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Abstract

This paper proposes a multi-decompositional approach to
integrating planning and scheduling. In many practical
domains, planning and scheduling problems are tightly
intertwined: the right decomposition for a given goal
cannot be determined without considering scheduling.
Commonly used approaches suffer from limited look-
ahead. The key steps of the proposed approach are: (a)
perform and store multiple decompositions for each goal or
activity that require decomposition and then (b) identify the
best selections among the combined set of alternative
decompositions. To accomplish the latter - selection and
scheduling within the space of multiple alternative
decompositions -- we propose a novel extension of
Constraint-Directed Heuristic Search. Several applications
of the approach to practical large-scale systems in domains
such as logistics and transportation are described.

1. Introduction
In this paper, we use term planning to denote the problem
of identifying activities and relations between the
activities, required to accomplish a given set of goals. In
the context of this paper, we limit our attention to the
decompositional approaches to planning - the family of
approaches in which goals are decomposed into networks
of activities which satisfy the goals, and in which
aggregate activities are decomposed into sub-activities. By
scheduling we mean the assignment of specific resources
and time windows to the activities of the plan.

In our experience with constructing applied
planning/scheduling systems for large-scale, real-world
problems, we observe that the two sub-problems -
planning and scheduling - are usually rather tightly
intertwined. There are at least two important aspects in
this tight interdependency between the two problems.

First, when the planner (either computerized or
human) selects a suitable activity decomposition for 
given goal, the appropriate selection often depends on
time-dependent availability of resources and on time-

dependent state of the environment; these in turn are
dependent on the decompositions (and scheduling of sub-
activities) for other goals. Thus, it is often difficult or
impossible to make a "good" selection of a suitable
decomposition without having assigned time and resources
of the higher-level goal or activity, as well as without
considering scheduling of other activities of the overall
plan. In short, it is difficult to perform the key element of
planning -- decomposition of activities -- without
performing scheduling at the same time. We discuss
specific examples later in this paper.

Second, when the planner performs scheduling
(assignment of resources and time windows to the
activities), it is important for the planner to have a global
view of the required set of activities. Ideally, all
decompositions should be performed before the scheduling
decision is made, yet it is difficult to accomplish, for the
reasons we just discussed above.

One can think of a number of approaches to solving
this dilemma. We name several common approaches
below, and then discuss their strengths and shortcomings:
¯ Perform decomposition for all goals and/or aggregate

activities based on heuristic rules, without detailed
scheduling considerations, but possibly taking into
account gross availability of resources and resource
assignment preferences. This results in a complete
plan which is then submitted to a scheduler. Let us call
this family of approached CDPS (Complete
Decomposition Prior to Scheduling).

¯ Perform decomposition on a subset of goals (perhaps
only one goal at a time) and then schedule the
currently known set of activities, without awaiting
decompositions of all goals. This sequence of partial
decomposition and partial scheduling is repeated until
a complete plan/schedule is produced. Let us call this
family of approached IDIS (Incremental
Decomposition and Incremental Scheduling).
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¯ Combine IDIS with a search technique, usually
involving a significant amount of backtracking: when
either the planning or scheduling increment is found to
be infeasible, revise an earlier decision, either
regarding the choice of decomposition or the
scheduling choice. Let us call this family of
approached IDISB (Incremental Decomposition and
Incremental Scheduling with Backtracking).

From the applied perspective, we observe the following
strengths and weaknesses in each of the families of
approaches:
¯ CDPS offers the "cleanest" separation between the

planning and scheduling sub-problems. Both the
planning and the scheduling components can be
implemented with simpler, more efficient and robust
algorithms. The key disadvantage is the limited ability
of the planner to foresee the situations where the
chosen decomposition cannot be satisfied with the
available resources. This disadvantage is particularly
acute when (a) there are multiple decompositions
available for each goal and (b) there are bottleneck
resources that could be scheduled more efficiently if
different activity decompositions were chosen.

¯ IDIS provides the opportunity for both the scheduler
and the planner to act in a well-informed manner: the
planner knows all scheduling decisions made for the
completed portion of the plan, and the scheduler
knows all activities planned up to the given point in
the solution process. As a side benefit of this
approach, we f’md that it is well suited for mixed-
initiative planning and scheduling (unlike CDPS):
when the human user reviews the newly proposed
incremental set of activities, both planning and
scheduling decisions are available for review and
modification. However, IDIS suffers from limited
look-ahead, particularly in common real-world
problems with over-constrained resources.

