
Extracting and Using Relative Duration Information in
Pure Qualitative Simulation

Tolga Könik and A. C. Cem Say

Artificial Intelligence Laboratory
Department of Computer Engineering, Boðaziçi University

Bebek 80815, Ýstanbul, Turkey

konik@iname.com, say@boun.edu.tr

Abstract
We show that qualitative simulation algorithms can make
better use of their input to deduce significant amounts of
information about the relative lengths of the time intervals
in their output behavior predictions. Simple techniques
employing concepts like symmetry and periodicity, and
comparison of the circumstances during multiple traversals
of the same interval can enable the reasoner to build a list of
facts representing the deduced information about relative
durations. These facts are used by a new filter, which
eliminates proposed spurious behaviors leading to
inconsistent duration data. Surviving behaviors are
annotated with richer descriptions of the qualitative
properties of system variables, in addition to the extracted
relative duration information.

Introduction

The prediction of spurious solutions for some qualitative
differential equation systems is a major problem of
qualitative simulation. Improvements in this area involve
the development of methods which increase the
mathematical and representational sophistication of
qualitative simulators to eliminate different classes of
spurious predictions (Kuipers 1994) (Say & Kuru 1993)
(Say 1997b) (Say 1998). In this paper, we show that
qualitative simulation algorithms can make better use of
their input to deduce significant amounts of information
about the relative lengths of the time intervals in their
output behavior predictions. Simple techniques employing
concepts like symmetry and periodicity, and comparison of
the circumstances during multiple traversals of the same
interval can enable the reasoner to build a list of facts
representing the deduced information about relative
durations. These facts are used by a new filter, which
eliminates proposed spurious behaviors leading to
inconsistent duration data. Surviving behaviors are
annotated with richer descriptions of the qualitative
properties of system variables, in addition to the extracted
relative duration information.

We have implemented our technique in the framework of
the “standard” qualitative simulation algorithm QSIM,
details on which can be found in (Kuipers 1994).

The Idea

As an example to the sort of problem solved by our work,
consider the following scenario: Two balls are thrown
upward from ground level with unknown speeds at time t0.
We are interested in enumerating all (and only) the
physically possible orderings of the time-points in which
the balls reach the highest points of their trajectories or hit
the ground. We simulate the simple QSIM model in
Table 1. The simulator is set to stop extending a prediction
when either ball hits the ground, that is, at time-points
where H1 or H2 has the value <0, â>.

Name Explanation Constraint
A upward gravitational acceleration (constant A g0 < 0)
V1 upward velocity of the first ball (d/dt V1 A)
V2 upward velocity of the second ball (d/dt V2 A)
H1 height of the first ball (d/dt H1 V1)
H2 height of the second ball (d/dt H2 V2)

TABLE 1. The Two-Ball System

The QSIM algorithm predicts 13 distinct behaviors in
this simulation. Table 2 depicts one of these predictions. It
is easy to see that this is a spurious prediction, since it
describes a behavior in which it takes the balls the same
time to reach their maximum heights, but then the first ball
overtakes the second ball in the next half of what is clearly
a symmetric trajectory. There are five other similarly
inconsistent predictions in this QSIM output.

time A V1 V2 H1 H2

t0 g0, ¤ (0,∞), â (0,∞), â 0, á 0, á
(t0, t1) g0, ¤ (0,∞), â (0,∞), â (0,∞), á (0,∞), á

t1 g0, ¤ 0, â 0, â h1*, ¤ h2*, ¤
(t1, t2) g0, ¤ (−∞,0),â (−∞,0), â (0, h1*), â (0, h2*), â
t2 < ∞ g0, ¤ (−∞,0),â (−∞,0), â 0, â (0, h2*), â

TABLE 2. A Spurious Prediction for the Two-Ball System

What modifications have we made to avoid this error? In
this example, one can deduce that the heights are
symmetric functions of time around the point t1 by

From: AAAI Technical Report WS-98-01. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

