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Abstract

There are many different classes of decision made during
the development of a model. If models are to be shown to
be appropriate for the specified task, the information and as-
sumptions upon which these decisions are based must be
made explicit. This paper describes AIM, an automated
modelier that makes all its decisions with explicit knowl-
edge. AIM separates different types of modelling knowl-
edge in its knowledge base to prevent the embedding of as-
sumptions in the structure of the modelling knowledge. It
also uses a novel modelling algorithm that does not rely on
either external sources of information or the structure of the
knowledge base to generate models. We show that AIM
generates parsimonious models and discuss some of the
constraints on this approach.

Introduction

The process of modelling is one of creating a suitable ab-
straction of the real world. This is done by the modeller
regarding the referent system and deciding what simplifi-
cations and abstractions to make to produce a model.
However, it is all to easy for the modeller to make unwar-
ranted assumptions about what abstractions are appropriate
during the production of the model. If such unwarranted
assumptions are made, the end result is a model that may
not be suitable for the task at hand. In order to ensure that
such inappropriate models are not used, it is important that
all the modelling decisions are explicit during the model-
ling process. By making all the decisions explicit, the justi-
fications for each decision can be given. This allows the
user of the model to have confidence in the final model, as
they are certain that only appropriate (i.e. justified) deci-
sions were taken during the development of the model. In
addition, by examining the justifications for the modelling
decisions, the domain of validity of the model (Williams &
Raiman, 1994) can be estimated, which can allow the reuse
of the model under appropriate circumstances.

In the next section, we examine the different modelling
decisions that need to be made in the development of any
model and we discuss some of the ways in which unwar-
ranted assumptions can creep into models. The main body
of the paper consists of a description of AIM, an automated
modeller that addresses many of these problems. We dis-
cuss each of the different types of modelling decision in
turn, and show how the architecture and algorithms of AIM
ensure that all decisions are explicit. In addition, we show
that the models generated are parsimonious. Finally, we
discuss some limitations of AIM’s approach.

Types of Assumption

There are several different types of modelling decision that
need to be taken when a system is modelled; all of these
must refer to the intended use of the model, to ensure that
the generated model is useful. The most basic modelling
decision is the selection of a model representation and rea-
soning formalism (Schut & Bredeweg, 1996) which defines
how the referent system is to be regarded by the modeller,
e.g. whether a component-centred or a process-centred
analysis is to be undertaken. Once the most appropriate
formalism has been selected, two sets of decisions must be
made in parallel: the boundary of the model must be deter-
mined, and the referent system must be broken down into
its component parts for modelling. Once the referent sys-
tem has been broken down into the appropriate “lumps”
(e.g. components or processes), the modeller must decide
on the most appropriate ontology to use to represent each
of these lumps (the is the equivalent to selecting assump-
tion classes in a model composition system (Nayak & Jo-
skowicz, 1996)). This process provides the information to
guide the formation of the model boundary, both in terms
of physical extent and the types of phenomena included in
the model. As the model boundary is developed, new
lumps are identified that require representation in the
model. Finally, there are a variety of decisions to be made
regarding the various simplifying assumptions that can be
applied to the model (Weld, 1992; Williams & Raiman,
1994). Only when all of these decisions have been made is
it possible to finally construct the model, which is then
used to address the task in hand.

This analysis shows that there are a great many different
types of modelling decision that need to be taken during the
development of a model. Highly abstract decisions are
made at the beginning of the modelling process, with the
decisions becoming more concrete and detailed throughout
the modelling process. It is necessary that all of these deci-
sions be made explicitly by the modeller to ensure that the
model’s user has confidence in the final model.

However, not all automated modelling systems are capa-
ble of making all of these decisions. Many existing auto-
mated modelling systems, particularly model induction
systems (e.g. Ironi & Stefanelli, 1994; Addanki et al,
1991) have only addressed the problem of selecting the
correct simplifications to make in the model. Model com-
position systems (e.g. Nayak & Joskowicz, 1996) have
addressed the problem of the selection of the most suitable
ontologies to use in the model, but at the cost of increasing
the complexity and decreasing the flexibility of their mod-
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elling knowledge; this has reduced these modeller’s ability
to select appropriate simplifications (Smith, 1998).

