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Abstract

The management of an agent in a dynamic
and uncertain real-time environment is fairly
intractable with traditional planning methods.
Such methods cannot be computed efficiently, are
not capable of replanning, and mostly lack explicit
temporal formalisms. The planning model pro-
posed in this paper overcomes these weaknesses
by applying iterative repair methods, constraint-
programming techniques, and an explicit timeline
approach.
For the management of incomplete knowledge, a
single-plan approach is proposed in which only
one plan possibility is considered. The applica-
tion of UNKNOWN values, KNOWN values, NOT
values, and continuous domain fluents enables to
cope with incomplete knowledge.

Introduction
The work originated as part of the EXCALIBUR project.
The goal of this project is to develop a generic architec-
ture for autonomously operating agents, like computer-
guided characters/mobiles/items, within a complex
computer-game environment. These agents have to be
able to find the right actions to pursue their given goals,
and adapt their behavior to new environments or op-
ponents.

A crucial aspect of an agent is the way its behavior
is determined. If there shall be no restriction on reac-
tive actions with predetermined behavior patterns, an
underlying planning system is needed. A lot of research
has been done on planning, and a wide range of plan-
ning systems have been developed, e.g. STRIPS (Fikes
& Nilsson 1971), UCPOP (Penberthy & Weld 1992),
and PRODIGY (Veloso et al. 1995).

To meet the hard real-time constraints of the
computer-game environment (most of the CPU power is
used for the game engine and graphics), an interleaving
of planning and execution is essential. An agent in sud-
den danger calls for fast reactions, whereas a longer rea-
soning time may be taken to establish more elaborate
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plans. In addition, the highly dynamic environment
makes continuous replanning indispensable. Further-
more, agents’ interactions require the ability to model
temporally complex relations, and the agent’s restricted
insight requires a way of representing incomplete knowl-
edge.

Iterative Plan Repair
The search for a plan is done by an iterative plan re-
pair approach. Iterative repair approaches perform a
search by iteratively changing an initial state. They
provide a solution at anyone time, the quality of the
solution being subject to constant improvement. Most
of these iterative methods are incomplete, and they may
get trapped in local optima or on plateaus. Many meth-
ods apply additional techniques to escape from these lo-
cal minima and plateaus, e.g. restarts, random walks, or
tabu lists. If the agent’s environment is highly dynamic,
the importance of these features declines, the search
space changing quickly and less in-depth improvement
being possible.

The iterative plan-repair computation is shown in fig-
ure 1.
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Figure 1: World Dynamics and Plan Improvement
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Modeling with Constraints

Constraint-programming techniques focus on the solu-
tion of combinatorial search problems, and are thus well
suited for providing the framework for the plan search.
The basic constraint satisfaction problem is formulated
as a set of variables X = {Xz,...,Xn}, where each
variable is associated with a domain Dz,...,Dn, and
a set of constraints C = {C1, ..., Cm} over these vari-
ables. Constraints are relations between variables, that
restrict the possible value assignments.

The EXCALIBUR model applies so-called global con-
straints (Puget 8z Leconte 1995), instead of using 
standard problem encoding with simple primitives such
as linear inequalities and the like. A global constraint
is a replacement for a set of lower-level constraints,
where additional domain knowledge allows the applica-
tion of specialized data representations and algorithms
to guide and accelerate the search.

The global constraints are used to evaluate the cur-
rent plan. Each constraint calculates a local satisfaction
value. These satisfaction values are combined within
an objective function, which serves as a measure of the
plan’s quality. The local satisfaction values not only
have to express constraint violations, but also the dif-
ference to preferred solutions (goals).

The second task of the constraints is to provide sug-
gestions for improvement. Repair methods may consist
of changing control variables, like the begin and end
time points of tasks, references, etc. But whole actions
can also be created, deleted, and objects can be split
into several objects, etc. In the current implementa-
tion, the repair suggestion of the constraint with the
highest inconsistency is chosen.

Plan Structures

The model is inspired by the job-shop-scheduling sce-
nario, which has proved to be a first-class application
domain for constraint programming. Consequently the
model’s components are described in terms of resources,
tasks, and constraints.

Actions, Action Tasks, and Action
Resources

The execution of an action (like EAT PEANUT) can
be divided into action task subcomponents. Each of
these action tasks utilizes an action resource for its
execution. For instance, the action EAT PEANUT re-
quires action tasks on a MOUTH and a LEFT HAND or
RIGHT HAND action resource. Figure 2 visualizes the
assignment of action tasks to action resources.