From: AAAI Technical Report WS-98-01. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

examining the constraint model and the qualitative state at
t1. We have incorporated a routine, which checks the
current workspace to discover such symmetry information
about variables after the creation of each time-point state
by the simulator. These symmetry data can be used later to
derive relative length information about the time intervals
in the computed behavior. For instance, during the creation
of the state labelled t2 in Table 2, the symmetry property of
H1 can be exploited to deduce that the time intervals (t0, t1)
and (t1, t2) should be of equal length. A similar reasoning
about H2 indicates that (t0, t1) is longer than (t1, t2). The
relative duration facts about intervals obtained in this
manner are accumulated in a global data structure
associated with each behavior. Each candidate time-point
state has to pass our new duration consistency filter, which
is satisfied only if no inconsistency can be found in the set
of relative duration facts implied by the partial behavior
that would be constructed by the addition of this candidate
state. In the example of Table 2, the state t2 would not pass
this filter because of the two inconsistent assertions about
|t0, t1| and |t1, t2|, and so that spurious behavior would not be
predicted.

In the following sections, we describe how to augment
the qualitative simulation algorithm so that it notices and
uses several different mathematical properties (including
symmetry) of the computed behavior prefixes to eliminate a
class of spurious predictions containing such durational
inconsistencies and to present relative length information
about the time intervals in the predicted behaviors.

Symmetric Functions

Symmetry is an important qualitative property. In the next
section, we describe how the input model can be used to
deduce the existence of symmetric functions in a partial
behavior. This section is an introduction to the terminology
and mathematics that will be employed during that
procedure.

Definition 1. If a function f(t) has, for a given point ti in its
domain [a,b], the property that

f(ti − s) = f(ti + s) ,

() ()µµ
µµ

+=−
++ →→

i
s

i
s

tflimtflim , and

() ()µµ
µµ

+=−
−− →→

i
s

i
s

tflimtflim

for all s such that ti − s ∈ (a,b) and ti + s ∈ (a,b),
then f is said to be even symmetric around ti, denoted
even(f, ti).

The positive legal range for s described above, namely,
(0, min(ti − a, b − ti)), is said to be the symmetry radius
around ti.

Definition 2. If a function f(t) has, for a given point ti in its
domain [a, b], the property that

f(ti − s) = −f(ti + s) ,

() ()µµ
µµ

+−=−
++ →→

i
s

i
s

tflimtflim , and

() ()µµ
µµ

+−=−
−− →→

i
s

i
s

tflimtflim

for all s such that ti − s ∈ (a, b) and ti + s ∈ (a, b),
then f is said to be odd symmetric around ti, denoted
odd(f, ti).

If a function f is (even or odd) symmetric around ti, ti is
said to be f’s symmetry point. In the remainder of this
section, all appearances of s are assumed to be universally
quantified over the symmetry radius around the symmetry
point under discussion.

Note that the function x(t) ≡ 0 is both even and odd
symmetric everywhere in its domain.

The following theorems establish the correctness of a set
of rules used by the symmetry recognition procedure
incorporated to QSIM. (Könik & Say 1998)

Theorem 1. If f(t) is continuous on the domain [a,b], then
(i) even(f, ti) ↔ f(ti − s) = f(ti + s)
(ii) odd(f, ti) ↔ f(ti − s) = −f(ti + s)

Theorem 2. Given y(t) = f(x(t)),
(i) even(x, ti) → even(y, ti)
(ii) odd(x, ti) ∧ odd(f, 0) → odd(y, ti)

Theorem 3. x(t) = k, where k is a nonzero constant, is even
symmetric at every point.