AIM uses a combination of the model composition and
model induction approaches, combining the best aspects of
both, while eliminating their drawbacks. The expressive
power of model composition techniques is harnessed both
to develop the model boundary and to select the ontologies
for representing “lumps” within this boundary. Model in-
duction techniques are used to refine the model within this
boundary: the ability to select the most appropriate combi-
nations of simplifying assumptions to make in the model
gives AIM the flexibility to generate parsimonious models.
These three facets of modelling are addressed by a combi-
nation of novel knowledge architectures and novel algo-
rithms using these architectures. AIM does not address the
problem of selecting an appropriate representation and
reasoning formalism: AIM is a component-centred model-
ling system. Neither does it address the lumping problem,
instead relying on the description of the components in the
system description to determine the different regions within
both the system and the model.

The remainder of this paper describes AIM and how it
addresses some of these problems in modelling. We shall
also discuss the conditions under which AIM is able to
generate models which have behaviours that quantitatively
match those of the systems being modelled. We shall then
give some results from AIM and draw some conclusions.

To show how AIM operates, we shall illustrate the
model generation process by showing how AIM generates
a model of a water-filled syringe (figure 1). The model
will be used to simulate the response of all variables that
are affected by a force applied by the finger.

Selecting Models of Components

The first problem we shall address concerns how AIM de-
cides to represent each component in the model. The dan-
ger at this step is that the modeller will be influenced in its
choice of representation by knowledge about how compo-
nents are usually used. Such influences represent hidden
modelling decisions and, if such hidden decisions could
occur, the user of the model will have a lesser faith in the
veracity of the model. In order to prevent such hidden de-
cisions, AIM separates entirely knowledge about compo-
nents from knowledge about m-components (or models of
components). This separation ensures that the modelling
knowledge base cannot contain any implicit links between
the components that exist in the referent system and the
manner in which these components are modelled.
M-components are similar to model fragments (Falken-
hainer & Forbus, 1991) in that they are a partial represen-
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tation of a component under a particular set of conditions.
A wire could be modelled variously as an electrical-
Conductor m-component, as a mechanicalSpring m-
component, or as a simple linearMass m-component,
depending on the situation in which the wire was found and
the interactions to which it was subjected. Basic m-
components always represent the ideal model of a compo-
nent; non-ideal effects are accommodated through the in-
clusion of corrections in the model (see below).

While the total separation between components and m-
components prevents implicit decisions, AIM must be able
to select the most appropriate m-component to use to rep-
resent a given component in a given situation. This facility
is provided through a function that maps components onto
m-components. This function takes account of the type of
component being modelled, the interaction to which it is
subjected, as well as the port at which this interaction oc-
curs and the component’s state (a switch will have different
models depending on whether it is open or closed). The
function’s domain covers all physically possible combina-
tions of component type, interaction domain, port, and
state; this ensures that AIM can always determine the most
appropriate m-component to use to represent a component
under any given circumstances.

The behaviour of an m-component is described by a
fragment of a bond graph (Rosenberg & Karnopp, 1983)
contained in the m-component. When the model is gener-
ated, these bond graph fragments are merged to produce a
bond graph representation of the model; the bond graph is
used to produce the state equations that yield the system’s
behaviour. The various parameters that determine the m-
component’s behaviour, such as a block’s moment of iner-
tia, are calculated from physical parameters defined for the
modelled component. M-components have other features,
and these will be discussed below when appropriate.

Finding the Model Boundary

With AIM capable of identifying the correct m-component
to use to represent any component in the model, the next
problem is how to select the components to model. This is
the model boundary identification problem, and AIM
solves it through an incremental expansion of the boundary
from the information specified in the task description.

The key to the development of the model boundary lies
in knowledge about how effects at one port of a component
affect the other ports of that component. When an m-
component is used in a model to represent a component, an
effect (an interaction in a specified energy domain) at one
port of a component will not necessarily cause similar ef-
fects at all other ports of the same component. To reflect
this, each m-component has a set of intra-actions, which
specify which of the m-component’s other ports are af-
fected by an effect at any one port. Intra-actions do not
themselves indicate any causal direction within the m-
component; they describe the possible causal orientations
the m-component can support. Causal directions within an
m-component are only defined when the m-component is
placed in a model and the casual ordering of the whole
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Figure 2: Intra-actions

model determined. The explicit nature of intra-actions in
the modelling library ensures that the assumptions under-
lying the model boundary expansion are explicit in the li-
brary.

