
A Framework for Mobile Robot
Concurrent Path Planning &: Execution

in Incomplete &= Uncertain Environments

Abstract

Sensor-based discovery path planning is problematic
because the path needs to be continually recomputed as
new information is discovered. A process-based client-
server approach is presented that permits concurrent
sensor-based map and localization-correction updates
as well as concurrent path computation and execution.
Laplace’s equation is constantly solved (i.e., a harmonic
function) by using an iteration kernel convolved with
an occupancy-grid representation of the current free
space. The path produced (i.e., by steepest gradient
descent on the harmonic function) is optimal in the
sense of minimizing the distance to the goal as well as
a hitting probability. This helps alleviate the influence
of uncertainty on path planning. An initial heuristic
estimate provides the path planner with instantaneous
response (i.e., reactive), but with some deliberation it
able to produce optimal paths. In addition, the compu-
tation time for generating the path is insignificant pro-
vided that the harmonic function has converged. On
a regular grid, the computation of the harmonic func-
tion is linear in the total number of grid elements. A
quad-tree representation is used to minimize the com-
putation time by reducing the number of grid elements
and minimally representing large spaces void of obsta-
cles and goals.

Introduction
Sensor-based discover path planning is the guidance of
an agent - a robot - without a complete a priori map,
by discovering and negotiating with the environment so
as to reach a goal location while avoiding all encoun-
tered obstacles. A robot must not only be able to create
and execute plans, but must be willing to interrupt or
abandon a plan when circumstances demand it. In tra-
ditional AI planning, a smart planning phase constructs
a plan which is carried out in a mechanical fashion by
a dumb executive phase. The use of plans regularly
involves rearrangement, interpolation, disambiguation,
and substitution of map information. Real situations
are characteristically complex, uncertain, and immedi-
ate. These situations require that the planning and the
execution phases function in parMlel, as opposed to the
serial ordering found in traditional AI planning.

Path planning can be categorized as either being

John S. Zelek
Engineering Systems & Computing,

School of Engineering, University of Guelph,
Guelph, ON, N1G 2Wl, Canada

e-marl: jzelek@uoguelph.ca
www: http://131.104.80.10/webfiles/zelek/

static or dynamic, depending on the mode of available
information (Hwang & Ahuja 1992). static path pl an-
ning strategy is used when all the information about the
obstacles is known a priori. Most path planning meth-
ods are static. Dynamic path planning is also referred
to as being discovery and on-line planning (Halperin,
Kavraki, & Latombe 1997). In this problem space, the
workspace is initially unknown or partially known. As
the robot moves, it acquires new partial information via
its sensors. The motion plan is generated using partial
information that is available and is updated as new in-
formation is acquired. Typically this requires an initial
planning sequence and subsequent re-planning as new
information is acquired.

A path planning framework has been proposed and
implemented as part of the SPOTT mobile robot con-
trol architecture (Zelek 1996). Within SPOTT’s frame-
work there are two concurrently executing planning
modules. Planning is defined along a natural division:
(1) local, high resolution, and quick response, versus (2)
global, low resolution, and slower response. The local
planning module executes a path based on what is cur-
rently known about the environment as encoded in an
occupancy grid (Elfes 1987). A potential field technique
using harmonic functions is used, which are guaranteed
to have no spurious local minima (Connolly & Grupen
1993). A harmonic function is the solution to Laplace’s
equation. Any path - determined by performing gradi-
ent descent - has the desirable property that if there is
a path to the goal, the path will arrive there (Doyle
Snell 1984). In addition, the steepest descent gradient
path is also optimal in the sense that it is the mini-
mum probability of hitting obstacles while minimizing
the traversed distance to a goal location (Doyle & Snell
1984). This optimality condition permits modeling un-
certainty with an error tolerance (i.e., obstacle’s posi-
tion and size, robot’s position) provided that the robot
is frequently localized and obstacle positions and size
are validated via sensor information.

