
Planning, Scheduling, and Plan Execution
for Autonomous Robot Office Couriers

Michael Beetz and Maren Bennewitz
University of Bonn, Dept. of Computer Science III,

Roemerstr. 164, D-53117 Bonn, Germany,
email: beetz, bennewit@cs.uni-bonn.de

Abstract

This paper investigates issues in the integration of planning,
scheduling, and plan execution in the context of control
systems for autonomous robot office couriers. Such con-
trol systems have to meet challenging requirements. They
must avoid late deliveries and achieve long-term efficiency
instead of restricting themselves to the optimization of prob-
lem solving episodes. Becauserobots acting in human work-
ing environments are often forced to schedule their activities
without having complete information their control systems
must reliably and efficiently execute scheduled activity in
changing and partly unknown situations. In particular, the
control systems must be able to exploit opportunities, flex-
ibly avoid problems, and integrate command revisions for
currently active tasks.

We propose to implement such control systems for sched-
uled activity by employing concurrent reactive plans that,
while performing their actions, reschedule the course of ac-
tion whenever necessary. The plans have a modular and
transparent representation which permits easy transforma-
tions by transformation rules. It is these rules that implement
the controller’s scheduling and schedule repair methods.

Introduction
To carry out their jobs reliably and efficiently many au-
tonomous mobile service robots acting in human working
environments have to view their jobs as everyday activity.
We consider a particular instance of everyday activity: per-
forming office courier service. Scheduling everyday activ-
ity differs in important aspects from many other schedul-
ing tasks such as job shob scheduling (FS84), space shut-
tle scheduling (DSB94), or transportation scheduling in the
following aspects:

¯ Amortized cost and utility ofplans. The goal of schedul-
ing everyday activity is the optimization of long-term ef-
ficiency rather than problem-solving episodes. There-
fore, a competent office courier distributes for instance
empty envelopes according to an expected consumption
profile while performing its delivery jobs. Distributing
the envelopes beforehand decreases the chances that the
robot must search for empty envelopes before delivering

a letter and thereby miss a deadline. Such preparation ac-
tions make the performance of individual jobs slower but
they can be expected to improve the overall performance
significantly.

¯ Flexibility and Robustness. Schedules are to be gener-
ated based on partial information about the environment
and the tasks. For instance, incomplete task specifica-
tions like "pick up the letter from Wolfram and deliver
it," lack proper descriptions of envelope as well as the
destination of the letter. Acting appropriately based on
partial information requires the robot courier to watch
out for opportunities and exploit them as well as detect
and avoid problems while executing scheduled activity.

¯ Experience. Information acquired through extended ex-
perience is exploited to compute more appropriate sched-
ules. For instance, the time it takes for different people
to load or unload at different places.

It is important that the scheduler of an autonomous robot
office courier is able to interleave delivery jobs, resched-
ule when problems are detected, and exploit opportunities.
The scheduler also has to be able to predict whether exploit-
ing an opportunity that has just been detected might cause
failures in other activity threads such as missing deadlines
(BG98). What seems less important is the computation
schedules that guarantee minimal path length because load-
ing and unloading takes significant amount of time.

Our research on scheduling
everyday activity is carded out
in the context of FAXBOT,
a structured reactive controller
(SRC) (Bee98) that is designed
for robust and efficient exe-
cution of delivery plans on
the autonomous mobile robot
RHINO (see Fig. 1), an RWi
B21 robot. RHINO is equipped

Fig. 1: The mobile robot with three PCs connected to the
RHINO university-wide computer net-
work via a tether-less radio link. Its sensor system contains
24 ultra-sonic proximity sensors, two laser range finders,

67

From: AAAI Technical Report WS-98-02. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

and a CCD stereo color camera system.
FAXBOT operates in a part of an office building contain-

ing a large hallway, several offices, a library, and a class-
room (see Figure 2). FAXBOT uses a symbolically anno-
tated 3D world model of its environment that contains floor
plan information for walls, doorways, and rooms and static
pieces of furniture. The world model provides all the in-
formation required by the RHINO navigation system to ex-
hibit fast and collision free navigation and accurate robot
localization (TBB+98). It also contains detailed geomet-
ric models of the furniture items that can be used for their
recognition. Finally, the world model stores symbolic infor-
mation that is used to interpret natural language commands
and as domain knowledge for mission planning.

FAXBOT operates over extended periods of time and car-
ries out a schedule of multiple jobs, which can be changed
at any time. Jobs are issued via electronic mail using
strongly restricted natural language.

