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Abstract

This paper presents an extension to qualitative simula-
tion that enables a QR system to support variables that
exhibit delayed reactions to their constraining func-
tions. Through a process of synchronised tracking, in-
formation stored in the previous levels of the behaviour
tree can be retrieved and used to constrain multiple
delayed variables. It is demonstrated that the extended
simulation mechanism is powerful enough to capture
the time-delay behaviour observed in actual physical
systems. Experimental testing is described and results
are provided.

Introduction

A standard technique used to control industrial plants
is to choose a measured variable and maintain the re-
quired value of this variable through a process of meas-
urement, comparison, and adjustment. A time delay
between a disturbance in the plant and the effects of
this disturbance showing in the behaviour of a measured
variable presents an important problem to systems con-
trol. This is because the longer the delay is, the further
the plant may have deviated from the designed condi-
tions and hence the harder it becomes for the control
system to regulate the measured variable.

The problem is to determine how a time-delayed sys-
tem will behave subject to a certain initial condition,
so that appropriate control actions can be taken. The
system may be simulated numerically via a differential
equation model, but this is only possible when the sys-
tem parameters are precisely known. Further, such a
simulation could only use real number values to specify
the initial state and parameters; it is far more useful to
be able to simulate a whole range of values. An inter-
val could be discretised such that regular points along
it are simulated numerically. However, this introduces
two problems: first, how to guarantee that all possible
behaviour is simulated if the process exhibits non-linear
characteristics, and second, how to interpret the beha-
viour at the boundaries between neighbouring intervals.

Qualitative reasoning (QR) has already proven suc-
cessful in modelling complex processes where a numer-
ical solution is difficult or infeasible to obtain, (e.g.
(Snooke & Price 1997), (Capelo et a11996) ). Here, the

system behaviours are simulated non-numerically, with
each variable taking symbolic values. In most cases,
system descriptions are not required to be complete.
Current QR research concentrates on simulating time-
invariant behaviour, however. Existing qualitative sim-
ulation methods are unable to deal with a system that
exhibits a time-delay, such as y(t) = ](x(t AT)).

This paper shows how a qualitative simulation al-
gorithm may be extended to support such systems. The
behaviour simulator employed to predict a system’s be-
haviour must produce (at least estimates of) the dura-
tions associated with respective system states, enabling
a synchronous tracking of the evolution of the obser-
vations with the simulated behaviours. This prohibits
the use of traditional qualitative simulation algorithms
as they do not provide such durations. Advances in
qualitative simulation allow temporal information to
be computed with the generation of system states (e.g.
(Shen & Leitch 1993), (Berleant & Kuipers 1997)). 
though developed with the fuzzy qualitative simulation
algorithm (FuSim) (Shen & Leitch 1993) in mind, 
extension should be generally applicable to simulators
that enable synchronous tracking.

The rest of this paper is arranged as follows. The
next section gives an overview of the FuSim algorithm
as a basis for the proposed improvements. It also high-
lights the data structure, the behaviour tree, that is
fundamental to this approach to qualitative time-delay
simulation. Section 3 describes exactly how FuSim may
be updated to support time-delayed system variables,
detailing the changes that must be made to the al-
gorithm. Section 4 provides experimental results and
analysis. Finally, section 5 concludes the paper and
describes important future work.

FuSim and Time Delays
The FuSim algorithm is a relative of QSIM (Kuipers
1994). It uses a structural description of the physical
system defined by a set of constraints between the sys-
tem variables. In place of strict (fuzzy) constraints,
which each involve at most three arguments, the fol-
lowing constraint format is used (Case et al. 1997):

LHS N RHS
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Both sides of the intersection may be arbitrarily com-
plex, removing the requirement for several strict fuzzy
constraints connected by pseudo-variables to represent
a single more complex constraint. In this case, the
constraint is satisfied if there is a (fuzzy) intersection
between the left- and right-hand sides.

As per QSIM, a system variable is described in terms
of its qualitative state, which is in turn described by
a pair of its qualitative magnitude and qualitative rate
of change. However, FuSim makes use of the theory
of fuzzy sets to discretise the representation of system
variables, as opposed to the alternating point and in-
terval method used by QSIM. Both the magnitude and
the rate of change range over an arbitrarily discretised
fuzzy quantity space.

