
Learning Cooperative Procedures

Andrew Garland and Richard Alterman
Computer Science Department

Brandeis University
Waltham, MA 02254

{aeg, alterman}@cs.brandeis.edu

Abstract

Learning in a dynamic, uncertain, multi-agent setting
is a challenging task. In this work, we demonstrate
techniques to convert noisy run-time activity into pro-
cedures useful for future problem-solving activities.
The cooperative procedures created by this conversion
process are stored in an agent resource called collective
memory. We show how this memory enables agents
to learn cooperative procedures beyond the scope of
their first-principles planner. Finally, we give experi-
mental results demonstrating that collective memory
improves agent performance.

1 Introduction
Early models of procedural learning assumed actors
were isolated, model-based thinkers. More recently,
learning techniques have become more sophisticated as
this assumption has been replaced with less restrictive
ones. To date, however, there has been no thorough in-
vestigation of multiple, heterogeneous, situated agents
who learn from the pragmatics of their domain rather
than from a model. In this paper, we develop tech-
niques that allow agents to improve their performance
in a dynamic environment by using past run-time be-
havior to learn procedures to better coordinate their
actions. These techniques are based upon a structure
called collective memory.

This paper begins with general overviews of collec-
tive memory and MOVERS-WORLD, our test-bed do-
main. The heart of the paper is an exposition on how
cooperative procedures are added to collective memory.
The techniques which agents use to learn cooperative
procedures from their run-time behavior are outlined
and applied to a simple example. Reasoning from ex-
ecution traces is a key aspect of the system because
it enables agents to learn plans beyond the scope of
the scratch planner. Finally, results are presented that
clearly show the effectiveness of collective memory in
improving community performance.

2 Overview of Collective Memory

Humans provide a natural model of pragmatic agents
situated in a multi-agent world. (Cole & EngestrSm

1993) argues that the development of distributed co-
operative behavior in people is shaped by the accu-
mulated cultural-historical knowledge of the commu-
nity. Our learning techniques are motivated by this
argument and use a structure called collective mem-
ory to store the breadth of knowledge the community
acquires through interacting with each other and the
world during the course of solving sequences of dis-
tinct problems. In this paper, we assume a distributed
(rather than centralized) memory model wherein each
agent maintains only a memory of her own interac-
tions; jointly, these memories represent the collective
memory of the community.

The cornerstone of collective memory is a cooper-
ative procedures case-base that augments the agents’
first-order planner. In other words, this work extends
single agent second-order planners (Alterman 1988;
Hammond 1990; Veloso & Carbonell 1993) into multi-
agent domains. The procedures stored in collective
memory will be effective in future problem-solving
episodes if they capture regularities in their domain
of activity.

1. Give the community a set of goals to achieve.
2. Allocate the goals among the agents.
3. Until all agents have achieved their goals:
(a) Active agents use collective memory to create or

adapt a plan.
(b) Agents with plans attempt an operator.

4. Add cooperative procedures to collective memory.

Figure 1: One cycle of community activity.

We consider the task environment for collective
memory to be problem-solving by a community of mul-
tiple adaptive agents with differing roles and abilities
who, initially, have very limited knowledge about each
other and their domain. The activity of the commu-
nity of agents is shown in Figure 1. In this paper,
the phrases "solving a problem" and "problem-solving
episode" both refer to a single pass through these four

From: AAAI Technical Report WS-98-02. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

steps, i.e. problem-solving is defined in terms of suc-
cessfully executing actions (operators), not construct-
ing plans. The performance of the community can be
measured over successive problem-solving episodes in
order to quantify the impact of collective memory. One
measure of performance that we track is the number of
times the agents must loop through step 3, which we
call ’rounds.’

The focus of this paper is on the conversion of run-
time activity into cooperative procedures, which takes
place in step 4 above and is detailed fully in Section 4.
The agents can use these procedures in lieu of plans
generated from scratch during step 3a. All agents
presently work on the entire set of community goals,
but future research will investigate the benefits of us-
ing collective memory to more effectively allocate the
goals in step 2.

3 MOVERS-WORLD

HTO 1 L 1 L2

HANDTR2

TRUCK1

LBOX2

ROOM1

STREET i

Figure 2: Sample MOVERS-WORLD problem.