The computation of the harmonic function is expen-
sive, being linear in the number of grid points. The pre-
sented technique is a complete algorithm (i.e., also re-
ferred to as exact algorithm): guaranteed to find a path
between two configurations if it exists. A complete algo-

From: AAAI Technical Report WS-98-02. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

rithm usually requires exponential time in the number
of degrees-of-freedom (Halperin, Kavraki, & Latombe
1997). The approach is confined to a 2D workspace,
with the emphasis being on obtaining real-time1 perfor-
mance in this dimensional space with future prospects
of adaptation to higher dimensionalities.

A client-server process model is used to concurrently
compute the potential field (i.e., compute the potential
paths to the goal) and execute the path. The global
planning module uses a search algorithm (i.e., Dijk-
stra’s algorithm) on a graph structure representation
of the map. The role of the global planning module is
to provide global information to the local path plan-
ner. This is necessary because the spatial extent of the
local path planner is limited due to its computational
requirements increasing proportionally with the num-
ber of grid elements.

A typical operational scenario within SPOTT (Zelek
1996) can be presented in the following manner. The
goal specification is given as input by the user. If an
a priori CAD map exists, it is loaded into the map
database. The role of the control programs (i.e., be-
havioral controller) is to provide the local path planner
(i.e., potential field) with the necessary sensor-based
information for computation, such as obstacle configu-
rations, current robot position, subgoals if necessary, in
addition to performing reactive control. The behavioral
controller continually computes mapping and localiza-
tion information by processing sensor data. As the path
is being computed, another module is responsible for
concurrently performing steepest gradient descent on
the potential function in order to determine the local
trajectory for the robot.

Background

A type of heuristic algorithm for performing dynamic
path planning is the potential field technique (Khatib
1986). This technique offers speedup in performance
but cannot offer any performance guarantee. In addi-
tion, these algorithms typically get stuck in local min-
ima. Techniques have been devised for escaping these
local minima such as the randomized path planner (Bar-
raquand & Latombe 1991) which escapes a local mini-
mum by executing random walks at a cost of computa-
tional efficiency.

A complete algorithm for performing dynamic path
planning is the D* algorithm (Stentz 1995). D* (i.e.,
dynamic A*) performs the A* algorithm initially on the
entire workspace. As new information is discovered, the
algorithm incrementally repairs the necessary compo-
nents of the path. This algorithm computes the short-
est distance path to the goal with the information given
at any particular time. One problem with the D* algo-
rithm is that no allowances are made for uncertainty in
the sensed obstacles and position of the robot.

1Real-time is defined as responding to environmental
stimuli faster than events change in the environment.

An approach that approximates being a complete
algorithm is probabilistic planning (Barraquand et al.
to appear). Probabilistic planning is generally used
for multi-link manipulators and when the configura-
tion space has more than five degrees of freedom. In
this approach, the first step is to efficiently sample the
configuration space at random and retain the free con-
figurations as milestones. The next step checks if each
milestone can be circumvented by a collision free path,
producing a probabilistic roadmap. A harmonic func-
tion can be computed using the milestones as grid ele-
ments. It is argued in this paper that a quad-tree rep-
resentation can permit the use of a complete approach
without resorting to probabilistic techniques even if it
is just for 2D planning.

Local Path Planning

SPOTT’s local path planner is based on a potential field
method using harmonic functions, which are guaranteed
to have no spurious local minima (Connolly & Grupen
1993). A harmonic function on a domain f~ C R’* is
function which satisfies Laplace’s equation:

V2¢= Z~_I (~2¢ -- 0 (1)

The value of ¢ is given on a closed domain f~ in the con-
figuration space C. A harmonic function satisfies the
Maximum Principle 2 and Uniqueness Principle a (Doyle
& Snell 1984). The Maximum Principle guarantees that
there are no local minima in the harmonic function.