Theorem 4. Given x(t) = y(t) + z(t),
(i) even(y, ti) ∧ even(z, ti) → even(x, ti)
(ii) even(x, ti) ∧ even(z, ti) → even(y, ti)
(iii) even(x, ti) ∧ even(y, ti) → even(z, ti)
(iv) odd(y, ti) ∧ odd(z, ti) → odd(x, ti)
(v) odd(x, ti) ∧ odd(z, ti) → odd(y, ti)
(vi) odd(x, ti) ∧ odd(y, ti) → odd(z, ti)

Theorem 5. Given x(t) = y(t) . z(t),
(i) even(y, ti) ∧ even(z, ti) → even(x, ti)
(ii) even(x, ti) ∧ even(z, ti) → even(y, ti)
(iii) even(x, ti) ∧ even(y, ti) → even(z, ti)
(iv) odd(y, ti) ∧ odd(z, ti) → even(x, ti)
(v) odd(x, ti) ∧ odd(z, ti) → even(y, ti)
(vi) odd(x, ti) ∧ odd(y, ti) → even(z, ti)
(vii) even(x, ti) ∧ odd(y, ti) → odd(z, ti)
(viii) even(x, ti) ∧ odd(z, ti) → odd(y, ti)
(ix) even(y, ti) ∧ odd(x, ti) → odd(z, ti)
(x) even(y, ti) ∧ odd(z, ti) → odd(x, ti)
(xi) even(z, ti) ∧ odd(x, ti) → odd(y, ti)
(xii) even(z, ti) ∧ odd(y, ti) → odd(z, ti)

Theorem 6. Given y(t) = f(x(t)), where f ∈ M+ ∪ M-,
(i) even(y, ti) ↔ even(x, ti)
(ii) If odd(f, 0) (f(−x) = −f(x)) then

odd(y, ti) ↔ odd(x, ti)

Theorem 7.Given x =
dt

dy
,

(i) even(y, ti) ↔ odd(x, ti)
(ii) odd(y, ti) ↔ even(x, ti) ∧ y(ti)=0

How can symmetry information be exploited for
comparing durations? Note that the definition of a function
x being even symmetric around ti entails that

x(ti − s) = k ↔ x(ti + s) = k,

which, when translated to the QSIM representation, means
the following: If we “see” x to be at a landmark k at a time-
point ta before ti, then x is “destined” to reach k again at
some point tc after ti (unless the simulation terminates for
another reason.) Furthermore, we can conclude that
|ta, ti|=|ti, tc|, and, of course, |ta, ti| < |ti, tb| for any tb in which
x has not yet reached k.

For example, assume that x, as illustrated in Figure 1, has
been discovered to be even symmetric at time-point t6, and
the list of landmarks crossed by x in [t0, t6) is {xa, 0, xb, 0}.
“xc” is a new landmark discovered at the symmetry point t6.
In the continuation of this behavior, it is certain that x will
cross the landmarks listed above in the reverse order;
namely, {0, xb, 0, xa}. Whenever x arrives at a landmark in
this new list, we will be sure that exactly the same amount
of time has elapsed from ti as it took x to reach the
symmetry point from the corresponding appearance of that
landmark before the symmetry point. (Note that no new
landmarks can be created after the symmetry point until all
landmarks in that list have been crossed.)

t3

xb

xa

xc

t6t0 t1 t2 t5t4 t7

FIGURE 1. An Even Symmetric Variable

For odd symmetric functions, zero crossings contribute
relative duration data. To see this, we consider the
definition of odd symmetry around ti, that is,

f(ti − s) = −f(ti + s)
This entails

f(ti − s) = 0 ↔ f(ti + s) = 0.

Qualitative directions of odd symmetric variables are
useful too. Since the derivative of an odd symmetric

variable f will be even symmetric around the symmetry
point ti, it must be the case that

f ′ (ti − s) = 0 ↔ f ′ (ti + s) = 0,

which means that the qualitative direction of x becoming
steady s units before ti forces a “mirror-event” where x
stops again s units after ti.

The next section illustrates the algorithm for extracting
the relative duration facts in more detail.

Recognizing & Using Symmetries in QSIM

The theorems in the previous section describe the ways in
which symmetry information about functions can be
propagated through a model. The only way of obtaining
symmetry information from “scratch,” as it were, is
provided by Theorem 3. In our modifications which enable
QSIM to recognize symmetric variables, the results of
Theorems 3-7 are used as rules which add new symmetry
data whenever they are able to “fire” in a given state.