MOVERS-WORLD has several agents who are differ-
entiated by their types: some are "lifters" and some
are "hand-truck operators." A simple rendering of
MOVERS-WORLD is given in Figure 2. Agents of
the same type may have differing capabilities due to
attributes such as strength. There are type-specific
operators, about which only agents of that type have
knowledge (such as LOAD-TOGETHER for lifters
and STAND-HANDTR for hand-truck operators), and
there are general purpose operators that all agents can
perform (such as MOVE and SIGN). The agents
MOVERS-WORLD do not engage in any communi-
cation at planning time. Rather, they plan indepen-
dently, act independently, and only communicate when
necessary to establish cooperation or to maintain co-
ordination.

It is exceedingly unlikely that agents will find effi-
cient solutions without learning in this domain, since
there is no mandated cooperation or coordination
strategy. The agents have common top-level goals, but
they all have their own point of view on how best to
proceed. Through the use of collective memory, agents

develop a "common viewpoint" on how best to achieve
a solution. That is, an agent remembers successful
patterns of cooperation in which she was involved, and
can use them as a basis for future interactions. In novel
situations, where no such common viewpoint has been
established, there is no mechanism to force the agents
to do the most sensible thing; in other words, agents
might refuse to assist when they should, or agree to
help when they should not.

Communication in MOVERS-WORLD

MOVERS-WORLD, and the techniques used to learn
cooperative procedures by MOVERS-WORLD agents,
is shaped by the fact that communication is the central
mechanism for cooperation and coordination. The na-
ture of communication in MOVERS-WORLD is quite
different from standard distributed AI planner systems
such as (Corkill 1979) because communication occurs
at run-time rather than as part of the planning process.
This is a consequence of our belief that communication
takes roughly the same order of time as do primitive
actions. Communication between agents in our system
is similar to a telephone conversation. Agents do not
have to be in the same location to engage in commu-
nication. Once a connection is established, commu-
nication is limited to a small number of request and
response frames. Agents do not use communication to
develop any sort of shared structure, such as a Shared-
Plan (Grosz & Kraus 1998).

Two agents are said to ’cooperate’ if they act or work
together to achieve some common purpose and they
are ’coordinated’ when their individual actions are ap-
propriately ordered to support cooperative activity. In
our framework, communication is the only mechanism
whereby agents can determine if they are coordinated.
In other words, there are no global structures (such
as blackboards) for agents to use to determine if they
happen to be working on the same goal and the agents
do not have sufficiently powerful models of each other
to use communication-free coordination strategies such
as (Huber & Durfee 1995). Each MOVERS-WORLD
problem-solving episode includes some goal(s) that can
only be solved by coordinated agents, so communica-
tion is an essential part of the community activity re-
quired to solve problems.

Communication is used to attempt to establish co-
operation when the set of agents working on a goal at
a given time is inadequate. Cooperation is not guar-
anteed during communication since agents have their
own decision-making strategies 1 and even if an agent
is willing to cooperate she may be unable to do so. An
agent who is unwilling or unable to assist can propose

1All agents presently use the same probabilistic, ratio-
hal strategy based upon the expected number of top-level
goals that alternative plans achieve. Despite their com-
mon strategy, agents will make different decisions because
of their varying experiences interacting with the world.

55

an alternative cooperative activity which the original
requester must now contemplate adopting.

Communication and a meta-planner operator jointly
form the mechanism whereby coordination occurs in
MOVERS-WORLD. When cooperation is first estab-
lished during communication, the agents must deter-
mine how they will coordinate the cooperative activ-
ity. Sometimes, nothing need be done - for example, if
two lifters are both adjacent to a ready-to-be-lifted box
and both are ready to lift it. More often, though, the
requester will have to idle for one or several rounds
- for example, if the requestee lifter is not currently
ready to lift the box. Another common situation in-
volving idling occurs after a lifter agrees to load a box
onto a hand-truck for a hand-truck operator. Idling
is presently implemented as a busy-wait by pushing a
meta-planner operator WAIT onto the plan. While the
WAIT is at the top of her plan, an agent is waiting for
one of two events to occur: communication indicating
that joint action can occur (e.g., the other lifter now
indicates she is ready to act) or the completion of her
request (e.g. the box appears on the hand-truck).
an agent is idle too long, she will become frustrated
and inquire about the status of her request.