IDISB alleviates the problem of the limited look-ahead,
but at the expense of slower and less predictable
performance. This disadvantage is especially acute in
applications that involve dynamic and near-real-time re-
planning and rescheduling, which recently are becoming
more common.

2. Overview of Our Approach

Our work in the last decade has focused on constructing
large planning and scheduling applications. The planning /
scheduling problems addressed in these applications are
often characterized by:
¯ Large number of goals, activities, resources and

constraints;
¯ Capacity constraints are dominant;

¯ Large fraction of the resources are over-constrained
(multiple bottlenecks);

¯ Significant number of alternative decompositions are
possible for many of the goals;

¯ Rapid and robust capability to re-plan and reschedule
is required;

¯ Mixed-initiative planning and scheduling is a desirable
but not a critical concern.

Given these characteristics, we were motivated to find an
approach that overcomes the shortcomings we discussed
earlier in reference to the CDPS, IDIS and IDISB families
of approaches. In particular, we were looking for:
¯ Ability to deal with multiple over-constrained

resources;
¯ Ability to match activity decompositions with resource

availability;
¯ Rapid and predictable execution times.
The approach we developed in response to the above
requirements can be summarized as follows:
(a) perform and store multiple decompositions for each

goal or activity that require decomposition and then
(b) identify the best selections among the combined set 

alternative decompositions during the scheduling
process.

Assuming that the fast aspect of the approach - production
of multiple decompositions - can be addressed by the use
of domain-specific heuristics or specialized algorithms, the
key challenge of the approach is its second aspect -
selection of the subset of alternative decompositions. We
elected to use Constraint-Directed Heuristic Search
(CDHS) as a technique for addressing the latter challenge
and developed a novel extension of CDHS that uses
multiple decomposition for computing the constraint
textures (section 3).

In the remainder of this paper we focus on (a)
discussion of the multiple decompositions approach in
more detail (section 3), and (b) describing our practical
experiences with the approach (sections 4 and 5).

3. Scheduling within the Space of Multiple
Alternative Decompositions

We elected to develop and use a novel extension of the
CDHS technique for selecting and scheduling the
alternative decompositions’. We extend a particular

instantiation of Constraint-Directed Heuristic Search [Fox,
Sadeh & Baykan 1989], which uses the texture measures

’ However, one can argue that the key idea of our approach
- scheduling within the space of multiple alternative
decompositions - is not dependent on the choice of a
specific allocation and scheduling method, and that other
techniques could be used for this purpose.
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of contention and reliance [Sadeh 1991]. Our approach
differs from the CDHS because it (a) uses multiple
decompositions in computing the texture measures, and (b)
delays the commitment to a particular decomposition until
maximum possible information is available about the
scheduling aspect of the problem.

Our algorithm for selecting and scheduling within
the space of multiple alternative decompositions can be
summarized (in a somewhat simplified form) as follows.

Inputs: set of goals {G}; set of resources {R}.
Outputs: for each goal G - a network of activities {A(G)};
for each activity A - a resource R and a time interval (T1,
T2).

1. For each goal G in a given set of goals {G}, domain-
specific rules or algorithms are used to construct a
collection of up to N alternative activity
decompositions {D(G)}. Each D(G) is a network 
activities {A} that are able to produce G. For example,
in a transportation problem, a goal can be "Move
Container-X from Port-A to Port-B, subject to time
window constraints TW1 and TW2." A collection of
alternative decompositions for this goal may consist of
several transportation plans, each one of the type
"Repackage container into 10 pallets; move 5 of them
from Port-A to Port-C by Plane-123, then to Port-B by
Train-456... etc." Each D in {D(G)} is assigned 
heuristic "goodness score" g(D) that reflects how well
D can satisfy G, using domain-specific rules.

2. For each resource R and for each time interval, each
activity A expresses its expected demand for R (e.g.,
the repackaging activity will request a certain amount
of capacity of repackaging resources at Port-A), taking
into account its domain-specific constraints and
preferences. Continuing our transportation example,
constraints may include compatibility of cargo and
vehicles, capacity of ports and vehicles, lowest-cost
preferences, etc.