Intra-actions are normally symmetric, to reflect the
symmetric nature of the relationships between effects in a
component, i.e. the symmetric relationship between fluid
flow rates at either end of a £1uidPipe (figure 2a). How-
ever, the relationships between some effects are non-
symmetric and the m-component’s intra-actions reflect this.
For example, the water flow rate from a tap into a bath
affects the flow rate from the plughole, but the converse is
not true (figure 2b). This information is used by AIM
when it determines the model boundary.

The algorithm for the boundary identification process is
shown in figure 3. It centres on the boundary analysis

function expand_boundary (sd, initmodel, baq, cd)
% sd: system description

% bagq: boundary analysis queue

% cd: causal direction specified in task

% initmodel: the initial model that is expanded

% m: the expanded model

% bap: boundary analysis port

% p: port

% cp, mp: additional ports

% mc : m-component

begin
m = initmodel
while bag # {}
bap = dequeue (baq)
if bap ¢ m
cp = system ports connected to bap
enqueue (bag, cp)
m=m+cp
end
mc = correct_m-component (bap, sd)
ifmc e mv ~(3Ipsuchthat [p € m A
p € intra-actions (mc, bap, —cd))
mp = intra-actions (mc, bap, cd)
enqueue (baq, mp)
m=m+mc
end
end
return m
end

Figure 3: Algorithm for finding the model boundary

queue, which stores details of all the ports in the model
(with their corresponding effects) that are currently on the
model boundary. However, there can be no ports on a cor-
rectly-drawn model boundary as any ports on the boundary
represent an under-specified effect: each port forms part of
a junction, and the effects at a junction depend on all the
ports at that junction. For example, the consideration of
the current on one lead at an electrical junction requires the
consideration of the electrical properties of all the other
leads at that junction. This means that the boundary analy-
sis continues until the boundary analysis queue becomes
empty.

The boundary identification process starts by identifying
the ports and effects referred to in the task definition and
placing these in the boundary analysis queue. Using the
syringe example (figure 1), the boundary analysis queue
would initially contain the single port/effect combination
(finger, end, 1linearMechanical), representing
AIM’s interest in the mechanical properties of the finger.

Boundary expansion performed port by port, as shown in
figure 3. When several ports are connected, an effect at
one port requires AIM to consider the same effect at all the
connected ports (providing the connection supports the
inter-action). All the connected ports are added to the
boundary analysis queue and the connection is added to the
model. For instance, the finger touches the end of the
plunger handle, so this latter port will be added to the
boundary analysis queue. However, if a port already exists
in the model (as part of a connection), the connection must
already have been processed and AIM does not process it
again.

AIM checks whether this port requires further processing
by examining the m-component’s intra-actions. If the cur-
rent port was placed in the boundary analysis queue
through the analysis of other ports of this m-component
(i.e. if there exists in the model a port of the current m-
component whose consideration would have caused this
port to be included), AIM can move on to the next port in
the boundary analysis queue. If not, details of the m-
component, and the component to which it relates, are
added to the model.

The m-component’s intra-actions are then used to deter-
mine which of the component’s other ports have effects

» that are significant in the model. The causal information in

the task description indicates whether to use the intra-
actions entering the port (to find the ports that affect the
port in question) or the intra-actions leaving the port (to
find the ports affected by this port). This only becomes
significant where an m-component’s intra-actions are not
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Component Modelled as
Finger Source of force
Thumb Not modelled
Ram Rigid, massless bar
Plunger | Watertight, rigid, frictionless plunger
Cylinder Rigid container of inviscid fluid
Nozzle Rigid container of inviscid fluid
Atmosphere Source of (zero) pressure

Table 1: M-components of the Syringe

symmetric. All ports mentioned in the relevant intra-
actions are added to the boundary analysis queue. In the
syringe, the finger is modelled as an exogenous application
of force, and so has no intra-actions. The plunger handle,
modelled as a rigid bar, has a symmetric intra-action that
relates mechanical effects at the ends to each other: the
finger pressing at one end of the handle prompts AIM to
consider the effects of the other end of the handle on the
plunger.