We will describe the working of the symmetry
recognition procedure in terms of our introductory example
about the two-ball system. Before the start of simulation, a
preprocessor checks the constraint model to see if the rule
of Theorem 3 can be applied to deduce any symmetry
information about the variables. At this stage, the only
constant function in the model, A is found to be even
symmetric (everywhere) by an application of that rule. No
such information about the other variables can be deduced
at this point. This single item of symmetry information is
placed into the symmetry list, a structure that will be
inherited by all behaviors, which are continuations of this
state.

An examination of the rules of the previous section
shows that new firings are possible only in time-points
where a variable has the value zero. Since zero-crossing
leads to a new time-point state in the qualitative simulation
setup, we can make maximum use of the symmetry
derivation rules if we run them just for each completed
time-point state. Our modified algorithm therefore submits
each time-point state to the set of symmetry rules, and any
new symmetry information obtained as a result is added to
the symmetry list associated with the current behavior.

In our example, the state t1 causes the reasoning steps
described in Table 3 to be performed.

Trigger Fired rule Conclusion
A is even everywhere and

V1(t1) = 0
7.ii V1 is odd around t1

A is even everywhere and
V2(t1) = 0

7.ii V2 is odd around t1

V1 is odd around t1 7.i H1 is even around t1
V2 is odd around t1 7.i H2 is even around t1

TABLE 3. Derivation of New Symmetries from the State at t1

Further simulation of this model does not lead to the
discovery of any new symmetry information.

Each candidate time-point state is examined by our
algorithm to see if it contributes any new relative duration
facts due to previously discovered symmetries. For this
purpose, we make use of the fact that the behavior of a
symmetric variable up to the symmetry point determines a
prefix of that variable’s future behavior, as explained in the
previous section.

Our algorithm uses the reasoning described in that
section to assert new relative duration facts. Each
symmetric variable past its symmetry point can contribute
one such fact at each time-point. For the even symmetric
variable of Figure 1, assume that we are considering a
candidate state for t8, after a partial behavior in which x has
been simulated to move up to the interval marked by the
arrow in the figure. The algorithm first prepares a list of
<landmark, time-point> tuples crossed by x from the
beginning of the simulation up to the currently considered
time-point. This list, {<xa, t0>, <0, t1>, <xb, t2>, <0, t3>,
<xc, t6> ,<0, t7>}, is split through the symmetry point into
two lists representing the landmarks crossed before and
after the symmetry point, respectively. In our example, the
“before” list is {<xa, t0>, <0, t1>, <xb, t2>, <0, t3>}, and the
“after” list is {<0, t7>}. We then “subtract” the “after” list
from the “before” list (cancelling “mirror-image” landmark
appearances from both lists) to obtain the “reverse
expectation list” {<xa, t0>, <0, t1>, <xb, t2>}. This means
that the “expected landmark” to be crossed by x is xb, and
(t6, t8) will be deduced to be of the same length as (t2, t6) if
x(t8) is indeed xb. If, on the other hand, t8 is created as a
result of another variable reaching a landmark and x is still
(xb, 0) at that time-point, the fact “|t2, t6| > |t6, t8|” will be
asserted.

Odd symmetric functions, which contribute useful
duration information when they cross zero and/or “stop,” as
explained in the previous section, are treated using a
variant of the procedure described above.

Symmetries of “non-analytic” functions, which stay at
the same landmark value for a finite time interval during
their behavior, are handled in a somewhat more
sophisticated way by the duration fact extraction algorithm.

Returning to our two-balls example, the duration fact
extraction procedure works as follows when it is called
during the creation of state t2 of Table 2: Variable H1 is
known to be even symmetric around t1, and its “before” list
indicates that it is supposed to reach zero exactly |t1−t0| time
units after t1. The proposed magnitude of zero for H1

causes the assertion of |t0, t1| = |t1, t2| to the relative duration
fact list. A similar reasoning about H2 adds |t0, t1| > |t1, t2| to
the same data structure.

Other Ways of Comparing Durations

Periodicity
The QSIM algorithm already has a cycle detection feature
which lets it decide that a branch of the state tree
corresponds to a periodic behavior and therefore need not
be expanded any more. Every further traversal of the cycle
will be of the length |ta, tb|, where ta and tb are the time-
points in which the two instances of the same state that lead
to the detection of the cycle appear for the first and second
times, respectively.