An outline of FuSim follows in order that subsequent
changes to the algorithm may be related to the original
design. Given a structural description consisting of a
set of constraints over the system variables and an ini-
tial system state, the objective is to produce a set of
possible behaviours of the system. The first step is to
calculate the possible next states of each variable by
applying a set of rules which dictate, given the cur-
rent magnitude and derivative components of a vari-
able, what values these components may take in the
next time-step. The next step is to generate a set of
state-tuples for each constraint that consist of the cross
product of the possible next states of those variables in-
volved in that particular constraint. The resultant sets
of tuples are checked for consistency using a standard
constraint satisfaction technique (Miguel & Shen 1998).
This involves two sub-steps: a) Self-Consistency Filter-
ing: Restriction is imposed over the set of tuples as-
sociated with each constraint such that the remainder
all satisfy that constraint; and b) Pairwise Filtering:
Tuples that are inconsistent between constraints that
share a common variable are removed.

A set of potential next system states are then gener-
ated by re-combining the remaining tuples, and are in
turn restricted by the application of global filters such
as energy conservation (Fouche & Kuipers 1992). The
simulation algorithm must then process each of the re-
maining potential next system states in the same way.
The output of this process is a behaviour tree: each
node corresponds to a single system state, and each
branch corresponds to a distinct possible behaviour pat-
tern for the system.

Time Delays

It is useful at this stage to examine a method that could
be used to implement a time delay in a conventional
numerical simulation. Consider the system:

y(t) = xCt - 
Clearly, the value of y depends on that of x from two
time-steps ago. A typical method for modelling this
within an iterative numerical simulation is to use a buf-
fer. The buffer holds previous values of x which may
be retrieved in order to update y, as shown in figure 1.
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Figure 1: The Buffer Mechanism

Initially, the buffer is filled with the current value
of y so that any change does not filter through to it
before the requisite number of time-steps have elapsed.
At each iteration y takes its value from the leftmost
element of the buffer. The entire contents of the buffer
are then shifted left, and the current value of x is stored
in the rightmost element. It should be clear that, to
model d steps of delay, a buffer of d elements is required.
The expression used to calculate y may be arbitrarily
complex, as long as the result is stored in this way.

This buffer-based method is relatively simple for nu-
merical simulation since just one value has to be stored
at each time-step. However, as the behaviour tree is
generated, FuSim must process multiple possible beha-
viour patterns due to qualitative ambiguities, creating
a much more complex scenario (though FuSim will pro-
duce a unique behaviour for the above extremely simple
case).

It is possible, nevertheless, to use information stored
in the behaviour tree to implement a qualitative time-
delay mechanism if the simulator is to be used within
a model-based reasoning task that works by synchron-
ously tracking the real behaviour, where explicit obser-
vation sampling time-steps are available. This require-
ment is not as restrictive as it sounds. For model-based
reasoning applications such as control and diagnosis,
synchronous tracking is a must. Comparisons between
real observations and the simulated behaviour must
be made coherently at the same system state. Given
a matched system state, its originally estimated tem-
poral duration can be reset to the underlying sampling
time (typically represented using a sampling time-step
count) at which the state matched the observation. The
following presentation will assume that the time-steps
associated with a simulated behaviour are those reset
to reflect the observation time indices.

A general way of looking at the buffer mechanism is
to see that it is effectively enables the calculation of
the delayed variable from information available d steps
previously. If at least d previous levels of the behaviour
tree are stored and retrievable, the required informa-
tion is available. Hence, a delayed variable may be con-
strained by retrieving the states of the system variables
involved from d levels higher up the same behaviour



branch. Figure 2 shows this process for the example
system. In order to constrain y, the algorithm searches
up the behaviour branch d = 2 levels to retrieve the
value of x stored at that time-step in order to constrain
y.
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Figure 2: Retrieving Variable State Information from Pre-
vious Levels of the Behaviour Tree

As per the buffer, the initial d steps of simulation
must be treated as a special case for a variable delayed
by d time-steps. To prevent a delayed variable exhibit-
ing a response before sufficient time-steps have elapsed,
its state must be held constant for d time-steps.

Extending FuSim
To implement the proposed improvements, changes
must be made to the standard FuSim algorithm. These
changes, detailed below, implement a unified framework
to deal with both delayed and non-delayed variables.