Iterative applications of a finite difference operator
are used to compute the harmonic function because it
is sufficient to only consider the exact solution at a fi-
nite number of mesh points4. In addition, gradients for
path computation are solicited during the iterative com-
putation without concern for obstacle collision 5. Linear
interpolation is used to approximate gradients when the
position of the robot is in between mesh points. The
obstacles and grid boundary form boundary conditions
(i.e., Dirichlet boundary conditions are used) and in the
free space the harmonic function is computed using an
iteration kernel, which is formed by taking advantage
of the harmonic function’s inherent averaging property,
where a point is the average of its neighboring points. A
five-point iteration kernel (Hornbeck 1975) for solving
Laplace’s equation is given as follows:

1UUi,j = -~(i÷l,j "Jr Vi-l,j J¢- Ui,jq-1 + Ui,j-1) (2)

2A harmonic function f(x,y) defined on f~ takes on
its maximum value M and its minimum value m on the
boundary.

aIf f(x, y) and g(x, y) are harmonic functions on f~ such
that f(x, y) = g(x, forall boundary points, thenf(x, y) =
g(x, y) for all x, y.

4As opposed to finite element methods which compute an
approximation of an exact solution by continuous piecewise
polynomial functions.

5Obstacles are not in the free space and are not valid
positions for the robot.

A more accurate nine-point iteration kernel can also be
used (van de Vooren & Vliegenthart 1967):

1 Utr~,~ = ~(U~+l,j + g~_l,~ + U~,j+l + ~,~-~)
+N(U~+Id+I + Ui-l,~+l + Ui-l,~-i + Ui+~,~-l)

(3)
The computation of the harmonic function can be for-
mulated with two different types of boundary condi-
tions. The Dirichlet boundary condition 8 is where u
is given at each point of the boundary. The Neumann

eu the normal compo-
boundary condition is where ?-~,
nent of the gradient of u, is given at each point of the
boundary. In order to have flow, there has to be a
source and a sink. Thus, the boundary of the mesh
is modeled as a source, and the boundary of the goal
model is modeled as a sink. The boundaries of the ob-
stacles are modeled according to the type of boundary
condition chosen: Dirichlet or Neumann. The path -
determined by performing steepest gradient descent on
a harmonic function using Dirichlet boundary condi-
tions - is also optimal in the sense that it is the min-
imum probability of hitting obstacles while minimiz-
ing the traversed distance to a goal location (Doyle
Snell 1984). Neumann boundary conditions cause such
a path to graze obstacle boundaries. This optimality
condition permits modeling uncertainty with an error
tolerance (i.e., obstacle’s position and size, robot’s po-
sition) provided that the robot is frequently localized
using sensor data. The robot is modeled as a point but
all obstacles are compensated for the size of the robot
in addition to an uncertainty tolerance7. The compu-
tation of the harmonic function is performed over an
occupancy grid representation of the local map. The
computation of the harmonic function is executed as a
separate process from the path executioner. In order to
reduce the number of iterations to be linear in the the
number of grid points, "Methods-of-Relaxation" (Ames
1992) techniques such as Gauss-Seidel iteration with
Successive Over-Relaxation, combined with the "Alter-
nating Direction" (ADI) method were used. A local
window is used for computing the potential field to fur-
ther limit the computation time, and because of the
rapid decay of the harmonic function, especially in in
narrow corridors s. A global path planner (discussed
later) provides information about goals outside the lo-
cal bounds. The process computing the iteration ker-
nels and servicing requests from the executioner and
sensor updates uses the following algorithm:

1. Loop 1: Load initial map if available.

8This inherently makes all applicable boundary points
into sources (i.e., in terms of sources and sinks for modeling
liquid flow).

7This may appear to be heuristic, but it is based on not
permitting the robot’s position error to grow beyond a cer-
tain fixed limit (i.e., by re-localizing).

SOn a thirty-two bit computer, the harmonic function
can only be accurately represented when the length-to-width
ratio for a narrow corridor is less than 7.1 to 1 (Zelek 1996).

2. If the goal is outside the bounds of the potential field,
project the goal onto the border.

3. Loop 2:

(a) Compute an averaging iteration kernel over the entire
grid space.