Some sets of constraints are known to model systems
with periodic behaviors, the most famous example being
the spring-mass model (Kuipers 1994) of Table 4.

Assume that the three constraints in Table 4 appear in a
bigger model containing several other constraints and
variables. It is clear that the three variables X, V, and A now
form three “clocks” with the same period. Barring the case
where all three have the value <0, ¤> at t0, the subsystem
comprising them will oscillate throughout the behavior of
the overall system, “ticking” at time-points where either V
or both X and A reach their critical points. This property
can be exploited for our purposes. A preprocessor would
scan the constraint model for known patterns to see if any
embedded clock subsystems can be identified. If such a
clock were found, its variables would be noted for future
use. During the global filtering of each time-point state, the
current behavior prefix would be examined to see if one of
the noted variables has “ticked,” contributing a new relative
duration fact to be used by the duration consistency
constraint.

Name Explanation
X displacement of mass from equilibrium
V velocity of mass (d/dt X V)
A acceleration of mass (d/dt V A) ((M− X A) (0 0))

TABLE 4. A Periodic Subsystem Model

Multiple Traversals of the Same Interval
Yet another opportunity for comparing durations arises in
the following setup: Assume that the system contains four
variables x1, x2, v1, and v2, such that v1=dx1/dt and
v2=dx2/dt. Two durations |t1b, t1e| and |t2b, t2e| can be
compared if the “distance” covered by x1 during (t1b, t1e)
can be compared with the distance covered by x2 during
(t2b, t2e), and, the average magnitude of v1 during (t1b, t1e)
can be compared with the average magnitude of v2 during
(t2b, t2e).

The basic reasoning process involved here is the one
behind intuitive statements such as “It takes longer to
traverse a longer path with a lower speed.” We will now
formalize this approach. Let us start with the following
definitions:

1x∆ = () () b11e11 txtx − : distance travelled by x1 in (t1b, t1e)

2x∆ = () () b22e22 txtx − : distance travelled by x2 in (t2b, t2e)

1t∆ = b1e1 tt − : length of the time interval (t1b, t1e)

2t∆ = b2e2 tt − : length of the time interval (t2b, t2e)

1v = 1x∆ / 1t∆ : average speed of x1 in (t1b, t1e)

2v = 2x∆ / 2t∆ : average speed of x2 in (t2b, t2e)

To compare these quantities, we make the following
definitions.

x∆∆ = 12 xx ∆−∆ , t∆∆ = 12 tt ∆−∆ , v∆ = 12 vv −

We now derive the comparison formula.

x∆∆ = 12 xx ∆−∆ = 2v . 2t∆ − 1v . 1t∆ =

2v . 2t∆ − 1v . 2t∆ + 1v . 2t∆ − 1v . 1t∆ =

 (2v − 1v). 2t∆ + 1v (2t∆ − 1t∆) = v∆ . 2t∆ + 1v . t∆∆

Since we are interested only in the signs of these quantities,

[]x∆∆ = []v∆ . []2t∆ + []1v . []t∆∆ , and, since []2t∆ = []+ ,

[]x∆∆ = []v∆ + []1v . []t∆∆ , yielding

[]t∆∆ = []x∆∆ − []v∆ if 1v >0. (1)

Note that we can now check the correctness of the
statement “It takes longer to traverse a longer path with a
lower speed” by seeing whether it satisfies Equation (1):
The assignment of signs results in [+] = [+] − [−],which is
indeed correct. (1v >0 in this case, since the sentence

implies that 2v is less than 1v .)

Applying Equation (1) for duration fact extraction in
QSIM is possible when []x∆∆ , []v∆ , and 1v can be

unambiguously computed from the information at hand,
which is feasible in certain restricted cases:

[]x∆∆ can be evaluated when x1 and x2 are the same

variable, say x, (which forces v1 and v2 to be a single
“velocity” variable as well,) and the landmark interval
spanned by x in one of (t1b, t1e) and (t2b, t2e) is a subset of
the other one. So our technique boils down to comparing
two traversals of the same interval by the same variable.