The components found to be inside the model boundary
in the syringe example, together with their m-components,
are shown in table 1. Note that all the components are rep-
resented by ideal models, and note that the atmosphere
surrounding the syringe is explicitly included in the model
boundary.

Selecting Simplifying Assumptions

Once the model boundary has been determined and the
correct representation for all the components within that
boundary has been found, attention can be focussed on
which simplifying assumptions to include in the model.
Basic m-components represent the ideal model of a com-
ponent, i.e. a model made under all possible simplifying
assumptions. However, not all of these assumptions are
valid in all modelling circumstances: the viscosity of fluid
in a pipe will be negligible if the fluid flows slowly and the
model is only used to represent a small time scale. In other
situations, the viscosity might be significant, and the basic
fluidPipe m-component must be augmented to include
the effects of fluid viscosity. This is achieved in AIM
through the mechanism of corrections, which can be added
to m-components to reflect the retraction of these simpli-
fying assumptions. All corrections in AIM are examples of
fitting approximations (Weld, 1992).

Corrections have a very similar structure to m-
components. Corrections contain a bond graph fragment
that describes how the correction affects the behaviour of
the m-component to which they attach. The parameters in
this bond graph fragment are defined by the physical pa-
rameters of the component to which it relates. Each cor-
rection has at least one port, the attachment port, that con-
trols how the correction is added to the m-component
(though note that corrections attach to an m-component’s
body, rather than one of its ports). Some corrections (e.g.
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heating in an electrical resistor) introduce additional ports
and intra-actions to the m-component to which they attach.
The inclusion of such corrections can expand the model
boundary, but a detailed examination of such corrections is
outside the scope of this paper.

As each correction represents the retraction of a simpli-
fying assumption, a correction can only be applied once to
a particular instantiated m-component. However, the same
correction can be applied to an arbitrary number of differ-
ent instantiations of the same m-component, and can even
be applied to different types of m-component. The appli-
cation of corrections to one m-component is independent of
the application of that correction to any other m-component
in the model. The correction candidates of a model are all
those corrections that can validly be added to the model,
i.e. are not already present in the model.

This architecture for the modelling knowledge used in
AIM allows for the combination of the benefits of the
model composition and model induction approaches. The
component-centred approach to modelling, combined with
the m-components’ intra-actions, provides the sophistica-
tion required to accurately determine the model boundary
in response to a specified task definition. The separation of
the corrections from the m-components allows AIM the
freedom to select only the simplifying assumptions that are
appropriate in this model.

The initial model, found during the identification of the
model boundary, is likely not to be sufficient to address the
task specified. The model is made adequate by the addi-
tion of corrections. Corrections can be added for two rea-
sons: to ensure coherence in the model, or to reduce the
behavioural difference between the model and the referent
system.

A model is said to be incoherent if the it does not yield a
complete set of state equations; this normally reflects a
physically impossible situation in the model. The initial
model of the syringe, shown in table 1, would predict an
infinite velocity for the ram, due to the lack of friction or
other similar phenomena in the model. Such errors in the
model are removed by the addition of corrections. The
function coherent, described by Smith (1998), identifies
the corrections that could potentially eliminate the error
and selects the one that has the greatest effect on the
model’s behaviour. In the syringe example, this correction
is the friction between the plunger and the cylinder.

The main reason for including corrections in a model is
to reduce the behavioural difference between the model
and the referent system. We take the view that models are
always intended, at some level, to explain the behaviour of
the referent system. This allows us to define a model as
adequate for a task if the behaviour of the model is not
significantly different from the behaviour of interest of the
referent system.