An action task’s structure contains a description,
which specifies execution information for the action re-
sources. Two further entries determine the task’s begin
and end. Begin and end are decision variables, but as
iterative repair is to be applied, there are always fixed
values assigned to them.

Each action has a task constraint to set the begin
and end of the action’s tasks in specific relations. For
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Figure 2: The Assignment of Action Tasks to Action
Resources

example, the action tasks of the action EAT PEANUT
must begin and end at the same time, and the begin
and end values must be four seconds apart. The role of
an action’s precondition constraint is explained in
the next section.

Within an action resource, an action resource con-
straint must ensure that the resource’s action tasks do
not overlap, as simultaneous executions of tasks would
interfere with each other. For example the agent is not
allowed to talk and to eat at the same time.

To clarify the role of the constraints, the current im-
plementation of the task constraint is detailed in the
following:

¯ The task constraint manages a set of task relations.
Each task relation is represented by a linear inequal-
ity X1 ® )(2 + c, X1 and X2 being the start or end
time points of tasks, ® E {<, <, =, >, >}, and a shift
constant c.

¯ For each linear inequality that is unsatisfied, the min-
imal shift distance required for one of the inequality
variables to satisfy the inequality is added to the task
constraint’s inconsistency.

¯ If the task constraint is chosen to improve the current
state, an inconsistent inequality is selected, and a
minimal shift of one of the involved tasks is performed
in such a way, that the inequality is fulfilled.

State Tasks and State Resources

Pre- and postconditions of the actions are maintained
by constraints between the action tasks and the state
resources and state tasks.

A state resource is similar to an action resource. It
does not manage actively planned actions, but rather
the development of a specific property of the envi-
ronment or the agent itself 1. For example, an OWN
PEANUT state resource with a Boolean assignment for

ZState resources can be interpreted as fluents.



anyone time can provide information about the posses-
sion of a peanut (see figure 3).
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Figure 3: A State Resource
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The status of the state resources can restrict the ap-
plication of actions. To execute the action task EAT
PEANUT, it is first necessary to have a peanut. These
relations are preserved by the precondition constraints
of actions, which access state resources’ values.

The effects of actions are more complicated to real-
ize, as multiple actions and events may have synergetic
effects. For example, a state resource HUNGER with as-
signments of natural numbers can be influenced by an
improving action EAT PEANUT and a worsening WALK
at the same time.

It is the role of state tasks to describe an action’s
effects. For instance, a state task of the action EAT
PEANUT is responsible for a decreasing contribution
of-3 to the state resource HUNGER during the action’s
execution (see figure 4). Each state resource has a spe-
cific state mapping, that maps the contributions of
the state tasks to values of the state resource’s domain.
In the case of the HUNGER resource, the synergetic ef-
fect is a simple addition of the single gradients. An
additional state resource constraint maintains in-
ternal resource consistencies, e.g. domain restrictions,
etc.
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Figure 4: The Mapping Mechanism of State Resources

There can be further effects, which may be caused by
synergetic effects within a state resource. Adding water
to a bathtub may result in its overflowing and wetting

the bathroom. The actions cannot provide state tasks
to realize these further effects because an action has
only the limited view of its state task contributions.
Thus, dependency effects of specific state resource
states must be expressed in addition. The dependen-
cies are special actions that are beyond the agent’s con-
trol. Expected external events can also be integrated
by these dependencies.

Objects, References, and Sensors
There may be more things to eat in the world than a
peanut. Of course it is possible to define an action for
every possible object. A neater and more flexible way
is to define a general action EAT, whose tasks contain
references to the affected state resources.

Consider a case where that we have two peanuts, a big
and a small one. As long as the world’s objects are not
all unique, their state resources are indistinguishable.
If the EAT action were applied, the big peanut might
vanish, whilst the small one would be used to lessen the
hunger.

To avoid such equivocations, a group of state re-
sources is combined to form an object. The object
concept also provides other nice features like inheri-
tance, etc. Figure 5 illustrates the application of the
EAT action to a PEANUT.
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Figure 5: References and Objects

Of course, not only action tasks can use references.
State tasks and state resources may also use references
to express things like BLOCK A IS ON BLOCK B (see
figure 6).