Representation of Time Delay
Consider a simple system which is numerically repres-
ented as follows:

x(t - 2) + yCt) = z(t- 2)

This constraint conveys information about the cur-
rent state of the delayed variable, y, as a function of
the other two variables’ states two sampling time-steps
ago. To model this type of system, the delay-indicator,
delay(.) is introduced such that the equivalent repres-
entation for FuSim is as follows, where non-delayed vari-
ables have an implicit delay indicator of 0.

x+y N z

delay(y) = 

Hence, FuSim recognises when a constraint contains a
delayed variable and, to constrain it, retrieves the state
information for the other variables from the behaviour
tree as per figure 2. It is important to note that the
state information of the other variables is retrieved for
the sole purpose of constraining the delayed variable.
The current states of variables x and z can only be
expressed in terms of y(t + 2), which at this stage is not
yet determined. Therefore FuSim enforces constraints
backwards in time from the most delayed variable(s).

The situation becomes more complex when multiple
delayed variables are involved. Consider the following

system, as represented numerically and in a fuzzy con-
straint format with appropriate delay indicators:

x(t - 1) + y(O = z(t 2)

x+y N z

delay(x) = 

detay(y) = 
x and y are delayed by one and two time-steps respect-
ively with respect to the current state of z. Despite the
differing amounts of delay present, this constraint con-
veys information about the current state of the most
delayed variable, y, only. It can be satisfied by con-
straining y using variable state information retrieved
from the appropriate level of the behaviour tree. The
level is computed on a variable by variable basis, by
noting the difference in delay indicators between a par-
ticular variable and the most delayed variable.

Figure 3 shows the interaction of the variables in
this system, describing their state transitions at each
time-step. Note that i will differ for different simula-
tion methods; for FuSim it is at most 6. Since FuSim
enforces consistency backwards in time, it is not pos-
sible to constrain the current states of variables x and
z. Here, these variables proceed to all states allowed
by the transition rules to maintain completeness. In a
more complex system, it is likely that these variables
would be involved in other constraints, and so would
be further constrained. When the constraint is enforced
back from the current state of y, any states of x and
z that do not satisfy the constraint for at least one of
the potential values of y at the current time-step will
not be used to create potential system states. This pro-
cess removes invalid values from further consideration
as soon as possible.

x y z Time-Step

INIT

I

Figure 3: Interaction between Time-Delayed Variables

It is now possible to present a unified method of sup-
porting a system containing multiple delayed variables
with differing amounts of delay. Given a constraint
over a set V of variables, it is necessary to establish
the set D of most-delayed constrained variables with a
delay indicator of d for each of its elements, and the
set D’ = V - D which contains variables delayed to a
lesser extent (including those with a delay-indicator of
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[ Variable I Magnitude I Derivative I
X Zero Zero

Zero ,I

Table 1: Example: Initial System State

0). D is the set of variables whose current states are
constrained by interaction with each other and with
previous states of those variables in the set Ds. In the
case of the single constraint of the previous example:
V = {x, y, z}, D = {y} with d = 2, and D’ = {x, z}.

The non-delayed version of FuSim is a special case
of this; for each constraint D~ is empty (i.e. V = D)
and d = 0. The variables are constrained as usual using
current state transition information. This is also pos-
sible if V = D, but d > 0. This might be the case if
two equally delayed variables had a specific relation to
each other as well as to other system variables.

In the general case where Dr is not empty for a given
constraint, for each element u E Dr, retrieve state in-
formation from the level of the tree obtained by offset-
ting the current level by the difference between d and
the delay indicator of u. Figure 4 shows this process,
where delay(u1) = 1, delay(u2) = 2, and delay(u3) = 

","SY- ".

1)’ = {ul, u2, us 

Figure 4: Retrieving Variable State Information for the
Variables in D~ from Multiple Levels of the Behaviour Tree

The Extended Simulation Algorithm

To illustrate how the underlying FuSim algorithm may
be changed to support delayed variables, the following
system will be used (A summary of the updated al-
gorithm will be given at the end of this section). There
are two system variables: x, and y (the delayed vari-
able) with the following structural description. The
initial state of this system is shown in table 1.

n x
y n z

delay(y) 2

At each stage of the algorithm, delayed variables
must be treated differently according to whether a suf-
ficient number of time-steps have elapsed for them to
exhibit a change from their initial state. Throughout
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Table