4 Adding Cooperative Procedures to
Collective Memory

After the community of agents solves a problem, co-
operative procedures are added to collective memory
in order to improve the community performance in fu-
ture problem-solving episodes. ADD-C-PKOCS is the
main procedure which an agent uses to update her pro-
cedural knowledge case-base with the information con-
tained in her execution trace. This occurs in step 4 of
Figure 1; pseudo-code is given in Figure 3. Briefly, the
agent must summarize her run-time activities, both to
remove unwanted data and to simplify further analy-
sis. This summary is reorganized into chunks of oper-
ators that are associated with the goals they achieve.
Then the operators in each chunk are modified to bet-
ter prepare them for future re-use. Finally, the agent
compares this chunk to current case-base entries to de-
termine if the chunk should be added to the case-base.

FunctlonADD-C-PROCS(execution-trace)

summary = SUMMARIZE-TRACE(execution-trace)
foreach (chunk goals) in SPLIT-TRACE(summary)

prepared = PREPARE-CHUNK(chunk)
MODIFY-PKCB(prepared goals)

Figure 3: Algorithm to update collective memory.

In our model, the cooperative procedures stored in
collective memory are culled primarily from execution
traces. Others, such as (Carbonell 1983) and (Laird,

Rosenbloom, ~; Newell 1986), have argued that an
agent should store planning histories in memory. How-
ever, reusing plan derivations will not, in general, pro-
duce a sequence of actions to better solve a similar
problem in the future. On the other hand, execu-
tion traces encapsulate the history of both planned
and unplanned agent interactions with the domain.
Consequently, cooperative procedures can be learned
through the machinery of collective memory that were
not developed in a single planning session.

Summarization

Agents abandon plans and switch top-level goals for
a variety of reasons at run-time such as operator fail-
ure, incoming requests for cooperation, resource con-
flict, and the failure of other agents to abide by previ-
ous agreements. This means the execution trace may
contain actions that should not be part of learned co-
operative procedures. The goal of the summarization
process is for agents to remove such actions, while pre-
serving consequential ones.

SUMMARIZE-TRACE, whose pseudo-code is given
in Figure 4, removes actions from the execution trace
in four passes. The first pass does almost all of the
summarization; the underlying justifications for the
pruning criteria used during this pass are fairly self-
evident. The third pass is really part of the preparation
process of updating collective memory. However, re-
moving planner-reconstructible operators at this point
during summarization simplifies both the next pass of
summarization, which removes communication related
to those operators, and the reorganization which pre-
cedes preparation.

Function SUMMARIZE-TRACE(trace)

Pass I: foreach event E with action A in trace
Remove E from trace if:

A is a no-op
A is a failed attempted operator
A is a refusal or a refused request
A is an agreement or an agreed-to request,

but the request was never accomplished
A achieved only lowest criticality goals
A is a WAIT
h was undone by the subsequent operator

Pass 2: foreach event E in trace
Remove E if A was intended to achieve a top-

level goal which the agent did not achieve
Pass 3: foreach event E still in trace

Remove other events still in the trace whose
actions are plaxmer-reconstructible from A

Pass 4: foreach event E still in trace
Remove E if A is an agreement or an agreed-to

request concerning a removed joint action

Figure 4: Algorithm to summarize traces.

56

The second summarization pass requires some ex-
planation. This step is designed to weed-out operators
that seemed to be useful at the time, but eventually
were not. For example, suppose a hand-truck oper-
ator (HTO) gets a lifter (L1) to load a box onto
hand-truck, which HTO then pushes to the street and
stands up. Suppose further that no lifter agreed to
unload the box when it was at the street and HTO
eventually pushed the hand-truck containing the box
back to the box’s original location. At this point, L1
unloads it from the hand-truck, carries it (back) to the
street and loads it onto the truck. In this case, HTO’s
request did not help to achieve the goal and should be
removed from the summary.

An example of summarization

The simplest plan that lifters learn that their first-
principles planner does not construct is to load a box
onto a hand-truck and then later unload it and load it
onto a truck at the behest of a hand-truck operator.
This chunk can get created from the following snippet
of activity involving medium-sized box MBOX3.