(b) Poll to see if a new robot position estimate is available.
If so, correct the accumulated error.

(c) Poll to see if any newly sensed data is available. If so,
update the map.

(d) Update the robot’s position based on the odometer sen-
sor.

(e) Poll to see if the execution process module requests a
new steering direction for the robot. If so, compute it
by calculating the steepest descent gradient vector at
the current estimate of the robot’s position.

(f) If the robot is near the edge of the border of the poten-
tial field window, move the window so that the robot
is at the center and go to Loop 1, else go to Loop 2.

This computation has the desirable property that
map features can be added or subtracted dynamically
(i.e., as they are sensed) alongside with the correction
of the robot’s position. In addition, these events are
independent of the computation and the execution of
the path.

Pot~mt~l Field Contour Display

2 4 6 10 12 14 16 18
XaXI=

Figure 1: Equal-potential contours, of a computa-
tion converging towards the harmonic function solution. A
path executed at this instance shows some irregularities from
a smooth curve. After convergence, the path is smooth, albeit
at the resolution of the discretization.

Another approach to speed up performance is to pro-
vide an initial guess to the solution, namely the heuris-
tic potential field (Khatib 1986). This makes the local
path planner an iterative-refinement anytime approach
(Zilberstein 1996) where after a short period after
map change, response is reactive but not optimal or
guaranteed; and after convergence is achieved, response
is optimal (see Figure 1). Achieving fast convergence
will not necessarily be possible or realistic if the path

planning is done in more dimensions than two. A pos-
sible approach to take in this scenario is to extend the
approach to include probabilistic planning (Barraquand
et al. to appear).

There is no need to compute the harmonic function
at a fine grid sampling over the local window especially
in large open spaces that are void of any obstacle or goal
models. The most efficient irregular grid sampling to
implement on a computer is the quad-tree representa-
tion. Pyramids and quad-trees are a popular data struc-
ture in both graphics and image processing (Pavlidis
1982) and are best used when the dimensions of the
matrix can be recursively evenly subdivided until one
grid point represents the entire image. Approximately
33% more nodes are required to represent the image but
usually the algorithm will be a lot faster, especially if
there are large open spaces. Quad-trees have also been
previously used for path planning (Chen, Szczerba,
Uhran 1997). Most approaches have usually applied
the A* search strategy to find the shortest distance be-
tween two points but application of A* in a quad-tree
representation does not necessarily produce the short-
est distance path. This problem was overcome by mak-
ing a slight modification to the quad-tree representa-
tion by using a framed-quad-tree representation (Chen,
Szczerba, & Uhran 1997).

Computing the harmonic function with a quad-tree
representation bears some resemblance to the multi-grid
methods (Ames 1992) for computing solutions to differ-
ential equations with the slight difference that in this
approach there is no need to compute all of the grid
locations at their highest resolution. To take into ac-
count the irregular grid spacing in the quad configu-
ration, the iteration kernel is redeveloped from basic
principles (i.e., Taylor series expansion resulting in for-
ward and difference equations) and can be rewritten as
follows (given that hr is the distance from Ui,j to Ui+ld,
h~ is the distance from Uij to Ui-ld, kd is the distance
from Ui,j to Ui,j-1, and k~ is the distance from Ui,j to
Ui5+1) (see Figure 2a):

Uid =
kdkt(htUi+l,~+h,~Ui_ld)+h,.htlktUi,i+l+kdUi,i_l) (4)

kdk~(h,.+hz)+h,~ht(kt+kd)

An alternative method of deriving the iteration kernel
for non-uniform grid sampling is to analyze the grid
network as a resistor network (Doyle & Snell 1984) and
to also draw this interpretation into the language of
a random walker on a collection of grid points. The
distances between grid points are resistor values and
the voltage to the circuit is applied across the obstacle
and goal locations. The interpretation of the voltage in
terms of a random walker is (Doyle & Snell 1984):
When a unit voltage is applied between a (i.e, obstacles)
and b (i.e., goal(s)), making va = 1 Vb =0, the voltage
v~ at any point x represents the probability that a walker
starting from x will return to a before reaching b.