Objects may also have a related sensor. The sensors
report on actual data, like the current perception of
hunger. We assume high-level sensoring that provides
ready-structured objects. Sensed objects are related to
the virtual objects of the plan.
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Figure 6: A Blocks World Example

Since the agent has a limited view of the dynamic
environment, it cannot fully rely on its knowledge of
objects. Hence, each object has a confidence value
which expresses the amount of trust that the virtual
plan object has a real counterpart. The assignment
of a sensor to an object usually results in a very high
confidence value. A sensor must always be assigned to
an object.

Incomplete Knowledge

An agent’s incomplete knowledge of his environment
complicates the planning process enormously because
multiple possibilities have to be considered. This in-
completeness of knowledge relates to the environment’s
state as well as to the effects of actions. This is much
too expensive for real-time planning systems, and even
worse for temporal planning, where a great deal more
information has to be handled. A dynamic environment
like a multi-agent system increases the complexity even
more.

The following subsections give an overview of differ-
ent approaches for coping with the plan possibilities,
discuss how to model missing information, how to elimi-
nate uncertainty by information gathering mechanisms,
and how to extend the expressiveness to model even sit-
uations, where the transition from lack of knowledge to
knowledge is fuzzy.

Considering Only One Plan Possibility

If a decision relies on an unknown property, every pos-
sible property value may yield another plan. If the
property value becomes available somewhere within
the plan, the plan has to branch for each important
refinement. Planners that construct such branching
plans are called contingency planners. Examples are
WARPLAN-C (Warren 1976), CNLP (Peot & Smith

1992), Plinth (Goldman & Boddy 1994), and Cassan-
dra (Pryor & Collins 1996).

An extension of this approach is probabilistic plan-
ning, where special probability distributions are con-
sidered as well. For example, it is likely that a vending
machine neither has the requested product nor wants
to return the money. Work in this area includes syn-
thetic projection (Drummond & Bresina 1990), Markov
decision process approaches (Dean et al. 1995), and the
BURIDAN probabilistic planning (Kushmerick, Hanks
& Weld 1995) with its contingent extension (Draper,
Hanks & Weld 1994).

The consideration of multiple possibilities can be use-
ful in terms of reliability. Although the planners (espe-
cially the probabilistic ones) do not always search the
whole search space, application to more complex prob-
lem domains, temporal planning, and dynamic environ-
ments would largely overtax storage and computation
power. Strong real-time requirements such as those for
EXCALIBUR’s agents are out of the question.

A solution is to consider only one possible plan. The
choice of a plan alternative does not have to be stat-
ically fixed. The decision can be based on pessimism
or optimism, as well as on estimated probabilities. The
preference can be dependent on the specific situation,
and can be influenced by learning mechanisms, too.
In the case of a failed prediction, the plan has to be
changed. As long as no critical errors have been made,
the iterative plan repair can automatically adapt the
plan. This consideration of a single plan possibility is
close to the operator-parameterization approach of the
Cypress system (Wilkins et al. 1995).

A fixed plan still allows incomplete knowledge regard-
ing the states. Only the actions are fixed, while some
states can have a variety of possible assignments. For
example, climbing onto a telephone book is indepen-
dent of the language in which it is written. Opting for
a special language would merely mislead further action
decisions, as no distinction between assumptions and
knowledge can be made.

Lack of Information

The state resources can represent the lack of informa-
tion by the addition of an UNKNOWN value to their
domain (which gets the default state). For example, 
the agent’s absence, other agents might open or close a
door without the agent’s noticing. Whether the door is
closed or not can only be known if the door is within the
agent’s field of vision. Thus, the state resource DOOR
with a domain of OPEN and CLOSED gets an additional
UNKNOWN value, which is triggered by actions, that
cause the agent’s absence.

The action of passing the door requires that door
is open. In a pessimistic approach, the precondition
constraint of the passing action has a bad satisfaction
(inconsistency) if the door is in an UNKNOWN state be-
cause failure could endanger later commitments. The
inclusion of a prophylactic OPEN DOOR action averts
this threat (see figure 7).
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Figure 7: The Use of UNKNOWN Values

On the other hand, the satisfaction could be driven
by experience. If the agent has learned that the door is
usually open, the precondition constraint of the passing
action might settle for the UNKNOWN state of the door.