Comparison of the average speeds is performed via
ordinal comparisons on upper and lower bounds. For
example, if we know that the velocity is positive in both
(t1b, t1e) and (t2b, t2e) (meaning 1v >0,) and the minimum

value attained by it during (t1b, t1e) is greater than its
maximum value during (t2b, t2e), we can conclude that

1v > 2v , and hence v∆ = [−].

In certain (rather unlikely) circumstances, it is possible
to compare landmark intervals of separate variables in pure
QSIM; see (Say 1997a) for a discussion of these issues.

The Duration Consistency Constraint

The duration consistency constraint operates on the relative
duration fact lists accumulated as a result of the application
of the methods explained in the previous sections. Each
such fact can be in one of two forms: “|ta, tb| = |tc, td|”, or
“|ta, tb| > |tc, td|”. The consistency-checking problem at hand
is transformed to a problem of the determination of the
satisfiability of linear inequalities as follows: Time-points
appearing in the relative duration facts are sorted to a linear
list. Each minimal interval in this list is given a name. The
relative duration facts are rewritten in terms of these
interval names. Inequalities asserting that each interval
length is greater than zero are incorporated to this set of
linear inequalities.

After this transformation is complete, a consistency
analyser based on (Clarke and Zhao 1992) is run on the
obtained constraint set. If an inconsistency is discovered,
the filter routine fails, and the candidate state is eliminated.

In our two-ball example, the relative duration facts
available during the preparation of t2 are, once again,
|t0, t1|=|t1, t2| and |t0, t1| > |t1, t2|. The interval names are I1,
representing |t0, t1|, and I2, representing |t1, t2|. The system
of inequalities I1=I2, I1>I2, I1>0, I2>0 is easily found to be
inconsistent, and Table 2 is eliminated from the output.

Richer Behavior Descriptions

Our modified simulator annotates the output predictions
with the additional information about variables and
intervals that it extracts during the computation of each
behavior. Table 5-6 illustrates this for one of the seven
surviving predictions for the two-ball system.

time A V1 V2 H1 H2

t0 g0, ¤ (0,∞), â (0,∞), â 0, á 0, á
(t0, t1) g0, ¤ (0,∞), â (0,∞), â (0,∞), á (0,∞), á

t1 g0, ¤ 0, â (0,∞), â h1*, ¤ (0,∞), á
(t1, t2) g0, ¤ (−∞,0), â (0,∞), â (0,h1*), â (0,∞), á

t2 g0, ¤ (−∞,0), â 0, â (0, h1*), â h2*, ¤
(t2, t3) g0, ¤ (−∞,0), â (−∞,0),â (0, h1*), â (0, h2*),â
t3 < ∞ g0, ¤ (−∞,0), â (−∞,0),â 0, â (0, h2*),â

TABLE 5. A Surviving Prediction for the Two-Ball System

Variable Symmetry
Type

Symmetry
Point

Comparisons

A even everywhere
H1 even t1 |t0, t1| > |t1, t2|

|t0, t1| = |t1, t3|
V1 odd t1
H2 even t2 |t0, t2| > |t2, t3|
V2 odd t2

TABLE 6. Additional Information for Prediction of Table 5

Related Work

Relative duration fact extraction was first implemented by
Çivi (1992), who presents a postprocessor which annotates
QSIM outputs with deduced temporal interval comparisons.
Çivi’s work does not deal with spurious behaviors
noticeable due to these items of information.

Weld’s differential qualitative (DQ) analysis (1988)
technique involves conceptually comparing two behaviors
of the same variable for purposes of perturbation analysis.
When comparing multiple traversals of the same interval,
we make use of the same simple mathematical foundations,
albeit for a different purpose.