Steepest gradient descent on the collection of voltage
points corresponds to minimizing the hitting probabil-

ity. An interpretation of the current in terms of a ran-
dom walk can be given as follows (Doyle & Snell 1984):
When a unit current flows into a and out of b, the current
i~ flowing through the branch connecting x to y is equal
to the expected number of times that a walker, starting at
a and walking until he(she) reaches b, will move along the
branch from x to y.

Figure 2a illustrates the resistor circuit equivalent
used to derive Equation 4. The equation was derived
by applying Kirchoff’s Current Law9. Figure 2b illus-
trates that this method can be applied to any irregular
grid configuration; for example, the sampled configura-
tion space used in probabilistic planning (Barraquand
et al. to appear). For any irregular grid sampling, the
iteration kernel can be rewritten as shown in Equation
5, where Un are neighboring points to Ui,j, Rn distance
away.

Z:n=d ~ ~n=d ~ (5)n------d R,, ~ A..,n=--d R,,

Ui,j

U1

Un+l

Figure 2: Resistor Circuit Equivalent. (a) The re-
sistor circuit equivalent used to derive Equation 4. (b) This
method can be applied to any irregular grid sampling by apply-
ing Kirchoff’s Current Law and equating resistor values with
the corresponding distance values (see Equation 5).

Again, linear interpolation is used to approximate
gradients when the position of the robot is in between
grid points. This introduces some error in the minimal
hitting path but the benefit in significantly less compu-
tations provides adequate justification for this trade-off.
In addition, the introduced error has minimal effect in
increasing the chance of collision because the error is in
the large grid locations which are void of obstacles and
goals (see Figure 3). The quad-tree representation for
a particular configuration (see Figure 3) resulted in
thirty-six-fold savings in computational time in achiev-
ing convergence.

9Kirchoff’s Current Law says that the total current flow-
ing into any point other than the points where the voltage
is applied across (i.e., a or b) is 0. Current (i.e., I) is calcu-
lated as ~ where ~ and 1~ are the voltages on either

Rij
side of the resistor Rij.

Potential Field Contour Display

2 4 6 8 10 12 14 16 18
X axis

Figure 3: Path for Quad Representation. The quad
interpolated path (dotted) differs slightly from the path pro-
duced on a regular-spaced grid.

Global Path Planning

The global planning module performs search (i.e., de-
liberation) using Dijkstra’s algorithm (Aho, Hopcroft,
& Ullman 1983) through a graph structure of nodes
and arcs (see Figure 4 and 5). This is only possi-
ble if a CAD map is available a priori. Automating
the creation of the graph map from the CAD map and
the creation of a CAD map from sensor data are both
left as future research endeavors. Initially it is assumed
that all doors are open until this assumption is refuted
by sensor data. A graph abstraction of the CAD map
is obtained by assigning nodes to rooms and hallway
portions and edges to the access ways (i.e., doors) be-
tween nodes. The global graph planner determines a
path based on start and stop nodes defined by the cur-
rent location and desired destination of the robot. If
the current goal is outside the extent of the local path
planner, then the global path planner projects the goal
onto the local map’s border as follows:

:i:i: i i: i~iiiiiiiiiii

Figure 4: CAD map of the first floor of the School of
Engineering. The accompanying graph map is in Figure 5.

Figure 5: Floor Plan as Graph. The graph shows a
partial section of the CAD map in Figure 4.