First, a high-level description:

1. Hand-truck operator HTO asks lifter L1 to get MBOX3
onto hand-truck HANDTR2. L1 agrees and does so via
lifting and loading the box. L1 next fails in an attempt
to lift large box LBOX2 by herself, does nothing for a
round since she has no plan, and lifts small box SBOX5
while HTO tilts, pushes to the street, and stands up
HANDTR2.

2. HTO asks L1 to get MBOX3 onto truck TRUCK. L1
agrees, puts SBOX5 back down, moves to the street, un-
loads the box from the hand-truck and then loads it onto
the truck.

L1 records her behavior internally in each round of
activity, including information about that round’s ac-
tive goals, cooperation agreements, state of the world,
attempted action, reason for attempting the action,
and result of the attempt. These internal structures
contain too much data to show fully, but the gist of
them is clear in the following description of Ll’s exe-
cution trace:

(<agreed to achieve (ON MBOX3 HANDTR2) for HTO>
<executed (LIFT MBOX3)>
<executed (LOAD MBOX3 HANDTR2)>
<failed to (LIFT LBOX2)>
<no-op>
<executed (LIFT SBOX5)>
<agreed to achieve (ON MBOX3 TRUCK1) for HTO>
<executed (PUT-DOWN SBOX5)>
<executed (MOVE STREET)>
<executed (UNLOAD MBOX3 HANDTR2)>
<executed (LOAD MBOX3 TRUCKI)>)

SUMMARIZE-TRACE reduces Ll’s activity to:

(<agreed to achieve (ON MBOX3 HANDTR2) for HTO>
<executed (LOAD MBOX3 HANDTR2)>
<agreed to achieve (ON MBOX3 TRUCK1) for HTO>
<executed (LOAD MBOX3 TRUCK1)>)

L1 accomplished both agreements and the corre-
sponding top-level goal (ON MBOX3 TRUCK1),
none of the summarization rules applied to them.
Likewise, the two LOADs were left untouched by
SUMMARIZE-TRACE.

The other actions in Ll’s execution trace were re-
moved for varying reasons. The attempted LIFT of
the large box was pruned just as any other failed oper-
ator would. (LIFT SBOX5) is omitted since it was un-
done by the subsequent PUT-DOWN operator, which
was in turn dropped since it achieved HANDEMPTY,
a lowest criticality goal. Lifting, and later unloading,
MBOX3 is removed in the third pass of SUMMARIZE-
TRACE since they are planner-reconstructible from
the precondition (HOLDING MBOX3) of the LOAD
operators following them.

From Summary To Memory

After the execution trace has been summarized, ad-
ditional processing is required in order to add co-
operative procedures to collective memory. ADD-C-
PROCS (again see Figure 3) next calls function SPLIT-
TRACE, which generates a list of operator chunks and
the goals they achieve. PREPARE-CHUNK modifies
each chunk to make a cooperative procedure that is
suitable for reuse. The procedural knowledge case-
base is then modified to include the novel procedures
by MODIFY-PKCB. These three support routines are
outlined in Figure 5.

Function SPLIT-TRACE(summary)

union (Temporal-chunks (summary),
Goals-oriented-chunks (summary))

Function PREPARE-CHUNK(chunk)

foreach operator in chunk
Consistently replace goal literals with

the same, newly generated variable
Convert agreement into WAIT-FOR
Augment operator with additional

planning binding information

Function MODIFY-PKCB(new goals)

foreach old in PKCB indexed by goals
if (plan old) maps to (plan new)

if (context old) maps to (context new)
if GENERALIZED-CONTEXT(old new) exists

set (context old) to generalization
else if contexts differ

add entry to PKCB
else add entry to PKCB
return

Figure 5: Support algorithms for ADD-C-PROCS.

57

SPLIT-TRACE. The purpose of this function is
to identify chunks of operators; each chunk of oper-
ators must collectively accomplish a clearly-defined set
of top-level goals. It currently identifies two kinds of
chunks, but in the future, additional techniques may
identify other types of chunks. SPLIT-TRACE takes
a summarized execution trace as input and returns a
list of operator-chunk/goals pairs as output.

Using the active goal information recorded in the
trace events, SPLIT-TRACE considers a consecutive
subsequence of the (chronologically-sorted) summary
to be a chunk if the joint effects of the executed oper-
ators achieves the conjunction of the goals associated
with them. SPLIT-TRACE combines these "tempo-
ral" chunks with "goal-directed" ones, which are de-
termined by simply grouping together operators asso-
ciated with identical goals.