Information Gathering

Classical planners normally try to find a plan to sat-
isfy goal states if they are not already satisfied. But in
an incomplete environment they cannot decide whether
an unknown state is already satisfied or not. An un-
known state like COLOR(DOOR, BLUE) could only be
satisfied by painting the door blue. If the door is al-
ready blue, this action would be unnecessary, and a lack
of blue paint would even entail an inconsistency. The
ability to plan sensory actions too was realized in vari-
ous STRIPS-based approaches, such as IPEM (Ambros-
Ingerson & Steel 1988), UWL (Etzioni et al. 1992) 
xn (Golden, Etzioni & Weld 1994), Sage (Knoblock
1995), and Occam (Kwok & Weld 1996).

Run-Time Variables The concepts are mostly
based on run-time variables, which are initialized by
sensing actions. In the EXCALIBUR model, the fact of
knowing a state can easily be expressed by the inclusion
of KNOWN values for state resources. These values are
triggered by actions, which include the sensing of the
state resource’s property. The state resources’ map-
ping mechanisms must protect already specified states
from the more general KNOWN reassignment, and al-
low a switch to the KNOWN state only from UNKNOWN
states. This process does not differ from the normal
state processing and does not require a special sensory
treatment. In the example in figure 8, the crossing of a
bridge in an unknown state is considered to be unsat-
isfiable enough to include an additional TEST BRIDGE
action.

The problem of redundant sensing, which is addressed
in (Golden, Etzioni & Weld 1994) is not present here,
as there is only a single plan and the state resources’
information is accessible over the whole time period.
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Figure 8: The Use of KNOWN Values

Hands-Off Goals Hands-off goals, as in (Etzioni et
al. 1992), that forbid the change of states are not nec-
essary either. The formulation of goals like passing the
blue door are a problem only for planners, who cannot
express that the door has to be blue at the moment of
the goal formulation. These planners have to introduce
such hands-off goals to prevent the planner from passing
another door after painting it. Temporal planners can
express these goals much more adequately because they
can quantify the preconditions temporally (see figure
9). Moreover, in dynamic multi-agent domains, such
hands-off goals do not help, as external actions might
change the states.
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Figure 9: Temporal Quantification

Partial Knowledge

So far, only state resources with two-valued domains
and clear transitions between knowledge and no knowl-
edge have been considered. The following sections refine
this approach.

Unordered Domains Action-resource domains in
the EXCALIBUR agent model may not only be two-
valued, like the Door with OPEN and CLOSED val-
ues. For example, there may be an additional LOCKED
value. In a situation of incomplete knowledge, each do-
main value must have a knowledge level of

* UNKNOWN: The information as to whether the value
corresponds to the state is not available;
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¯ KNOWN: The information as to whether the value
corresponds to the state will be available in the fu-
ture; or

¯ NOT: The domain value definitely does not corre-
spond to the state.

Current Time_-_~

HaVe:Key I Absent

I I
-- ~ 30 sec. 35 sec.

28 sec.

Figure 10: Incomplete Knowledge of State Values

Because of the XOR-relation of the domain values,
some propagations can be made within a state resource.
If only one domain value has a knowledge level of
UNKNOWN, then this value gets the knowledge level
KNOWN. If only one domain value is not NOT, then
this value must be the state resource’s state.

Ordered Domains In contrast to the value sets of
the previous section, the elements of a state resource’s
domain can also be in a specific ordering relation. For
example, the agent wants to fill a bucket with water,
but he does not know how much water is in the bucket
to start with. The amount of water in the bucket can
be modeled by an integer state resource.

Of course, it is possible to apply the UNKNOWN-
KNOWN-NOT representation from the previous section
to each domain value. But this would be a rather costly
approach. It is more efficient to subsume consecutive
values of the same knowledge level by intervals 2. Figure
11 shows an example.

It is even more efficient to consider only the con-
vex (vertical) hull of intervals (trapezoids) of the 
knowledge level. Actually, this method is not precise,
because already excluded intermediate values may not
be accessible any more. Consequently, the intervals
(trapezoids) of different knowledge levels might over-
lap. For example, in the 65th second of figure 11, the
convex hull of the NOT knowledge level includes the
KNOWN values.

Probabilities Probabilities for prospective states of
the state resources are not a basic part of the model,

2An appropriate representation for taking into account
the dimension of time are trapezoids (provided that changes
are only linear).
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Figure 11: Value Subsumption

because this is not generally needed and would waste
a lot of system resources. In some cases, however, the
use of probabilities can dramatically affect the plan re-
sult, especially if a state probability can be changed
by special actions. For example, if the agent is search-
ing for a key, it is not easy to express progress within
the search process without probabilities. Whether the
agent searches one drawer or two drawers must make a
difference.