Let pg = (Xg, yg) define the position of the goal in an
anchored x-y spatial coordinate system (i.e., SPOTT’s ex-
periments used cm. as a unit of measure). Let pr = (xr, yr)
define the current position of the robot. The local map is a
collection of grids (i.e., nodes) but the references into this
grid are always continuous rather than discrete. For exam-
ple, the gradient at a particular position is calculated by
interpolating amongst the neighboring grid elements. Let
nr be the node in the global map where the robot is lo-
cated (i.e., pr) and ng be the node where the goal is located
(i.e., pg). Let bpf = ((xl,yl), (x2,y2)) define the top-left
and bottom-right points designating the spatial extent of
the potential field. By definition, initially p, is in the cen-
ter of the region defined by bp/. The global path produced
by the global path planner is given in the following form:
< n,.,e~,nj, ...,nm-l,et-l,n,~,ez,ng >. The following isthe
algorithm (see Figure 6) for projecting the global goal onto
the border of the potential field:

1. If pg is within bp/, and n# is the same as n~ then do
nothing.

2. If Pa is within n~ and pg is not within bp/, then the goal
is projected onto the portion of the side of bp/ that is
entirely contained within nr.

3. Let e~ be the first edge within the global path (i.e., mov-
ing from n~ towards ng) that is not completely within bp/.
Let p~ be the intersection of bp/with the line connecting
the center of the edge ea with the center of the node (i.e.,
n~) last traversed before reaching that edge. The goal is
projected onto the portion of the side of bp/that contains
both the node nk and the point p~.

In each of the three cases there are situations where
the goal will not be reachable. In the third case, the goal
will not be reachable if a doorway is closed or a node
is blocked by an obstacle. In this case, the global path
planner replans the global path. In the first two cases,
the goal may not be reachable within the spatial extent
of the potential field due to newly discovered obstacles,
but the goal may actually be physically reachable. The
easiest way to deal with this situation is to make the size

45

1)

2)

3)

[]
nr~nl, ngln2,
gtobai path - nl,n3,n4,n5,n;

Figure 6: Projecting Global Goal onto Local Limits.
The three cases as presented by the algorithm in the text are
presented. The shaded area corresponds to the extent of the
local path planner: 6pf. The thick line corresponds to the
projection of the goal onto the local path planner’s borders.
The thin lines represent wall features. In (1), the goal and
robot are in the same node and bpf. In (2), the robot and goal
are in the same node but not the same 6pf. (3) is the most
general case.

of the potential field such that the node is completely
within the potential field’s spatial extent.

Discussion
Experiments were performed using a Nomadics 200 mo-
bile robot. The map was updated with sonar (and laser)
range lines at a regular frequency. The sonar range
lines were produced by fusing sonar data points and
removing outliers (Mackenzie & Dudek 1994). It was
found that the sensing range of the sensors (i.e., approx-
imately 5 m) permitted the robot to move at speeds up
to 50 cm/sec. By this time the harmonic function had
converged and the path was optimal.

In addition, it was found that in highly structured en-
vironments (e.g., narrow hallways) it is computationally
advantageous to use just behavioral rules for navigation
(e.g., move forwards and stay centered in the hallway)
as opposed to requiring the full computational power
of the local path planner. Typically if an obstacle is
discovered in a narrow hallway, the hallway is blocked
from passage and a new global path needs to be recom-
puted, thus negating the need for the local path planner
(i.e., the obstacle cannot be circumvented anyways, the
hallway is blocked).

The technique provides a viable method for concur-
rently computing and executing the path for a mobile
robot, as well as mapping and localizing the robot via
sensor information at the same time. A significant re-
duction in required computational time was achieved by
using the quad-tree representation for computing the

harmonic function (i.e., for path planning). The re-
sults are encouraging for continued use of the described
client-server process model for real-time motion con-
trol of a mobile robot. Actual deployment of this tech-
nique requires satisfying the assumption that adequate
perceptual routines are available (i.e., based on sonar,
range, and vision sensors) or developed. The presented
technique also appears adaptable for use in path plan-
ning using the probabilistic planning methodology by
using the sampled configuration space as grid elements.

Future Issues

Future work includes addressing the representation of
moving obstacles and goals, sensor fusion, as well as an
extension to a multi-dimensional configuration space.

