for derivative
magnitudes mentioned in the section about the new
multiplication filter, and the recognition of implicit M-
constraints explained in the subsequent section are
achieved using a rudimentary algebraic processing
component that has been incorporated into the algorithm.
Currently, this component is not able to identify M-
relationships or derivative expressions “embedded” in
models in a relatively less obvious manner. We plan
improving the algebraic capabilities of this procedure in the

near future. A general-purpose algebraic manipulator that
could work on QSIM models would be useful for several
other applications as well, see (Fouché & Kuipers 1992)
and (Say 1997b) for examples.

Acknowledgments

I thank H. Levent Akýn and A. Taylan Cemgil for their help
in this work.

References

Fouché. P., and Kuipers, B. J. 1992. Reasoning About
Energy in Qualitative Simulation. IEEE Transactions on
Systems, Man, and Cybernetics 22(1):47-63.

Kuipers, B. J. 1984. Commonsense Reasoning About
Causality: Deriving Behavior from Structure. Artificial
Intelligence 24:169-204.

Kuipers, B. J. 1986. Qualitative Simulation. Artificial
Intelligence 29:289-338.

Kuipers, B. J. 1994. Qualitative Reasoning: Modeling and
Simulation with Incomplete Knowledge. Cambridge, Mass.:
The MIT Press.

Say, A. C. C. 1997a. Limitations Imposed by the Sign-
Equality Assumption in Qualitative Simulation. In Proc.
Eleventh Int. Workshop on Qualitative Reasoning,
Cortona, Italy. 165-173.

Say, A. C. C. 1997b. Numbers Representable in Pure
QSIM. In Proc. Eleventh Int. Workshop on Qualitative
Reasoning, Cortona, Italy. 337-344.

Say, A. C. C. 1997c. Improved Reasoning About Infinity in
Qualitative Simulation. In Proc. Twelfth Int. Symposium on
Computer and Information Systems, Antalya, Turkey. 36-
43.

Say, A. C. C. 1998. L’Hôpital’s Filter for QSIM. IEEE
Transactions on Pattern Analysis and Machine Intelligence
20(1):1-8.

Say, A. C. C., and Kuru, S. 1993. Improved Filtering for
the QSIM Algorithm. IEEE Transactions on Pattern
Analysis and Machine Intelligence 15(9):967-971.

Say, A. C. C., and Kuru, S. 1996. Qualitative System
Identification: Deriving Structure from Behavior. Artificial
Intelligence 83:75-141.

Say, A. C. C., and Kuru, S. 1997. Postdiction Using
Reverse Qualitative Simulation. IEEE Transactions on
Systems, Man, and Cybernetics 27(1):84-95.

Weld, D. S. 1988. Comparative Analysis. Artificial
Intelligence 36:333-373.

Weld, D. S. 1990. Exaggeration. Artificial Intelligence
43:311-368.