JL- g :Jl:’
t___ Temporal chunk for goals G1 and

Figure 6: Schematic of a temporal chunk.

These two types of chunks are represented schemat-
ically in Figure 6. The axis represents a portion of
an agent’s activity timeline with markers indicating
the execution of actions A1 through A9 (more actions
may precede or follow these actions). If the agent, in-
dividually or in cooperation with other agents, accom-
plished goals G1 and G2 during the intervals marked
on the timeline, there would be three chunks identified
from this activity timeline. There would be a goal-
directed chunk for G1 of (A2, A3, A7, A8), a goal-
directed chunk for G2 of (A4, A5, A6) and a temporal
chunk for both goals of (A2, A3, A4, A5, A6, A7, AS).
This last chunk is the simplest type of chunk which is a
temporal chunk that is not also a goal-directed chunk;
a similar chunk forms the basis for agents to learn to
interleave goals in the example in Section 5.

PREPARE-CHUNK. The operators of a chunk
may need to be modified to make them better suited for
future re-use. PREPARE-CHUNK makes purely rep-
resentational preparations as well as more substantial
changes designed to improve cooperative plans, such
as the formation of macrops (Fikes, Hart, & Nilsson
1972). In other words, when possible, the chunk is
made more general and more readily adapted in the
future.

The representational preparations are straightfor-
ward. Obviously, the operator literals must be replaced
by new variables. Also, a WAIT-FOR operator is intro-
duced whenever an agent agreed to a request. WAIT-
FOR operators are functionally equivalent to the coor-
dinating operator WAIT already discussed, but there
is a semantic difference that is relevant during com-
munication. WAIT implies an agreement already ex-

ists but WAIT-FOR only implies an agent expects an
agreement to be established.

The third pass of SUMMARIZE-TRACE provides
the benefit of making the incoming chunks more gen-
eral and should be considered a means of improving the
cooperative plans. It improves them because remov-
ing operators that achieve subordinate goals makes the
chunk more easily adapted in the future (at the cost of
regenerating the original operator if it is needed again).

The most complicated portion of the preparation
phase involves potentially augmenting operators to
macro-operators by including additional binding infor-
mation, in the form of new roles and preconditions.
This additional information is identified via an anno-
tation process, similar to that of (Kambhampati &
Hendler 1992), which records the reasons why oper-
ator variables took on their final ground value.

Operator augmentation is better understood with a
simple motivating example than with a long explana-
tion. HTO’s execution trace from the previous exam-
ple is:

(<asked L1 to (ON MBOX3 HANDTR2)>
<.aired for (ON MBOX3 HANDTR2)>
<.aired for (ON MBOX3 HANDTR2)>
<executed (TILT-HANDTR HANDTR2)>
<executed (PUSH-HANDTR HANDTR2 STREET)>
<executed (STAND-HANDTR HANDTR2 STREET)>
<asked Li to (ON MBOX3 TRUCK1)>
<eaited for (ON MBOX3 TRUCK1)>
<.aired for (ON MBOX3 TRUCKI)>
<.aired for (ON MBOX3 TRUCK1)>
<.aired for (ON MBOX3 TRUCK1)>)

And after summarization and literal replacement:

((SIGN ?AGENT (ON ?BOX ?HANDTR))

(STAND-HANDTR ?HANDTR ?FINAL-LOCATION)
(SIGN ?AGENT (ON ?BOX ?TRUCK)))

The SIGN operator (which triggers communication)
does not normally contain a ?HANDTR role or bind-
ing information regarding it. Nonetheless, HTO needs
some way to determine an appropriate instantiation
for ?HANDTR before the first SIGN operator can
be re-used. This can be accomplished if the op-
erator is augmented with the pair of preconditions
(AT ?HANDTR ?STARTING-LOCATION) and (AT
?BOX ?STARTING-LOCATION).

MODIFY-PKCB. The final step in updating the
procedural knowledge case-base is MODIFY-PKCB. A
prepared chunk and the top-level goals it achieves form
a potentially new cooperative procedure. This proce-
dure is compared to other entries in the procedural
knowledge case-base. The chunk is added if there is
no matching entry or the matching entry cannot be
generalized.