An occupancy grid representation simplifies the sen-
sor fusion problem (Elfes 1987) at the expense of limit-
ing accuracy to the grid’s resolution. With the foresight
of potentially including map building capabilities into
the SPOTT architecture (i.e., the architecture in which
the presented path planning method has been tested),
an equivalent vector representation of the occupancy
grid is maintained and cross-referenced (at the expense
of complicating sensor fusion). In addition, the asso-
ciated vectors (i.e., typically range line segments) may
not directly correspond to physical objects. Addressing
the issue of sensor fusion within the given framework
(if detailed map building functionality is required) may
be difficult because fusing data together will typically
take away computation time from the main processing
loop in which the harmonic function is computed.

A similar problem may hold for updating moving grid
elements. Typically a collection of grid elements will
move together as a rigid body. In order to limit the
affect of updating moving obstacles has on the iterative
computation, certain courses of action such as limiting
the refresh rate of moving obstacles and how many ob-
stacles can move are possible avenues of exploration.
This assumes that adequate perceptual capabilities are
present so as to update and predict obstacle (mid po-
tentially goals for tracking) trajectories.

References
Aho, A. V.; Hopcroft, J. E.; and Ullman, J. D. 1983. Data
Structures and Algorithms. Addison-Wesley Publishing Co.

Ames, W. F. 1992. Numerical Methods for Partial Di~er-
ential Equations. Academic Press Inc.
Barraquand, J., and Latombe, J.-C. 1991. Robot motion
planning: A distributed representation approach. Interna-
tional Journal of Robotics Research 10:628-649.
Barraquand, J.; Kavraki, L.; Latombe, J.; Li, T.; Mot-
wani, R.; and Raghavan, P. to appear. A random sam-
pling scheme for path planning. International Journal o]
Robotics Research.
Chen, D. Z.; Szczerba, R. J.; and Uhran, J. J. 1997. A
framed-quadtree approach for determining euclidean short-
est paths in a 2-d environment. IEEE Transactions on
Robotics and Automation 13(5):668-681.

46

Connolly, C. I., and Grupen, R. A. 1993. On the applica-
tions of harmonic functions to robotics. Journal of Robotic
Systems 10(7):931-946.

Doyle, P. G., and Snell, J. L. 1984. Random Walks and
Electric Networks. The Mathematical Association of Amer-
ica.
Elfes, A. 1987. Sonar-based real-world mapping and navi-
gation. IEEE Journal of Robotics and Automation 3:249-
265.
Halperin, D.; Kavraki, L.; and Latombe, J.-C. 1997.
Robotics. Boca Raton, FL: CRC Press. chapter 41, 755-
778.

Hornbeck, R. W. 1975. Numerical Methods. Quantum
Publishers Inc.

Hwang, Y. K., and Ahuja, N. 1992. Gross motion planning
- a survey. ACM Computing Surveys 24(3):220-291.
Khatib, O. 1986. Real-time obstacle avoidance for manip-
ulators and mobile robots. The International Journal of
Robotics Research 5(1):90-98.
Mackenzie, P., and Dudek, G. 1994. Precise positioning
using model-based maps. In IEEE International Confer-
ence on Robotics and Automation, volume 2. San Diego,
CA: IEEE. 11615-1621.
Pavlidis, T. 1982. Algorithms for Graphics and Image
Procesiing. Computer Science Press.

Stentz, A. 1995. The focussed d* algorithm for real-time
replanning. In Proceedings of the International Joint Con-
ference on Artificial Intelligence.
van de Vooren, A., and Vliegenthart, A. 1967. On the
9-point difference formula for laplace’s equation. Journal
of Engineering Mathematics 1(3):187-202.

Zelek, J. S. 1996. SPOTT: A Real-time Distributed and
Scalable Architecture for Autonomous Mobile Robot Con-
trol. Ph.D. Dissertation, McGill University, Dept. of Elec-
trical Engineering.
Zilberstein, S. 1996. Using anytime algorithms in intelli-
gent systems. Artificial Intelligence Magazine 73-83.

47