[ Variable [ Magnitude I Derivative I

" I IIX P - Small P - Small
Y Zero Zero

2: Example: Current State Following Time-Step 1

X {Mag, Deriv)
- Medium,P -

{ P - Medium,P - Small}
{ P - Medium,Zero}
{P - Small,P - Medium}
{P -- Small,P - Small}

{ P - Small,Zero}

Y {Mag, Deriv)

{P - Small,
P - Small}

Table 3: Example: Possible Next States for Each Variable
Following Time-Step 1

this initial period, the state of a delayed variable is
held constant at its initial position. Hence, in the ex-
ample system, y is held constant at {Zero, Zero} dur-
ing time-steps 0 and 1. The Process of tuple generation
and constraint-filtering is unnecessary for a constraint
whose most-delayed variable set, D, has yet to pass
through this initial period. This is because the states
of these variables are in effect strictly constrained to re-
main the same. The following assumes that all delayed
variables have passed through their initial periods.

The calculation of possible state transitions for each
system variable is unchanged. Consider the example
system at time-step 1, where the algorithm is in the
process of computing system states for time-step 2: the
current state is as shown in table 2, and y is to have
passed out of its initial period. The transition rules
produce the potential next states for each variable as
shown in table 3. For simplicity, the magnitude of both
variables is restricted to the quantity Zero and above.

The next stage is to construct a set of state-tuples
for each constraint. Each set will typically be gener-
ated from a mixture of potential next states (for the
most delayed variables of D) and information retrieved
from the behaviour tree (for the less delayed variables
of D~), depending on the particular constraint struc-
ture. In this example, since the first constraint ~ n x
constrains just the variable x, it has associated with it
just the possible next states of x, as shown in table 3
above. Table 4 shows those tuples associated with con-
straints y n x and ~)n ~. These two constraints have
an identical tuple list initially, since they constrain the
same variables. The state of x is not taken from the set
of its possible next states, but is retrieved from the be-
haviour tree. In this case, the variable x had the state
{Zero, Zero} at time-step 0, as given in table 1.

Self-consistency filtering is applied as usual to all con-
straints: the tuples associated with each constraint are
restricted to those which satisfy the constraint. Table 5
shows the restricted tuples for each constraint. Pairwise
consistency filtering must be dealt with more carefully.
It is designed to remove tuples that are inconsistent



I X (Mag, Deriv) (t=0) [ Y (Mag, Deriv) (t=2) 

I(Zero,Zero) Small,P - Small)
(Zero,Zero) [ {P -(Zero,Zero) ]

Table 4: Example: Tuples Generated for both Constraints:
ynxand~ln~

Constraint X (Mag, Deriv) Y (Mag, Deriv) 
.~Nx {P - Small,

P - Small}
(P - Medium,
P - Medium)

ynx (Zero,Zero) (Zero,Zero)
(Zero,Zero) (Zero,Zero)

Table 5: Example: Tuples after Self-Consistency Filtering

between pairs of constraints that share a common vari-
able. If this process is applied to a mixture of delayed
and non-delayed variables, inconsistent results will be
obtained: the variable state information for the set D’
is there solely to constrain the variables in the set D (of
a given constraint). Since this information is retrieved
from previous levels of the behaviour tree it is alien to
the current state and should be ignored by a pairwise
filter. Hence, the pairwise filter uses just the variables
in the most delayed variables sets to make adjacency
calculations (for shared variables) between constraints.
With reference to table 5 for the current example, the
pairwise filter will only operate upon constraints two
and three, since they are adjacent via y.

A similar situation arises when complete system
states are generated from the remaining tuples. A sys-
tem state consists of a combination of a potential cur-
rent state of each variable, and so should not contain
any variable state information retrieved from previous
time-steps. In addition, as noted previously, a vari-
able not in the most-delayed set, D, of any constraint
may only be constrained backwards at a subsequent
time-step. Hence, system states are generated using
a combination of the state information of variables in
set D of each constraint and, for the remaining system
variables, of the potential next states as computed us-
ing the transition rules. Table 6 shows the potential
next system states for the example system. The simu-
lation algorithm can proceed as normal from this point
in applying global filters and processing the remaining
system states.