Fig. 2: Environment of the office courier
To accomplish its commands FAXBOT uses a library of

routine plans. The routine plan for deliveries specifies that
RHINO is to navigate to the pickup place, wait until letter is
loaded, navigate to the destination of the delivery, and wait
for the letter to be unloaded.

The main contributions of this paper are that we show
(1) the installation of modular and transparent schedules
complex concurrent and reactive robot control programs;
(2) explain the design of schedules and controllers that al-
low for the opportunistic and robust execution of scheduled
activity; and (3) describe novel plan transformation tech-
niques for scheduling and rescheduling everyday activity.

The remainder of this paper is organized as follows. The
section 2 presents an example in which FAXBOT schedules
its delivery jobs based on partial information and resched-
ules its activities to avoid task failures and exploit oppor-
tunities. The section 3 gives a glimpse of the plan repre-
sentation used by FAXBOT and presents the control struc-
tures used for the implementation and revision of activity
schedules. Section 4 presents technical details of FAXBOT’s
activity scheduler and shows how scheduling methods are
implemented as declarative plan transformation rules. Sec-
tion 5 describes how the FAXBOT controller accomplishes
the behavior of the robot that is described in Section 2.

An Extended Example

Consider the following experiment that is carried out by
RHINO using FAXBOT’s scheduling capabilities. RHINO
receives two commands: "put the red letter on the meet-
ing table in room A-111 on the desk in room A-120" and
"deliver the green book from the librarian’s desk in room
A-110 to the desk in room A-114."

Whenever the jobs change FAXBOT computes an appro-
priate schedule very fast. FAXBOT’s initial schedule is to
pick up the red letter first, then pick up the green book, then
deliver the red letter, and the green book afterwards. If the
second job involved also a red letter to be delivered, then
the scheduler would first carry out the first job completely
and then carry out the second job. This is done to avoid
carrying two red letters at the same time and thereby yield
possible confusions.

Fig. 3. Default Fig. 4. Schedule that
schedule, avoids carrying two red

letters.
Proposing a schedule also implies making assumptions

about whether and when doors are open or closed. Thus
when adopting the schedule FAXBOT assumes that the
doors of the rooms A-110, A-Ill, A-114, and A-120
are open. To perform the necessary adaptations flexibly,
FAXBOT monitors the assumptions underlying its schedule
while performing its deliveries: whenever it passes a door
it estimates the opening angle of that door and revises the
schedule if necessary.

Fig. 5: Complete trajectory for the two deliveries
Figure 5 pictures RHINO’s trajectory during the accom-

plishment of the two delivery jobs. Initially, all doors in
the environment are open. FAXBOT starts with the delivery
of the red letter and heads to the meeting table in A-111
where the letter is loaded (step 2). At this moment the door
of A-120 is closed. Thus, when FAXBOT enters the hallway
to deliver the red letter at Michael’s desk, it estimates the

68

opening angle of the door of room A-120. At this moment
FAXBOT detects that the door has been closed and that it
cannot complete the delivery (step 3). A failure is signalled.

Since FAXBOT does not know when room A-120 will
be open again, it revises the schedule such that it delivers
the green book first and accomplishes the failed delivery as
an opportunity. Thus FAXBOT navigates to the librarian’s
desk in A-110 to pick up the green book to room A-114
(step 4). At this moment room A-120 is opened again.
FAXBOT heads towards A-114 to deliver the green book it
passes room A-120 (step 5). At this point the door estima-
tion process signals an opportunity: A-120 is open! There-
fore, FAXBOT interrupts its current delivery to complete the
delivery of the red letter. After the delivery of the red letter
is completed (step 6), FAXB OT continues the delivery of the
green book (step 7). The behavior generated by FAXBOT
all doors stay open is shown in Fig. 6 and the one if A-120
is closed but not opened again in Fig. 7.

Fig. 6. Trajectory if Fig. 7. Trajectory if
A-120 stays open. A-120 is closed again.

The behavior exhibited by FAXB OT demonstrates the fol-
lowing capabilities of FAXBOT’s scheduler and its integra-
tion into the overall controller: interleaving delivery tasks,
revising schedules while they are executed, and exploiting
opportunities.