The probabilities can be realized by continuous do-
main state resources. Figure 12 shows a possible mod-
eling of the key search. Further actions’ precondition
constraints (like that of TAKE KEY) can use the prob-
ability value to compute their satisfaction. The prob-
ability value can also be adopted to influence further
dependencies.
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Figure 12: State Probabilities

- 100

-0

]00

0

Related Work
Most existing planning systems use a STRIPS-like rep-
resentation, which is based on the Situation Calculus
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(McCarthy & Hayes 1969). The Situation Calculus
works on a branching time-point structure, where com-
plete world descriptions (sets of states) are linked 
actions. In contrast to this, the EXCALIBUR model be-
longs to the group of explicit timeline approaches. In
there, actions and states are related to a timeline. Their
most prominent representative is Allen’s interval tem-
poral logic (Allen & Ferguson 1994). The Situation
Calculus’ branching structure allows to reason about
multiple possible futures in a very direct way, whereas
the focus of explicit timeline approaches is on handling
complex temporal relations.

There are only a few planners that use an explicit no-
tion of time, e.g. parcPLAN (Lever & Richards 1994),
ZENO (Penberthy & Weld 1994), and Descartes (Joslin
1996). All these systems have problems in expressing
state transitions (internal fluent constraints). In most
cases, only temporal overlaps of contradictory proposi-
tions are forbidden, parcPLAN allows the exclusion of
simple property constellations as well.

The representation problem is even bigger for stan-
dard constraint-solving tools for planning and schedul-
ing, such as OZONE (Smith, Lassila & Becker 1996)
or CHIP (Simonis 1995). They do not feature gen-
eral state concepts and focus on handling capacity re-
sources. The HSTS representation (Muscettola 1994)
addresses states and state transitions much better, but
the representation is on a very low level. EXCALIBUR’s
specialized high-level constraints make it possible to in-
clude constraint-specific search control and representa-
tion knowledge.

Nearly all planning systems search for a plan by re-
finement. Refinement is a stepwise narrowing process.
In each step, a subset of states (or plans) is chosen for
further investigation until a solution is found. In the
case of an inconsistency, backtracking is performed over
the refinement decisions.

The use of iterative repair search is very rare. Be-
sides EXCALIBUR, there are only a few iterative repair
approaches, e.g. Satplan (Kautz & Selman 1996) and
ASP (Bonet, Loerincs & Geffner 1997).

While long-term refinement search produces better
results than iterative repair strategies, the quality im-
provement gradient of iterative repair is much better for
a short reasoning time. Larger problems usually result
in the significant superiority of iterative repair as well
(Wallace & Freuder 1996; Gent et al. 1997). Further-
more, a dynamic environment promotes iterative repair
search, because the iterative search is little affected by
modifications of the search space. This is not true of
refinement methods, which have to update their mem-
ory of the already explored search space and may have
to redo the whole search.

The iterative repair approach inherently supports a
partial constraint satisfaction and anytime availability
as well. This makes fast reactions possible, which has
long been the domain of popular Alife agent systems
like subsumption architectures (Brooks 1986). Such
systems apply a reactive approach with predetermined

behavior patterns, and are not capable of longer-term
reasoning. Many hybrid agent systems like the 3T robot
architecture (Bonasso et al. 1997) or the New Millenium
Remote Agent (Pell et al. 1996) perform reactions only
in a very limited sense, applying a traditional offiine
deliberative planner for higher-level planning.

Conclusion

The EXCALIBUR agent model satisfies the requirements
for a dynamic real-time multi-agent system. The ex-
plicit temporal approach makes it possible to handle
temporally complex relations, and the representation of
UNKNOWN, KNOWN, and NOT knowledge levels enables
to deal with incomplete knowledge. Even a limited
use of probability computation is possible. High-level
global constraints allow a declarative problem speci-
fication and the application of specialized satisfaction
algorithms and representations. A constant improve-
ment/replanning by iterative repair optimization al-
lows efficient real-time creation and maintenance of the
agent’s plan.

Future work includes the refinement of specialized
satisfaction mechanisms, the elaboration of interagent
coordination, and the incorporation of learning meth-
ods. Further and more detailed information about the
EXCALIBUR project is available at:

http ://www. first, grad. de/concorde/EXCALIBURhome, html
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