In summary, the extended fuzzy qualitative simula-
tion algorithm can be described as follows. Given an
initial system state, the algorithm does:

[ X {Mag, Deriv) [ Y (Mag, Deriv) 
(P - Small,P - Small) {Zero,Zero)
(P- Medium,P- Medium) l {Zero,Zero) [

Table 6: Example: Potential Next System States

* State Transition. Hold constant any variable still
within its initial period. For each other variable, gen-
erate potential next states using the original trans-
ition rules.

¯ State Tuple Construction. For each constraint,
say constraint i:

- If the variables in the most-delayed variable set D/
are within their initial period, no tuples need to be
generated (variables in set Di are constrained to
remain the same).

- Else, generate a set of n-tuples, where n is the num-
ber of all the variables involved in the constraint.
To do this, for each variable in the less-delayed set,
D~, retrieve the variable state from the appropri-
ate level of the behaviour tree and form the cross
product with the possible next states of the vari-
ables in Di.

* Self-Consistency Filtering. Apply to the tuples
associated with each constraint as usual.

¯ Pairwise-Consistency Filtering. Apply between
pairs of constraints, j and k that share a variable,
such that the shared variable is in the most delayed
variable sets, Dj and Dk of the two constraints.

¯ System State Generation. Combine variable state
information in the most delayed variable set of each
constraint with state transition information of any
remaining system variables.

¯ Global Filtering. Apply to each generated system
state as usual.

¯ Iteration of the above for each remaining sys-
tem state.

Experimental Results
The extended FuSim algorithm has been applied to a
number of systems. Due to space limitations, this sec-
tion will concentrate on discussing the results from a
second-order system which resembles a class of physical
systems that exhibit delayed periodic oscillation beha-
viour. For instance, the same model can be used to
represent a lq.LC circuit in electronic engineering and a
coolant system in manufacture engineering.

Three variables are used to simulate the system: x,
y, and z. The reaction of x to y and z is delayed by
three time-steps. The magnitude and derivative of each
variable are taken from a fuzzy quantity space which
consists of the following quantities: {N - Top, N -
Large, N- Medium, N- Small, Zero, P- Small,
P - Medium, P - Large, P - Top}. The initial system
state is shown in table 7. The structural description of
the system is composed of three constraints, as well as
the delay indicator for x.

n y

y n z
z n -x

delay(x) = 3
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L Variable L Magnitude Derivative J

N - Medium
Zero

Table 7: Initial State of the Example System

................................ N,.~,a .................................;...

........ ~,wa .................i ........................~u,p..~=.

.................................... .} ....................................-...
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i i...
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Figure 5: Delayed vs. Non-Delayed Behaviour Patterns

This system was simulated for a total of ten sampling
time-steps, starting from the initial state. The beha-
viour of the delayed variable, x, is shown in figure 5.a.
The behaviour graph is annotated with the value of
the derivative component at each time-step. Since x
is delayed by three time-steps, it is held constant at
(P - Medium, Zero} during this initial period, as can
be seen. At time-step 3, sufficient time has elapsed for x
to exhibit a reaction to y and z at t = 0. It is therefore
constrained to remain equal to {P- Medium, Zero}.
This is because P-Medium = -(N- Medium), where
N - Medium is the magnitude of z at t -- 0, and Zero
is the magnitude of y at t = 0, thus satisfying the con-
straint. In the ensuing time-steps, it can clearly be
seen that x is constrained to a delayed periodic oscilla-
tion, compared to a similar system that does not exhibit
time-delayed behaviour as shown in figure 5.b.

Conclusion and Future Work

The extension to FuSim outlined in this paper is a novel
approach to qualitatively simulating time-delayed beha-
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viour when used in a process of synchronous tracking.
It allows a QR system to deal with system variables
that exhibit different delays in their responses to their
constraining functions. The algorithm works by con-
straining multiple delayed variables via retrieving state
information from the behaviour tree at a depth accord-
ing to the magnitude of each delay.

The results to date have been very encouraging. It
does remain, however, to apply the algorithm to a
more varied and complex set of problems and to ex-
amine whether this approach possesses the properties
of soundness and completeness (though there has not
been any indication thus far that such properties may
be lost due to the present extension). It may be that
for a large delay time and a complex structural descrip-
tion, storing such a large section of the behaviour tree
will become impractical. In this case it would be useful
to develop a scheme whereby only the variable states
that are actually going to be retrieved (as opposed to
the entire system state) are stored.
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