3. Each resource R (e.g., a vehicle or a port) accumulates
its expected demand and calculates its contention c(R)
over time as a function of the accumulated demand
and available supply or capacity. (Similarly to the
technique of [Sadeh 91 ].)

4. Each activity calculates its reliance on each
resource/time (r(A, R) is the reliance of activity A 
resource R) as a function of its expected demand, its
priority, and the activity decompositions to which it
belongs. (Similarly to the technique of [Sadeh 91].)

5. For each goal G, and each resource R, a combined
reliance measure r(G, R) is computed by "rolling up"
the reliance measures r(A, R) of all activities within
{D(G)}.

6. The scheduler selects the resource with highest c(R)
(Most Contended Resource - MCR).

7. The scheduler selects a goal with the highest reliance
on the MCR (Most Reliant Goal - MRG).

8. The scheduler selects one decomposition D* among
{D(MRG)} using a heuristic combination of two
criteria: (1) the domain-specific "goodness score"
g(D) and (2) the demand of D for MCR. Higher 
and lower demand for MCR are preferable.

9. All activities within D* are scheduled against {R}.
10. Constraints are propagated. These usually include

temporal and capacity constraints.
11. The propagation of constraints after the assignment

may render some of the decompositions infeasible
(e.g., no space is left on Train-456). Infeasible
decompositions are removed and the planner is
requested to construct additional decompositions in
order to keep the required size N of {D(G)} for every
G. (The planner may not be able to construct
additional decompositions.)

12. The process is completed when for each goal (except
those for which no feasible decompositions can be
found), a decomposition has been selected and each
activity of the decomposition is scheduled.

Several comments about this algorithm:
1. It differs from the CDHS of [Sadeh 91] mainly in

steps 5, 7, 8, 9 and 11, i.e., where multiple
decompositions are used in computing and utilizing
the contention and reliance measures. When N--1 (i.e.,
only a single decomposition is used), the algorithm
reduces approximately to the CDHS of [Sadeh 91].

2. Steps 1, 2 and 8 involve an extensive use of domain-
specific information, procedures and rules. This is
motivated by our focus on real-world problems which
usually require taking into account large amounts of
domain-specific preferences, etc.

3. There is no backtracking in this algorithm. Our
preference for no-backtracking algorithms is also
motivated by the pragmatic demands of developing
large applied systems: relative ease of development,
debugging and controlling the system without the
complications of backtracking. Adding backtracking
would be a worthwhile research direction.

4. There are no claims about the completeness of this
algorithm. When some goals deem infeasible, it is
assumed that there is no solution that satisfies all the
goals. Our reason for not pursuing this issue with
greater vigor is also pragmatic - most of our real-
world problems are over-constrained.

4. Implementation and Practical Experience

We explored applications of this approach----~lly or
partially--in several problem domains: logistics
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distribution, medical evacuation, transportation, and
maneuver planning. In the following brief descriptions, we
focus on the domain-specific instantiations of the key
aspects of the multi-decompositional approach: goals,
decompositions, resources.

4.1 Logistics Distribution

The Knowledge-Based Logistics Planning Shell (KBLPS)
(Saks, Kepner, and Johnson 1992; Saks, Johnson, and Fox
1993) was developed for US Army. Among other
functions, KBLPS automatically generates a distribution
plan for an Army corps. Such a plan involves routing and
scheduling of large number (on the order of 5000) goals
(of the type "deliver product P to the point X within time
window W"). The plan strives to maximize fulfillment of
the goals in an environment where resources (such as
inventory of supplies, storage facilities and transportation
assets) are usually over-constrained.

For a given goal, a decomposition consists of activities
to move product through the distribution network, from
rear supply points to forward supply points. The origin
supply point is not given and the product may be moved
from any supply point where the product is available.
Different origin points give rise to different activity
decompositions. As product or a transportation asset is
consumed (allocated) during the scheduling process, its
unavailability renders some of the corresponding activity
decomposition infeasible, and triggers the construction of
more alternatives. Similarly, using different transportation
modes to move the product between supply points requires
different activities, leading to multiple alternative activity
decompositions.