If we assume that AIM’s libraries contain all possible
corrections (thus ignoring any closed world assumption),
the behaviour of a model can be brought as close as desired
to that of the referent system by the inclusion of corrections
in the model. However, many of these corrections will



function find_parsimonious_model (sd, voi, cd, €)
% sd: system description

% voi: variables of interest

% cd: causal direction specified in task

% ¢ significance threshold value

% m, m’, M, models

% R(m): correction candidates of m

% r: correction

begin
m = coherent (expand_boundary (sd, &, voi, cd))
repeat
R(m) = all valid correction candidates for m
Inax =0
for each r € R(m)
m’ = coherent (expand_boundary (sd, m + r,
intra-actions(r, attach_port, cd), cd))
J=9(m,m’) % difference in behaviour
if J> Jpar,
Inax =J
Myext = M
end
end
if Juar €A % Jpg is significant
m = Mpyex,
end
until J,,, < L v R(m) = {}
if R(m) = {} '
return nil % cannot guarantee an adequate model
else
return m .
end
end

Figure 4: AIM’s Algorithm

have little or no effect on the behaviour of the model.
Normally, only a few of the possible corrections will have
significant effects on the model’s behaviour; the objective
of modelling is to identify which corrections fall into this
category. A model that contains all the significant correc-
tions will be adequate for the specified task. An adequate
model that contains no other corrections is parsimonious.

The problem is how to assess the effect of each correc-
tion candidate on the behavioural difference between the
model and the referent system. Model induction systems
(e.g. Addanki et al., 1991) do this by generating the be-
haviour of the model and comparing it to a trace of the
referent system’s behaviour, provided as part of the prob-
lem specification. This requires that the referent system’s
behaviour be known.

Alternatively, AIM could produce a “most complex”
model to produce a behaviour trace against which other
models are compared. Unfortunately, this model would be
formed under an arbitrary closed world assumption. Addi-
tionally, a model that contains all the corrections available
under this closed world assumption might not be coherent.
To make it coherent, AIM would have to arbitrarily elimi-

nate corrections to ensure the model’s coherence. Finally,
increasing the knowledge in the modeller would increase
the complexity of the initial model. If the additional com-
plexity is not needed in the final model, including it only
serves to increase the cost of developing the parsimonious
model.

Instead of the above approaches, AIM takes the novel
step of using the behaviour of an existing model as the base
against which refinements are compared. The algorithm is
shown in figure 4. When a model is generated, its behav-
iour is found. When each correction candidate is assessed,
the model is revised to include this correction and the be-
haviours of the base model and the revised model are com-
pared. This revision and comparison is repeated for all the
model’s correction candidates. If no correction causes a
significant change in the model’s behaviour, the model is
deemed adequate and modelling stops. If the largest
change in behaviour is significant, then the correction that
caused that change is included in the model. This revised
model becomes the current model and the process repeats.
This approach relies on the effects of corrections on the
model’s behaviour being nearly independent, and on the
insignificant correction assumption (see below).

AIM’s search strategy through the space of possible
models is similar to a steepest ascent hill climbing search.
If the effects of corrections on the model’s behaviour were
truly independent, the order of inclusion of the significant
corrections would be irrelevant. However, while correc-
tions’ effects are nearly independent, they are not truly
independent. This has the result that if AIM is given a
choice between two correction candidates, both of which
have a significant effect on the model’s behaviour but with
one having a larger effect than the other, AIM should first
include the correction candidate with the largest effect and
reassess the model.

Whichever correction candidate is chosen, there is a

chance that the remaining correction candidate will not
have a significant effect on the modified model. If the cor-
rections’ effects are nearly independent, a correction can-
didate with a large effect will continue to have a large, sig-
nificant effect, ensuring that this correction is included in a
later refinement of the model. However, the small effect of
the other correction candidate might become insignificant
in a later model, meaning that this correction might not be
included; in this case, this correction is not necessary to
form an adequate model, and should not be included in the
final, parsimonious model. This consideration leads to
AIM’s steepest ascent hill climbing search strategy. By
including early the corrections with the largest effects on
behaviour, AIM defers decisions on correction candidates
with smaller effects until their impact becomes clearer.
In AIM’s current implementation, behaviours are generated
by simple numerical methods and compared using an ex-
tension of the integral-absolute error performance index
(Palm, 1983). However, any method of generating and
comparing behaviours will suffice for AIM’s algorithm to
work so long as behavioural differences can be found, or-
dered, and tested for significance.
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Rather than compare the behaviours of all variables in
the model, AIM selects a subset of variables to track, de-
pending on the structure of the model and the causal direc-
tion in the task definition (if the model is to explain how
the specified variables are affected, only these variables are
tracked; if the effect of the specified variables on the rest of
the model is to be found, all state variables and outputs are
tracked). If there are » tracked variables in the base model,
of which v,(¢) is the ith tracked variable in the base model
and v;'(¢) is the corresponding variable in the modified
model, the difference in behaviour over the period [0, 1] is
given by:

[ 1w v d
0

3(m, m")= max

1<isn ’

[1voy ar
0

where the performance index is normalised to give a meas-
ure of the relative difference in behaviour.

