
Issues in Interleaved Planning and Execution

Scott D. Anderson
Spelman College, Atlanta, GA

andorson©spolman, edu

Abstract

This paper chronicles some issues that arose in at-
tempting to implement two simple planners that inter-
leave planning and execution. (For brevity, such plan-
ners will be called IPE planners.) The IPE planners
are based on UCPOP (Barrett et al. 1993), a classic
operator-based planner using goal-regression. Unfor-
tunately, while the planners succeeded on very simple
problems, they failed on problems as easy as the Suss-
man problem. This paper describes the two IPE algo-
rithms and discusses why they failed.

Planning Technique

The point of interleaving planning and execution (IPE)
is to gain time by doing an incomplete job of planning
before executing the first action. An IPE planner that
searches forward in situation space would stop before
finding a complete sequence of actions from the initial
situation to the goal. A goal-regression IPE planner
would stop before finding a plan in which all goals are
satisfied and all threats resolved. When the planner
stops, the agent executes an action, and the planner
resumes, somehow, in order to find other actions, until
the goal is achieved.

The decision between forward search and goal re-
gression planning is not clear-cut. A partial search
by a forward-search, situation-space planner yields se-
quences of actions that are executable in the current
situation. This is an obvious benefit, since the agent
needs executable actions. A partial search in plan space
by a goal-regression planner will not necessarily yield
any executable actions. On the other hand, a goal-
regression planner only considers actions that achieve
subgoals, so any actions it finds are likely to be rel-
evant to achieving the goal. Forward-search planners
may consider actions that are executable but irrelevant.
For example, a Blocksworld problem may also include
a briefcase and operators to open and close the brief-
case, which are executable in the current situation. The
forward-search planner will consider actions of opening
and closing the briefcase, while the goal-regression plan-
ner will not, since no preconditions of any sub-goals are
achieved by opening or closing the briefcase.

Figure 1: The Sussman Problem

The best resolution seems to be to use a goal-
regression planner and search for long enough that an
executable action is found. The action at least appears
to be relevant, since it achieves some part of a sub-
goal. Nevertheless, an obvious problem arises, namely,
that there is no easy way to determine how long it will
take to find an executable action. Indeed, if the prob-
lem is sufficiently difficult, no executable action may
ever be found. The unbounded nature of the search
for an executable action makes an IPE planner based
on goal regression unsuitable for hard-real-time prob-
lems (Stankovic 1988). An IPE planner based on for-
ward search will at least find a promising action in a
predictable amount of time, even if the action turns
out to be a red herring. Of course, if the problem is
unsolvable, the goal-regression planner will never stop
searching, while the forward-search planner will just
ceaselessly execute actions that never achieve the goal.
It’s not clear if either behavior is preferable. (Neither
search needs to be infinite, of course, because a search
limit can easily be imposed. Preferably, the planner
would recognize unsolvable problems.)

Completeness

As planning algorithms, both forward search and goal
regression can be complete--if a solution exists they will
find it. Cutting off the search early, before a solution is
found, and executing an action makes either planning
technique incomplete. This can happen when the ex-
ecuted action leads to a world situation in which the
problem is no longer solvable. For example, consider
the Sussman problem, whose initial state is depicted in
Figure 1. If there is a vaporize operator that destroys
a block, that operator might well be used to achieve
the subgoal (CL~.hR h), even though the problem is
longer solvable if block C no longer exists.

62

From: AAAI Technical Report WS-98-02. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

SEP-PLAN(situation, goal
while goal is not true in situation

plan = create-initial-plan(situation, goal
plan = UCPOP(plan, plan-has-executable-action?)
action = extract-action(plan
situation = execute(situation, action)

Figure 2: Pseudo-code for SEP-PLAN

The essential feature of vaporize is that it is not
reversible--there is no way to undo its effects. As long
as there are no irreversible operators, an IPE agent
should be able to achieve any achievable goal. The
resulting sequence of actions may be sub-optimal, in
that there are extra actions or other inefficiencies, but
the goal should still be achievable. In particular, the
Sussman problem should be solvable using the standard
Blocksworld operators, even by an IPE planner.

Interleaved Planning and Execution
Using UCPOP

The basic design of the following IPE planners is to use
UCPOP as a subroutine in a higher level algorithm,
minimizing changes to the essential UCPOP planning
algorithm. The standard UCPOP algorithm searches
in plan space until it finds a plan in which there are
no unachieved subgoals and no threats. In both IPE
algorithms, the idea is to change the stopping UCPOP
criteria so that UCPOP returns the first plan that has
an executable action--one in which the action has no
preconditions that are not true in the current situation.
(Note that in this paper, the words "action" and "op-
erator" will be used interchangeably.)