The FAXBOT Controller

FAXBOT’s delivery routines are implemented in RPL (Re-
active Plan Language) (McD91). RPL provides condition-
als, loops, program variables, processes, and subroutines.
RPL also places high-level constructs (interrupts, monitors)
to synchronize parallel physical actions and make plans re-
active and robust by incorporating sensing and monitoring
actions, and reactions triggered by observed events at the
programmer’s disposal. The RPL constructs used to specify
scheduled activity are the PLAN-, WITH-POLICY-, WHENEVER-,
and WAIT-FOR-Statements; but see (McD91) for a complete
description.

The PLAN-Statement has the form (PLAN STEPS CONSTRAINTS).
STEPs have the form (:TAG NAME SUBPLAN) and tag SUBPLAN
with the name NAME. constraints have the form (:ORDER
S~ S2) where Sis are name tags of the plan steps. Steps
are executed in parallel except when they are constrained
otherwise. The :ORDER constraints make sure that a subse-
quent step is started only if all steps computing the inputs
have been completed. The TOP-LEVEL command indicates

declares its subtasks as user commands and causes the gen-
eration of failure and success reports upon their termina-
tion.

WITH-POLICY v B, another control structure, means "execute
the primary activity B such that the execution satisfies the
policy v" Policies are concurrent processes that run while
the primary activity is active and interrupt the primary if
necessary.

Events that require RHINO to perform actions such as
"passing a door" are handled through fluents, program vari-
ables that signal changes of their values and thereby enable
control threads to react to asynchronous events. The RPL
statement WHeNEVeR F B is an endless loop that executes B
whenever the fluent p gets the value "true" WAIT-FOR F, an-
other control abstraction, blocks a thread of control until the
fluent F becomes true.

Primary Activities and Policies

The FAXBOT controller carries out two kinds of subplans:
primary activities, actions taken to accomplish the robot’s
mission and policies, which monitor and maintain the con-
ditions necessary for the successful and efficient execution
of the primary activities.

Primary activities include for example the navigation to
places where objects are to be picked up and delivered. A
policy might, for instance, monitor the doors the robot is
passing to detect whether they are open or closed. Another
policy might monitor how well the robot knows its position
and invoke active localization whenever necessary. Primary
activities must handle interrupts and, due to the possible
side-effects of policies, these activities have to make suit-
able preparations for their successful continuation after re-
activation.

Policies are best viewed as constraints on the execution
of primary activities. Constraints such as "whenever you
pass a door estimate the opening angle of the door using
its laser range finders" and opportunities such as "complete
the delivery to room A-120 as soon as you learn the of-
fice is open" which are both necessary for carrying out the
jobs opportunistically, are specified using the aPE construct
WITH-POUCY. Events like "passing a door" are detected by
fluents that trigger actions like estimating the door angle.
When a delivery gets interrupted because FAXBOT has de-
tected that the door to A-120 is open, that opportunity has
the side effect of moving the robot into the office A-120.
The interrupted delivery plan has therefore to be replanned
before it can be continued.

The Structure of the FAXBOT Controller

The FAXBOT controller is structured in a modular and trans-
parent way such that automatic plan transformation tech-
niques can retrieve parts of the plan easily and modify the
plan without making it opaque for subsequent plan revision
processes.

69

WITH-POLICY :TAG OPPORTUNISTIC-PRIMARIES

TOP-LEVEL

:TAG ACTIVE.PRIMARIES
PLAN

TOP-LEVEL

:ORDER

The overall plan of the FAXBOT controller consists of the
plan body tagged PRIMARY-ACTMTIES that contains the plans
for accomplishing the user commands and the surrounding
policies that specify the constraints on the execution of the
primary activities. The primary activities are separated into
the opportunistic primaries and the active primaries. The
active primaries are the ones that the robot is able to ac-
complish without help. The order in which the subplans
of the active primaries are executed is given by the order
constraints that specify a (partial) order on the navigation
tasks contained in the active primary tasks. The opportunis-
tic primaries are the ones that robot cannot accomplish au-
tonomously. To complete them it has to wait for enabling
conditions. For example, because FAXBOT has no action
for opening doors it might have to wait for doors to open in
order to complete its deliveries. The open door might be an
opportunity to complete a user command.

The FAXBOT Scheduler

The scheduling method takes constraints, resources, and
deadlines into account and tries to minimize the number of
interruptions for people. The method carries out a sequence
of steps: (1) the scheduler extracts all navigation tasks from
the structured reactive plan; (2) it computes an efficient to-
tal order on the navigation tasks that (if possible) meets all
given deadlines avoids overloading the robot; (3) it installs
the schedule into the structured reactive plan; and (4) in-
stalls a monitoring process that monitors all the assump-
tions made by the scheduler and triggers a rescheduling pro-
cess whenever an assumption is detected to be violated.