Some of the simulations improved by the duration
consistency constraint involve occurrence branching, in
which multiple branches are added to the behavior tree to
represent different possible time-orderings of two
“unrelated” variables reaching their respective landmarks.
“History”-based reasoners like Williams’ TCP (Williams
1986) were designed with the purpose of eliminating this
phenomenon. There has been some work (Tokuda 1996) to
modify the QSIM framework in this direction. Our
approach would be useful in cases where the distinctions
created by the “global state”-based branching mechanisms
are relevant from the user’s point of view, and incorrect
predictions in this format need to be minimised.

Hybrid qualitative-quantitative reasoners (Kuipers and
Berleant 1990) enable the association of numerical values
with the time-points in the qualitative simulation output,
rendering the comparison of interval lengths trivial. Our
work shows that such comparisons are possible and useful
in pure qualitative simulation as well.

Conclusion

We have presented methods of eliminating a class of
spurious predictions from the output of qualitative
simulators. Predictions of this class are identified by
inconsistencies in the sets of conclusions, which can be
drawn about the relative lengths of the time intervals that
they contain. Duration comparisons of this nature can be
soundly based on several mathematical properties of the
simulated functions, including symmetry and periodicity.
The symmetry recognition and analysis procedure, as well
as the duration consistency constraint itself, have been
implemented and tested in our PROLOG version of QSIM.

Just as multiple traversals of the same landmark interval
leads to conclusions about temporal length comparisons,
relative duration information can be used for inferences
about the relative “distances” among various landmark
pairs in the same quantity space. This can, in turn, lead to
the detection and elimination of a class of spurious
behaviors containing inconsistencies involving landmark
distances. We plan to extend our research in that direction,

so that qualitative simulators with even greater predictive
performance can be built.

Acknowledgments
We thank Özer Yalçýn for his technical contribution in the
early stages of this research. This work was supported by
the Boðaziçi University Research Fund. (Grant no:
97HA101)

References

Clarke, E., and Zhao, X. 1992. Analytica: A Theorem
Prover for Mathematica. Technical Report CMU-CS-92-
117. School of Computer Science. Carnegie Mellon
University.

Çivi, H. 1992. Duration Analysis in QSIM and Extension
of QSIM to Discrete Time Systems. M.S. Thesis, Dept. of
Computer Eng., Boðaziçi Univ., Ýstanbul, Turkey.

Könik, T., and Say A. C. C. 1998. Extracting and Using
Relative Duration Information in Pure Qualitative
Simulation, Technical Report, FBE–CMPE–02/98–02,
Dept. of Computer Eng., Boðaziçi Univ., Ýstanbul, Turkey.

Kuipers, B. J. 1994. Qualitative Reasoning: Modeling and
Simulation with Incomplete Knowledge. Cambridge, MA:
The MIT Press.

Kuipers, B. J., and Berleant, D. 1990. A Smooth
Integration of Incomplete Quantitative Knowledge into
Qualitative Simulation, Technical Report, AI TR 90-122,
Artificial Intell. Lab., Univ. of Texas at Austin.

Say, A. C. C. 1997a. Numbers Representable in Pure
QSIM. In Proc. 11th Int. Workshop on Qualitative
Reasoning, 337-344, Cortona, Italy.

Say, A. C. C. 1997b. Improved Reasoning About Infinity in
Qualitative Simulation. In Proc. 12th Int. Symposium on
Computer and Information Sciences, 36-43. Antalya,
Turkey.

Say, A. C. C. 1998. L’Hôpital’s Filter for QSIM. IEEE
Transactions on Pattern Analysis and Machine Intelligence
20(1):1-8

Say, A. C. C., and Kuru, S. 1993. Improved Filtering for
the QSIM Algorithm. IEEE Trans. on Pattern Analysis and
Machine Intelligence 15:967-971.

Tokuda, L. 1996. Managing Occurrence Branching in
Qualitative Simulation. In Proc. 13th National Conference
on Artificial Intelligence(AAAI-96), AAAI/MIT Press.

Weld, S. D. 1988. Comparative analysis. Artificial
Intelligence 36:333-373.

Williams, B. C. 1986. Doing Time: Putting Qualitative
Reasoning on Firmer Ground. In Proc. 5th National
Conference on Artificial Intelligence, 105-112. San Mateo:
CA. Morgan Kaufmann.