Separate Planning Problems

The first IPE algorithm is extremely simple: search un-
til a plan with an executable action is found. (Clearly,
if the problem is solvable, such a partial plan exists.)
The action is then executed, resulting in a new world
situation. The UCPOP planner is then called again,
using the new world situation as the initiM situation
and using the same goal. Essentially, solving the initial
problem is treated as solving a series of separate plan-
ning problems, hopefully converging on the goal. The
pseudo-code in Figure 2 should clarify the algorithm,
called SEP-PLAN. Note that UCPOP is viewed as tak-
ing two arguments--an initial plan and a predicate for
stopping. In this case, the predicate is that the plan
has an executable action. The initial plan is a triv-
ial one with two dummy steps: the initial situation as
the effects of the first dummy step and the goal as the
preconditions for the second dummy step.

Because the successive planning problems are treated
as separate problems, SEP-PLAN is vaguely reminis-
cent of Korf’s Real-Time A* algorithm (Korf 1988),
that SEP-PLAN iteratively chooses an action based on
an incomplete search and executes the action. Unfor-

(a) (b) (c)

(d)

Figure 3: The Sussman Anomaly is that, starting from
(a), the problem can’t be solved by first achieving one
goal and then the other. Trying to first achieve (ON
B) results in the upper sequence. Trying to first achieve
(ON B C) results in the lower sequence.

tunately, unlike RTA*, there is no way to guarantee
being able to choose an action in a bounded amount of
time, so this algorithm is not real-time in the sense that
Korf’s is.

This algorithm can solve trivial problems, such as
building a short tower from blocks on the table, but
fails on the Sussman problem. Let’s look at this in
detail. There are two possible subgoals to choose:

¯ (ON A B) If the planner chooses to achieve that sub-
goal first, it will find the action to move block C to
the table.1 This results in the world situation shown
in Figure 3(b), which is the initial situation for the
new planning problem.

In the next planning problem, the goal is again (0N
B), and is accomplished by putting A on B, resulting
in Figure 3(c).

In the third planning problem, the planner will ad-
dress to subgoal (ON B C), and it will find that
should remove A from B, resulting in Figure 3(b).
Thus, the SEP-PLAN planner loops infinitely, re-
peatedly stacking and unstacking A from B.

¯ (ON B C) This is accomplished in one step, resulting
in Figure 3(d).

1Or to move C to B, which is what UCPOP actually
happens to find. This choice means the next action has to
remove C from B, and it happens to move C back to A.

63

CONT-PLAN(situation, goal
plan = create-initial-plan(situation, goal
while goal is not true in situation

plan = UCPOP(plan, plan-has-unexecuted-executable-action?
action = extract-action(plan)
execute(action
mark_action_executed(plan, action
add_protection_interval(plan, action)

Figure 4: Pseudo-code for CONT-PLAN

In the next planning problem, the goal is (ON A B),
and the planner will find that it should remove B
from C. Thus, the planner loops infinitely, repeatedly
stacking and unstacking B from C.

The Sussman problem is unsolvable by linear planners,
and SEP-PLAN is a kind of linear planner, since it will
try to achieve the goals one at a time (barring control
rules that switch its attention, as is discussed in sec-
tion). In retrospect, it’s not surprising that SEP-PLAN
should fail. More generally, SEP-PLAN fails because it
has no long-term outlook; it myopically tries to achieve
the first goal it can.

The solution, of course, is to do non-linear planning,
so that the planner can interleave the actions neces-
sary to solve both goals. Any algorithm to interleave
planning and execution will have to more closely mimic
standard non-linear planning.

(ON C A) (ON A Table~ B Table) (BLOCK

"i
(AND (CLEAR C) (CLEAR Table))

I (P ToN c Table A)I
(ON C Table) (CLEAR

(AND (ON A B) (ON B

Figure 5: The initial plan for the second iteration of
the Sussman planning problem. The planner found the
PUTON action in the first iteration.

Continued Planning Problem
The second attempt at an IPE algorithm again keeps
the core planning algorithm the same as conventional,
non-linear planning (specifically UCPOP) except that
the agent executes actions during planning. Therefore,
the planner must take into account the commitment to
those actions. In other words, the planner continues its
planning from where it left off, but it must be prevented
from considering plans in which the previously executed
actions either don’t occur or occur in a different order
from their execution order.