To show how AIM includes these corrections in the
model, consider the simplest coherent model of the syringe
(the model shown in table 1, with the addition of the
plunger friction correction to ensure model coherence). If
the cylinder is made of steel, the remaining correction with
the largest effect is the inertia of the water in the nozzle:
including this correction gives a performance index of
0.01218. Given a significance threshold value of 0.1, this
is an insignificant effect. Therefore, the simplest model,
excluding this correction, is deemed adequate. However, if
the cylinder is made from soft rubber, the deformation of
the cylinder is has the largest effect of all the corrections
with a significant performance index of 0.2186. Following
the algorithm in figure 4, this means that this correction is
added to the model and refinement must continue.

The Insignificant Correction Assumption

AIM uses the insignificant correction assumption to deter-
mine when modelling is to stop. Modelling stops when the
current model, m, is adequate. m is adequate iff the per-
formance index between m and the referent system S is
insignificant, ie. 9(m, S) <« 1 (x <« 1 &> x <g, where ¢ is
the significance threshold value).

Turning attention to the mythical most complex model
m,, (for which 3(m., S) = 0), there are some corrections r
in m,, for which 8(m,, - r, m,;) < 1. Such corrections are
termed insignificant, as they have no significant effect on
the behaviour of the most complex model. I is the set of
all such insignificant corrections:

I={reR:90m,-r,m,) <1}
where R is the set of all corrections.

If we assume that effects of all corrections on the be-
haviour of the model are independent, it is true that:
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S(m,-I,my)< 1

which means that m,, - I is an adequate model.

The insignificant correction assumption states that no
insignificant correction has a significant effect on the be-
haviour of any model:

VieL 3(mm+r)«l

Therefore, given R(m) is the set of valid correction candi-
dates for m:

VreR(m), 3(mm+ry<1 ->Rm)c1I
©omDdm,-1
- 8(m, m,) < 1
© Ym, 5«1

This allows AIM to detect an adequate model by examin-
ing the effects of the remaining corrections on the behav-
iour of that model. If no correction candidate has a signifi-
cant effect on the behaviour of the model, all the correction
candidates must be insignificant; therefore, the model is
adequate.

However, the assumption that all corrections have totally
independent effects on the model’s behaviour is not wholly
true. In linear systems, corrections will generally have
independent effects, but in order to allow for synergistic
effects between corrections, the independence relation is
weakened to:

S(m,-I, my) < /A
which means that m is adequate when:
Vr e R(m), 9(m, m+r) <A

The value to use for A seems to be problem dependent, but
an investigation of the combined effects of corrections
(Smith, 1998) suggests that using A = % is reasonable.

Results

AIM’s libraries contain approximately 40 components, 40
m-components, and 20 corrections. AIM has been used to
generate models for several systems, including a cascaded
tank system, a heat exchanger, and a simple tachometer,
each containing about a dozen components. Each system
was modelled under a variety of different conditions; the
results are described by Smith (1998). However, only the
syringe system (figure 3) is discussed here.

In order to accurately describe the effect of the force
applied by the finger, the basic model of the syringe (table
1) is augmented with various corrections; these are shown
in table 2. However, if the physical parameters in the sys-
tem description are altered, different corrections will be
appropriate in different circumstances. Table 2 shows how
the necessary corrections change depending on whether the
finger exerts a constant or rapidly varying force, and
whether the syringe cylinder is made from steel or soft rub-



Cylinder | Force Corrections

Plunger friction”
Plunger friction’ Nozzle fluid inertia

Steel Constant

Steel Varyin
e Plunger leakage

Plunger friction’ Cylinder deformation

Rubber | Constant ) X S
Nozzle fluid drag Nozzle fluid inertia

Plunger friction’ Cylinder deformation

Rubber Varying

Nozzle fluid drag” Nozzle fluid inertia

, Table 2: Corrections added to the Syringe
Correction added to ensure model coherence.

ber. The corrections are shown in the order in which they
were added to the model (i.e. the most significant correc-
tion first). All models were built under the same signifi-
cance threshold value (g) of 0.1.