Chronologically, KBLPS was the first of the systems
where we recognized and explored the need for integrated
planning and scheduling. In KBLPS we explored only
some of the aspects of the multi-decompositional approach
presented in this paper: the algorithm of KBLPS originally
generates only one alternative; then additional alternatives
are generated when the solution process leads to the
infeasibility of the available decomposition. KBLPS
produced good solutions without backtracking,
demonstrated excellent performance (complete plans
generated in a few minutes) and is currently used by U.S.
Army logisticians at military sites in the US, Korea and
Europe.

4.2 Medical Evacuation
TRAC2ES (US TRANSCOM Regulating and Command 
Control Evacuation System) includes the capability to plan
the process of evacuating patients on air-medical missions
to hospitals that has the capabilities to treat them (Kott and
Saks 1996; Saks et al. 1997). A typical goal is of the type
"move Patient-X from Location-L to any suitable hospital

as soon as possible after earliest pick-up Time-T?’ A
number of such goals within a given plan may be on the
order of several thousands. Resources, frequently over-
constrained, include hospital beds, aero-medical
evacuation missions, cargo missions, intermediate staging
facilities, etc.

For each goal, a decomposition consists of activities to
transport patient from the current location to the
destination hospital. Different destination hospitals will
give rise to different activity decompositions. Similarly,
different routes (often consisting of several legs and
several missions) produce different decompositions.

In this system, we completely implemented the multi-
decompositional approach. Multiple decompositions were
produced for each goal, followed by the constraint-directed
scheduling process in which a subset of decompositions
was selected. We found that determination of the best
decomposition for a given goal cannot be done without
close integration with the scheduling process.

4.3 Transportation

Our work on a large-scale transportation problem
generalized the experiences with KBLPS and TRAC2ES
systems. This problem involves planning and scheduling
multiple (on the order of 10,000) movements of cargo
(bulk, pallets, containers, large pieces of equipment) and
groups of passengers, by air, sea and ground, over the
planning horizons on the order of 180 days. Each goal is of
the type "Move entity X from Location-A to Location-B
within time windows TW1 and TW2". An entity may be as
large as to require multiple planes or ships.

A decomposition for a given goal consists of activities
to transport the cargo from its current location to the
destination, usually combining transportation via several
different transport modes. Activities include splitting,
combining, repackaging, loading, moving, unloading,
storing, etc. Multiple decompositions arise naturally by
varying the transport modes and the intermediate ports.
Other differences in decompositions for a given goal may
arise from selecting different splitting schemes.

For this problem we also used the multi-
decompositional approach. Section 5 below summarizes
the results of experiments we conducted with this
implementation.

4.4 Domain-Independent Generalization of the
Technology

The approach we are describing here is a part of the
technology suite called COREPLEX (COnstraint-directed
REasoning for rePLanning and EXecution). A collection of
reusable software libraries and designs, COREPLEX
technology is a generalization of the designs and software



we developed in the projects such as KBLPS and
TRAC2ES (sections 4.1 and 4.2 above).

Within the framework of COREPLEX, we have added
four principal innovations to the basis of Constraint-
Directed Heuristic Search:
¯ Efficient mechanisms for storing, updating and

retrieving constraint metrics, critical for solving very
large-scale problems.

¯ Model complex constraints, such as non-capacity soft
constraints by combining them in a unified fashion
with the basic constraint metrics -- contention and
reliance.

¯ Continuous, dynamic replanning with minimal plan
perturbation based on our Continuity-Guided
Regeneration technique [Kott & Saks 1996], in which
the currently executing plan is used as an explicit
preferential constraint.

¯ Ability to schedule in the space of multiple alternative
activity decompositions -- the topic of this paper.
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Figure 1. Experimental results - number of goals solved as a
function of number of decompositions used.

5. Experimental Results

In this section we describe the series of experiments
conducted with one of the instantiations of the multi-
decompositional approach for a transportation problem
(section 4.3). We used a problem scenario with
approximately 30 ports (origin and destination points),
about 500 air missions, 60 sea voyages, a total of about
805 movement goals (MG), and scheduling horizon 
about 240 days. The algorithm was considering
simultaneously the space of up to 40,000 decompositions
(up to 50 decompositions per each of 805 Movement
Goals). We varied two main search control parameters:
1. The total number of paths (routes) generated for each

MG, i.e., the N of the algorithm step 1, in Section 3.
All paths generated were used in computing reliance
in steps 4 and 5.