This is implemented with two changes to the planning
system. First, the higher level algorithm starts UCPOP
with a modification of whatever plan was returned at
the previous iteration. Second, the plan is modified so
that executed actions are marked as such, and a protec-
tion interval is added so that new steps are constrained
to follow the executed steps. The pseudo-code in Fig-
ure 4 describes the algorithm, which is called CONT-
PLAN because the planner continues from where it left
off.

Note the differences between this algorithm and the
SEP-PLAN algorithm. SEP-PLAN algorithm builds a
trivial initial plan based on a changing initial situa-
tion. The CONT-PLAN algorithm starts with the plan
it computed on the previous iteration. This change re-
quires a change in the stopping predicate: since the
initial plan has executable actions, UCPOP must now

look for a plan with an unexecuted executable action.
Finally, note that the action is executed only for side-
effect; it is not necessary to change the variable describ-
ing the initial situation. Any changes to the world situa-
tion, made by executed actions, are taken into account
by the planner because new actions must follow the
executed actions, so that the post-conditions of those
executed actions modify the initial situation.

Suppose that the chosen action is a poor one--either
benign but useless or actually harmful--one that a nor-
mal non-linear planner would eventually reject. The
IPE planning system would be forced to undo the ac-
tion (assuming that’s possible), and that "undo" action
must follow the executed action.

In practice, using the Sussman problem, what hap-
pens is as follows:

¯ The planner chooses to try to achieve (ON B C).
quickly finds that, since both are clear in Figure 3(a),
stacking B on C is executable.

¯ This action is returned and executed. The core plan-
ner, UCPOP, is run again, this time with the initial
plan in Figure 5, which includes the executed action.

¯ Since the (ON B C) goal is accomplished, the planner
tries to achieve (ON A B). That involves moving
onto A, which has the precondition of (CLEAR B).

¯ Clearing B requires moving blocks off of it, so a PUTON
step is inserted to move C off of B. That step requires

64

C to be clear. There are two ways for C to be clear:

- Block C is clear in the initial state. Unfortunately,
the first step (the one that was executed) is a threat
to C being clear, and there is no way to solve that,
so the planner reaches a dead end.

- Making C clear by moving blocks. That threatens
the causal link between the step that was executed
to put B on C and the goal of (ON B C). There
no way to resolve that threat.

This last difficulty is exactly the subgoal-clobbers-
brother-goal that was first noticed with the Sussman
anomaly. The CONT-PLAN algorithm is unable to re-
cover from these failures because it has already commit-
ted to a poor initial step. Since that step was useful,
it’s now protected from being undone. In practice, the
planner searches infintely for an executable action. To
solve this, the planner’s handling of protection intervals
would have to be changed--a substantial modification
of the basic UCPOP algorithm.

What happens if the planner tries to accomplish (ON
A B) first? In this case, the planning begins normally:
it adds a step to put A on B, which requires A to be
clear, so it adds a step to remove C from A. There are
two ways to solve that: moving C to B and moving C to
the table. These steps are both immediately executable
and are ranked equally highly (using the default settings
of UCPOP), so by pure ill luck, the planner moves
to B. The higher level system then executes that step.

Next, the system starts the planning over again with
an initial plan that first moves C to B (clearing A), then
puts A on B. A precondition of the first step--that B be
clear--is not satisfied. The planner finds that to achieve
the subgoal of having B clear, it needs to move C again.
Any action that moves C will violate the protected link
between the (PUTON C B A) step (the one the agent
executed) and the (PUTON t B ?) step. Therefore,
action cannot be chosen, and there will be no way to
achieve (PUTON t B ?). Again the CONT-PLAN algo-
rithm is stuck.

Summary

The SEP-PLAN algorithm fails because it gets into a
loop, taking B off C and putting it back on again. The
underlying reason is the essential problem with inter-
leaved planning and execution: no long-term vision.
The system goes for the short-term gain that prevents
achieving the overall goal.

The CONT-PLAN algorithm fails because there is a
protection interval between the initial state and the ex-
ecuted steps, and a protection interval between the step
and the goal (to protect its achievement), so it becomes
impossible to undo an executed step or to insert actions
before it. Thus, the planner fails to find a plan. Fix-
ing the behavior would require a radical rethinking of
protection intervals; they are, after all, still useful.

Interleaved Planning and Execution in
Prodigy

Prodigy can solve the Sussman problem and execute
actions along the way. How? First of all, it does not
consider each goal in turn, like a linear planner, but
works with the set of goals. This paves the way for
control rules that can change the particular goal that
Prodigy is attempting to achieve. By using a control
rule that switches to the other goal at just the right
time, Prodigy solves the Sussman problem while inter-
leaving planning and execution.