To determine whether these models are adequate, a very
complex model was built manually and the behaviours of
the generated models were compared to this complex
model. The results are shown in the third column of table
3. In addition, the precursors of these models were also
compared to the complex model and the results of these
comparisons can be found in the fourth column of table 3.

As can be seen from these results, the models produced
by AIM are adequate (3(m, m,) <« 1, ie. 3(m, m,) < €)
while the precursor models are not (3(m., m,,) « 0.1). This
means that AIM produced the simplest adequate, i.e. par-
simonious, models.

Related Work

Nayak & Joskowicz (1996) describe a typical model com-
position system, whose modelling knowledge base shares
many features with AIM. Model fragments are organised
into hierarchies to allow the reuse of modelling knowledge,
and articulation rules (similar to AIM’s intra-actions) are
used to infer what effects are induced in a component in
response to a given effect. However, the modelling algo-
rithm is entirely reliant on the structure of the modelling
library to guide the modelling process. This is achieved at
the cost of embedding modelling assumptions throughout
the library. This is most obvious in the arbitrary nature of
the preconditions and coherence constraints, relating to
both the behavioural and structural context of a component,
that control which model fragments can used in a model.
As with all model composition systems, the limited number
of model fragments within an assumption class limits the

Cylinder | Finger Force | 3(m,m_ ) | 3(m_,m )
Steel Constant 0.089516 —
Steel Varying 0.023991 | 0.451486

Rubber Constant 0.035248 | 0.728074
Rubber Varying 0.031973 | 1.01271

Table 3: Performance Indices for Syringe Models

modellet’s flexibility in selecting the most appropriate set
of simplifying assumptions. Smith (1998a) shows how
AIM manages to generate parsimonious models while
avoiding most of these embedded assumptions,

DME (Iwasaki & Levy, 1994) uses relevance reasoning
to guide modelling. Each model fragment contains a set of
modelling assumptions under which it is valid. As the
model boundary expands, these assumptions are asserted
and retracted, which can prompt the modeller to revise
earlier decisions. DME’s performance depends critically
on the correctness of these assumptions. Iwasaki & Levy
do not guarantee this is the case, and instead offer the li-
brary coherence assumption. AIM’s simpler knowledge
base structure obviates the need to make any such coher-
ence assumptions when developing the libraries, and AIM
ensures the coherence of models as they are being built.

In contrast, MM (Amsterdam, 1992) is a typical model
induction system that depends wholly on behavioural con-
siderations. However, MM compares qualitative behav-
iours, which greatly reduces MM’s ability to resolve
qualitatively similar but quantitatively different behaviours.
AIM’s quantitative method of behavioural comparison al-
lows it to produce models more appropriate to the specified
task. In addition, while MM is able to correctly identify
the different behaviourally significant regions within the
system (the lumping problem), little attention is paid to the
determination of the model boundary.

Williams & Raiman (1994) have produced Charicatures,
a radically different modelling system based on the simpli-
fication of the equations that represent the most complex
model. Their major contribution is their exploration of the
concept of a model’s domain of validity, which describes
the situations in which the model can be used with confi-
dence. This is used to indicate when model transitions are
required. However, focusing solely on the equations is a
very shallow approach as it ignores the physics that under-
lies the algebraic formulation. This restricts the application
of Charicatures to situations that have already been mod-
elled as algebraic systems.

Conclusions

We have described AIM, an automated modelling system
that uses a novel architecture to provide both power and
flexibility during the modelling process. AIM implements
an algorithm that does not rely on external sources of in-
formation or fine structure in the modelling knowledge to
guide and halt modelling. Instead, AIM compares the be-
haviours of successive models, including corrections that
cause significant changes in the model’s behaviour. We
have shown that this approach to modelling usually gener-
ates parsimonious models.

However, this approach relies on the insignificant cor-
rection assumption and assumptions about the independ-
ence of corrections. Tests on other systems have shown
that, occasionally, these assumptions are not sophisticated
enough to always ensure parsimonious models. In addi-
tion, AIM’s reliance on fitting approximations restricts the
types of corrections that can be made.
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