.
The number of paths per MG considered for
computing contention in step 2 and 3. Computation of
contention is relatively expensive, proportionally to
the number of paths considered.

The key results of the experiments are summarized in
Fig. 1. They suggest the following observations:
1. By considering a larger number of alternative

decompositions, the algorithm is able to produce a
plan of higher quality: greater number of Movement
Goals are satisfied with the given resources and under
the specified constraints. (We do not discuss the run
time numbers because they are not particularly
instructive -they reflect mainly the peculiarities of the
database used in conjunction with this software
implementation.)

2. The data point with a single decomposition (path)
approximates the single-decomposition CDHS. Only
620 MGs are solved as compared to 762 MGs in the
best of multi-decompositional results.

3. There was no improvement when we increased the
number of paths used for computing contention
beyond 2. This is a valuable result - the expense of
computing contention is proportional to the number of
paths considered; apparently there is no need to
consider more than 2. (We used 2 "best" paths, i.e.,
the ones with highest g(D).)

4. The effect of number of paths does not fall off quickly
- it continues to produce significant improvement
even when the number is increased beyond 10. Note
that the real effect of the larger number of paths is the
more accurate (or informed) computation of reliance.
Much greater influence of multiple decompositions on
reliance computation as compared to contention
computation is an intriguing and useful result.

5. Perhaps, the difference between the single-
decomposition and multi-decomposition cases would
disappear if we were to use backtracking in both
cases? It is not impossible and deserves further
research.

6. Admittedly, our single-decomposition case is an
imperfect approximation of CDHS per [Sadeh 91].
Perhaps a more rigorous implementation of CDHS
would perform better. This is another topic worthy
further investigation.

6. Strengths and Limitations
Let us summarize the key advantages of the proposed
approach:
1. It enables integration of planning and scheduling in

those domains where selection of a decomposition for
a given goal is strongly dependent on resource
scheduling. The need for a time-consuming and hard-
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to-control backtracking is alleviated. Also alleviated is
the need for accurate (and difficult to obtain)
heuristics for apriori selection of one best
decomposition.

2. It provides for a more accurate estimate of constraint
textures, such as contention and reliance, enabling a
more accurate look-ahead and ultimately leading to
better plans/schedules. Construction of multiple
alternative decompositions for each goal gives a
broader, more global view of demand and contention
for resources. Reliance of activities on resources can
be more accurately estimated.

3. There exists a simple and effective control of search
depth; by varying the maximum allowable number of
decompositions for each goal, the quality of the
resulting plan can be traded against the solution time.

Let us also mention the limitations of the approach:
1. In some cases, it does not fully eliminate the need to

have some scheduling information during the
production of decompositions. E.g., in order to decide
if routing of a shipment through a particular port is
meaningful, the planner may need to estimate when
the shipment will pass through the port. Our approach
does not provide any support for such a need.
However, in practical problems this limitation does
not appear to be critical because (a) estimates of such
nature can be made with inexpensive domain-specific
rules and (b) even if poor (scheduling-wise)
decompositions are produced, the scheduling process
eventually weeds them out.

2. Multi-level hierarchical decomposition can lead to a
challenging size of the number of alternative
decompositions that need to be produced, stored and
handled during the scheduling process. In our
examples, we were dealing with problems where the
planner was able to produce a complete decomposition
from each given goal. This may not be the case in
other problem domains.

Conclusion
We observe that in a number of practical domains,
planning and scheduling problems are tightly intertwined.
Often, the right decomposition for a given goal cannot be
determined until scheduling of resources, for this and for
other goals, is taken into consideration. In other words,
there is a need for mechanism that allows to finalize the
selection of a suitable decomposition not before but during
the scheduling process. The multi-decompositional
technique proposed in this paper provides such a
mechanism.

We propose a specific algorithm for selecting and
scheduling within the space of multiple decompositions - a

novel extension of the Constraint-Directed Heuristic
Search in which multiple decompositions are used to
compute the texture measures.

We present results of experiments in which the
proposed algorithm significantly outperformed a single-
decomposition version of CDHS, and discuss directions for
further research.

We describe several problems in which we applied
the proposed approach successfully. The approach is an
element of the COREPLEX technology developed at
Carnegie Group, Inc. over the last ten (10) years; 
generalizes our experiences with several large-scale, real-
world systems.
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