Prodigy proceeds just as CONT-PLAN does, but
when it finds a plan that includes the executable ac-
tion to put A on B, it has a choice: to execute the
action or to continue planning. (CONT-PLAN has no
choice; it stops and returns the plan with the executable
action.) When that choice arises, the following control
rule (Blythe et al. 1992, p. 27) is triggered:

(control-rule avoid-apply-f or-wrong-goal
(IF (and (on-goal-stack (on <x> <y>))

(candidate-goal (on <y> <z>))
(applicable-operator (pickup <x>))))

(THEN sub-goal)

In English, this control rule means that Prodigy
knows that if the goals include (ON A B) and (ON
B C), the action to put A on B should be deferred until
(ON B C) is achieved. This is a clever and effective
rule, but is domain-specific. Change the statement of
the Sussman problem to use ABOVE instead of ON,
and the problem is the same, yet the rule doesn’t work.
Prodigy may decide to execute the action instead of
switching to the other subgoal.

There is nothing wrong with assuming that control
knowledge is critical to efficiently solving problems.
This particular control rule is perfectly sensible; yet,
somehow it seems contrary to the spirit of the Sussman
problem, which is that subgoals interact. The control
rule fixes the interaction, but in a domain-dependent
way.

No problem in the Blocksworld is difficult if the sys-
tem knows that it should build a tower up from the
bottom. After all, the "Penguins Can Make Cake"
paper (Chapman 1989) showed that a purely reactive
planner can build a very tall tower, as long as it knows
to start from the bottom. No one ever claimed the Suss-
man problem was hard; it’s interesting only because of
the goal interaction.

What if Prodigy were deprived of this control rule,
perhaps because it is solving a problem in some new
domain; could it still solve the problem? I believe so,
because Prodigy can be parameterized to allow state
loops, which would permit the action of stacking B on
C to be undone (thereby causing the initial situation to
recur). Ordinarily, state loops are disallowed, to avoid
inefficiencies in plans. However, I have not yet run this
experiment.

65

Conclusion
The paper has described several approaches to inter-
leaved planning and execution. Modified forward search
was rejected because it seemed difficult to ensure that
only relevant actions were considered. A domain with
many operators and many objects could yield a for-
ward search with a huge branching factor, with most
of the search spent uselessly. Still, a forward search
could be informed by a goal-regression search, so that
the search focuses on promising operators and objects.
This search algorithm might be like McDermott’s (Mc-
Dermott 1996).

Two attempts to use simple goal-regression were de-
scribed, along with their failures. The first treated the
whole problem as a series of independent plan-space
searches using a changing initial situation. This failed
because the planner is essentially linear, achieving one
goal at a time. The second attempt executed actions as
they were found, picking up the search where it left off,
but pruning parts of the space that considered plans
that do not start with the executed actions. This ap-
proach failed because the protection intervals prevented
steps from being undone.

Finally, a successful approach by Prodigy was de-
scribed, using either control rules to switch among goals
or permitting state loops in the search space, thereby al-
lowing actions to be reversed. The control rules may be
too domain-dependent to be reliable for general prob-
lem solving. Allowing state loops is a general approach
to goal interaction and reversing actions, but may intro-
duce unacceptable inefficiencies in the planning. More
research should go into the role that state loops play in
the completeness and efficiency of interleaved planning
and execution.

References
Barrett, A.; Golden, K.; Penberthy, J. S.; and Weld,
D. S. 1993. UCPOP user’s manual (version 2.0). Tech-
nical Report 93-09-6, Department of Computer Sci-
ence and Engineering, University of Washington.

Blythe, J.; Etzioni, O.; Gill, Y.; Joseph, R.; Kahn, D.;
Knoblock, C.; Minton, S.; P~rez, A.; Reilly, S.; Veloso,
M.; and Wang, X. 1992. Prodigy4.0: The manual and
tutorial. Technical Report CMU-CS-92-150, Carnegie
Mellon University, School of Computer Science.

Chapman, D. 1989. Penguins can make cake. AI
Magazine 10(4):45-50.

Korf, R. E. 1988. Real-time heuristic search: New
results. In Proceedings of the Seventh National Con-
ference on Artificial Intelligence, volume 1, 139-144.
American Association for Artificial Intelligence.

McDermott, D. 1996. A heuristic estimator for
means-ends analysis in planning. In Proceedings of
the Third International Conference on Artificial Intel-
ligence Planning Systems, 142-149. American Associ-
ation for Artificial Intelligence.

Stankovic, J. A. 1988. Misconceptions about real-time
computing: A serious problem for next-generation sys-
tems. Computer 21(10):10-19.

66