It should be noted that indexing at both storage and
retrieval time is based on observable characteristics of
the top-level goals being achieved. In a multi-agent set-
ting, standard CBR techniques (Kolodner 1993) can

58

lead to global difficulties when individuals use local
criteria to determine the best case to retrieve, as dis-
cussed in (NagendraPrasad, Lesser, &5 Lander 1995).
In MOVERS-WORLD, any such inconsistencies are re-
solved in the exact same manner as when the plans
were generated from first principles. In other words,
when an agent needs to request cooperation or to coor-
dinate her actions with a cooperating agent, she com-
municates. If the requestee’s actions are being guided
by a plan based upon the same shared experience, there
will be no difficulties. Otherwise, the requestee will
have to decide whether to abandon her current plan in
favor of the request or to suggest alternative coopera-
tive behavior (based upon either a different plan from
the case-base or a plan generated from scratch).

5 Learning to Interleave Goals
As mentioned previously, using execution traces as a
basis for future cooperative plans allows the agents
to learn plans beyond the scope of the first-principles
planner (or a traditional second-order planner based
on it). Another example shows how lifter L2 learns to
interleave two goals. In this example, HTO and L1 will
act as in the first example, with the box in question
now extra large box XLBOXl rather than MBOX3.
The following are L2’s plans and actions, starting four
steps before HTO makes her first request to L1.

1. L2 creates a typical plan to get XLBOX1 onto the truck:
to lift, carry and load the box jointly with L1. L1 agrees
to lift the box together and they do so. L1 then agrees
to carry the box to the street. However, XLBOX1 is too
large to carry, even jointly, and the operator (and hence
rest of the plan) fails.

2. L2 creates a plan to get SBOX5 onto the truck. The plan
consists of putting down XLBOX1 with Ll’s help and
then lifting, carrying and loading SBOX5 onto the truck
by herself. L2 is delayed in asking for Ll’s assistance
because HTO calls first with a request to put XLBOX1
onto HANDTR2. L1 agrees to help HTO.

3. When L2 does ask L1 to help achieve HANDEMPTY
via putting XLBOX1 down together, L1 replies that
she would rather load the box together onto the hand-
truck. L2’s planner adapts her current plan by replac-
ing the PUT-DOWN-TOGETHER with the appropri-
ate LOAD-TOGETHER. The agents then load XLBOX1
onto the hand-truck.
L2 continues on with her plan and loads SBOX5 onto
the truck. Meanwhile, HTO has pushed the hand-truck
to the street and L1 has agreed to get XLBOX1 onto the
truck.

4. L2 constructs a plan to get large box LBOX2 onto the
truck and moves back to ROOM1.

5. L2 is interrupted before attempting to lift LBOX2 by a
request from L1 to help unload XLBOX1 from the hand-
truck. L2 constructs the plan of moving to the street and
then unloading XLBOX1. The agents do so.

6. L1 asks L2 to load XLBOX1 onto the truck and they do.

The sequence of actions L2 undertakes corresponds
to six different calls to the planner. Nonetheless, L2
can extract a single cooperative procedure from her
execution traces by the machinery of collective memory
(showing the original literals instead of new variables
for clarity):

((WAIT-FOR L1 (ON XLBOXI HANDTR2))
(LOAD-TOGETHER XLBOXI HANDTR2)
(LOAD SBOX5 TRUCK1)
(WAIT-FOR nl (ON XLBOXI TRUCK1))
(LOAD-TOGETHER XLBOXI TRUCKI))

Interleaving loading and unloading a box onto the
hand-truck with loading a small box onto the truck,
as in this example, is the most useful procedure lifters
learn in the current version of the system. Its utility
arises from low idle time and wide applicability.

6 Results and Analysis
Our collective memory test-bed system solves ran-
domly generated MOVERS-WORLD problems, in iso-
lation or in sequences. Individual problems are con-
structed by randomly selecting subsets from the pool of
permanent MOVERS-WORLD objects (agents, hand-
trucks, and trucks) that will be active for that prob-
lem. Then a random group of boxes and locations is
constructed and a list of goals involving them is gen-
erated.

A database was created of 60 problems, whose goals
were always to move all boxes to the truck. The num-
ber of boxes was uniformly distributed between 3 and
5. The average number of rounds required to solve
these problems without using collective memory to
learn was 42.6, with a standard deviation of 0.64.

It should be noted that there are many sources of
randomness that can effect the number of rounds of ac-
tivity it takes a community to solve any given problem.
The experiments underlying the data presented here
are designed to control as many sources of randomness
as possible in order to make comparisons meaningful.
For example, it is not feasible to determine learning
curves by running the system on all possible permuta-
tions of the database problems, so the system is run on
four predetermined groups of sequences. Each group
of sequences is balanced in the following way: each of
the database problems occurs once as the first problem
of some sequence in the group, once as the second of a
different sequence in the group, et cetera.

There are presently two components of collective
memory. Besides the procedural knowledge case-base
described in this paper, agents can use operator prob-
abililies lrees to estimate the probability of success
for operators an agent may attempt. Accurate es-
timates improve agent performance since the agents’
first-principles planner is a hierarchical planner (Sac-
erdoti 1974) which uses probabilities to guide search,
including role-binding selections (c.f. (Kushmerick,
Hanks, & Weld 1995)). Operator probabilities trees
are incrementally updated as the agent interacts with

59

the domain and this enables the planner to improve
during the course of solving a problem. Results will
be presented verifying this intra-problem learning, but
the reader is directed to (Garland & Alterman 1996)
for more technical details on operator probability trees.

Case-based reasoning has been previously demon-
strated to be an effective technique for reducing CPU
usage during planning in a standard distributed AI
planner in (Sugawara 1995). In our domain though,
CPU usage is an inappropriate measure of community
performance because we are primarily interested in im-
proving the community’s run-time behavior, not the
speed at which they plan (or retrieve plans from mem-
ory). However, since primitive actions and communica-
tion are simulated, roughly 90% of the CPU usage for
our system is devoted to agent planning. The statistic
we consider best suited to our domain is the number
of rounds (defined in Section 2), which views primitive
action and communication as taking the same order of
time as a single planning session.

45 --
PK and OP

o

40 ---~ ~ PK only ------ _

OP only -~--

Z 30

-25

20 I I
1 2 3 4 5

Problem Solving Episode Number

Figure 7: Overall community performance improves.

Figure 7 shows how the two collective memory struc-
tures improve community performance. Both the op-
erator probabilities tree (abbreviated OP) and the pro-
cedural knowledge case-base (abbreviated PK) lead
statistically significant improvements. OP shows sub-
stantial intra-problem learning, reducing the average
number of rounds for solving the first problem of a se-
quence to 37.3. This number continues to go down, al-
beit slowly, reaching 32.0 for the fifth problem. PK has
less dramatic improvement, dropping to 35.7 for the
fifth problem. Using both structures produces much
better results than either of the two alone, as the av-
erage number of rounds drops steadily, ending at 25.9,
which is close to a 40% improvement over no learning.
Standard deviations for these points ranged from 0.56
to 0.90.

In some domains (e.g. robot agents), the time it will
take an agent to attempt primitive actions will far ex-
ceed the amount of time the agent spends planning or
communicating. And in other domains (e.g. web-based
applications), the communication costs will dwarf the

45 I I I I
[

40 ~
PK snd OP _

~._.
PK only

35 ~ |. ~_
OP only -~--

l"-:<_-~~. -

< 20 I I I I
1 2 3 4 5

Problem Solving Episode Number

Figure 8: Community primitive action decreases.

costs of planning or acting. Figure 8 shows that the use
of collective memory in MOVERS-WORLD reduces
the number of primitive actions needed to solve prob-
lems. Figure 9 shows that the use of collective memory
in MOVERS-WORLD reduces run-time communica-
tion.

t PK and OP --
18

PK only

16 ~ ~’--.-. oe only -~-- J

z

1 2 3 4 5

Problem Solving Episode Number

Figure 9: Community communication decreases.

The improved run-time performance of the commu-
nity is a direct result of the fact that the planner pro-
duces plans that are either more efficient (e.g. inter-
leaves goals) or more likely to be successful or both.
The question must be asked whether this improve-
ment in plan quality comes at a high price in increased
planner effort due to increased match costs and/or in-
creased branching factors? Using collective memory
in MOVERS-WORLD, there is no high price to pay.
There is a performance decline in the amount of ef-
fort the planner requires in order to instantiate local
role-binding variables (see Figure 10). However, this
is more than compensated by a dramatic reduction in
the number of planning search nodes expanded during
cMls to the planner as shown in Figure 11.

2There are other concerns regarding case-bases, princi-
pally increased retrieval time, but there are techniques to
handle this such as (Minton 1990; Smyth & Keane 1995).

60

2.5 I I I

1.5

1

1

PK and OP -- --

PK only

OP only -~--

I t I
2 3 4 5

Problem Solving Episode Number

Figure 1O: Agents search more to find role bindings.

80 L_ I I I70F
4~ ~’’" PK and OP -----]only --- -1

I 2 3 4 5

Problem Solving Episode Number

Figure 11: PK reduces planning search.

7 Concluding Remarks

This paper has shown the significant benefits that col-
lective memory provides to a community of agents in a
problem-solving setting. We presented illustrative ex-
amples of how cooperative procedures that are beyond
the scope of the scratch planner can be learned and
stored into collective memory. Empirical results con-
firmed the usefulness of collective memory in an im-
plemented test-bed system. These results showed that
cooperative procedures and another collective memory
structure, operator probabilities trees, each indepen-
dently lead to reductions in the amount of time a com-
munity takes to solve randomly generated problems.
Furthermore, the two structures are more effective to-
gether than either alone, showing that the structures
facilitate non-overlapping aspects of learning.

Acknowledgments
This work was supported in part by the Office of Naval
Research under grant number N00014-96-1-0440.

References

Alterman, R. 1988. Adaptive planning. Cognitive
Science 12:393-421.
Carbonell, J. 1983. DerivationM analogy and its role
in problem solving. In Proc. Third National Confer-
ence on Artificial Intelligence.

Cole, M., and EngestrSm, Y. 1993. A cultural-
historical approach to distributed cognitition. In Sa-
lomon, G., ed., Distributed Cognitions. Cambridge
University Press. 1-46.

Corkill, D. D. 1979. Hierarchical planning in a dis-
tributed environment. In Proc. Sixth International
Joint Conference on Artificial Intelligence, 168-175.

Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972.
Learning and executing generalized robot plans. Ar-
tificial Intelligence 3:251-288.

Garland, A., and Alterman, R. 1996. Multiagent
learning through collective memory. In 1996 AAAI
Spring Symposium on Adaptation, Coevolution and
Learning in Multiagent Systems, 33-38.

Grosz, B. J., and Kraus, S. 1998. The evolution of
SharedPlans. In Rao, A., and Woolridge, M., eds.,
To Appear in Foundations and Theories of Rational
Agency.

Hammond, K. 3. 1990. Case-based planning: A
framework for planning from experience. Cognitive
Science 14:385-443.
Huber, M. J., and Durfee, E. H. 1995. Deciding
when to commit to action during observation-based
coordination. In Proc. First International Conference
on Mnltiagent Systems, 163-170.
Kambhampati, S., and Hendler, J. A. 1992. Control
of refitting during plan reuse. Artificial Intelligence
55:193-258.

Kolodner, J. L. 1993. Case-Based Reasoning. San
Mateo, CA: Morgan Kaufmann Publishers.

Kushmerick, N.; Hanks, S.; and Weld, D. 1995. An
algorithm for probabilistic planning. Artificial Intel-
ligence 76.

Laird, J. E.; Rosenbloom, P. S.; and Newell, A. 1986.
Chunking in SOAR: The anatomy of a general learn-
ing mechanism. Machine Learning 1:11-46.

Minton, S. 1990. Quantitative results concerning the
utility of explanation-based learning. Artificial Intel-
ligence 42:363-392.

NagendraPrasad, M. V.; Lesser, V. R.; and Lander,
S. 1995. Retrieval and reasoning in distributed case
bases. Technical Report CS TR 95-27, University of
Massachusetts.

Sacerdoti, E. 1974. Planning in a hierarchy of ab-
straction spaces. Artificial Intelligence 5:115-135.

Smyth, B., and Keane, M. T. 1995. Remembering to
forget. In Proc. Fourteenth International Joint Con-
ference on Artificial Intelligence, 377-382.
Sugawara, T. 1995. Reusing past plans in distributed
planning. In Proc. First International Conference on
Multiagent Systems, 360-367.

Veloso, M., and Carbonell, J. 1993. DerivationM anal-
ogy in prodigy: Automating case acquisition, storage,
and utilization. Machine Learning 10:249-278.

61