The extraction step is simple because all navigation
tasks are required to have the form (ACHIEVE (LOC RHINO Ioc))
(BM92). In the extraction step every navigation task
tagged with a unique name that can be later used to specify
the order on the navigation tasks. A more difficult issue in
the extraction step is guessing the destinations of naviga-
tion tasks that are not completely specified. (McD92) de-
scribes a technique for guessing destinations of navigation
tasks based on Monte Carlo simulations of the plan.

The algorithm for ordering the navigation tasks is also
simple. Essentially, it sorts the destination north of the hall-
way in ascending and south of the hallway in descending
order (the environment is pictured in Figure 2). After this
initial sort the scheduler iteratively resolves problems such
as missed deadlines or confusions caused by carrying ob-
jects that look identical.

SCHEDULE-DELIVERIES (delivs)
1 for each Loc in Delivs
2 do ifNorth-of?(Loc, Hallway)
3 then North ~-- North O {Loc}
4 else South ~ South U {Loc}
5 North +-- Sort(North, >)
6 South +-- Sort(South,<)
7 for each Loc in North
8 do ifEast-of?(Loc, Robot)
9 then East ~ East U {Loc}

10 else West <--- West U {Loc}
11 Schedule ~ Append(West, South, East)
12 while -~Conflict-free(Schedul e
13 do Schedule ~-- Remove-a-Conflict(Schedule)
14 return Schedule

Because of the hierarchical structure of office environ-
ments this simple heuristic algorithm for computing sched-
ules works surprisingly well. The optimal schedule asks the
robot to visit every office with the order of the offices being
clockwise (or anti-clockwise) starting at the office closest
to the robot. The Voronoi diagrams of offices have often
almost tree structure (with few cycles) so that the desks can
be easily reached from the door and the center of the room.

There are various cases for which this algorithm pro-
duces suboptimal schedules. For instance, you can place
n destinations on a circle (equally spaced). In this setting,
the algorithm asks the robot to go back and forth on the cir-
cle and take a route that is longer than necessary. The algo-
rithm can be extended easily so that it computes with a high
probability nearly optimal schedules fast. The question is
whether having nearly optimal schedules causes the robot to
accomplish its tasks more efficiently. Often tighter sched-
ules fail more often. In our opinion it is more promising
to learn scheduling heuristics from experience. Informa-
tion relevant for scheduling that can be learned from expe-
rience include the expected duration of loading and unload-
ing, when people are usually in their offices, when doors
are open or closed, and so on.

The scheduling routine is implemented as a plan trans-
formation rule that can be applied to FAXBOT’S overall plan
while the plan is executed (BM97; BM94). We will diagram
plan-transformation rules

(pl AT cp == pat) F

--’~--I curia
pt’ L

0

1.) ?PRIM-ACTIVITIES
AT PRIMARY-ACTIVITIES

2.) ?ACTIVE-PRIMARIES
AT ACTIVE-PRIMARIES

(PLAN ?CMDS ?CONSTRAINTS)
/

1.) WITH-POLICY WHENEVER (NO.__.~(AND I?SCHED-ASSMTS))
SIGNAL(UNSCHEDULED-PLAN-BUG

(?ROOT-TASK ?ACTIVE-PRIMARIES))
?PRIM-ACTIVITIES

2.) PLAN ?CMDS !?CONSTRAINTS I?SCHED-CONSTRAINTS

UNSCHEDULED-PLAN-BUG (a)
(?ROOT-TASK ?ACTIVE-PRIMARIES)

A NAVIGATION-TASKS (b)
(?ACTIVE-PRIMARIES ?NAV-TASKS)

^SCHEDULE ?NAV-TASKS(?SCHED-CONSTRAINTS) (c)
^ SCHEDU LING-ASSUMPTIONS (d)

(?NAV-TASKS ?SCHED-ASSMTS))

Figure 8: Plan revision rule for the the installation of task schedules.

where cond is the applicability condition, (pt AT cp =-- pat) the
input plan schema and pl’ the output plan schema of the
rule. The applicability condition is a conjunction of liter-
als. The input plan schema consists of a pattern variable
to which the subplan with code path cp is bound and an
optional pattern pat that is matched against the subplan pl.
The rule is applicable if the application condition holds and
the plan pl with code path cp matches the pattern pat. The
resulting plan fragment pl’ replaces the input fragment in
the revised plan.

Figure 8 shows the formalization of the transformation
rule that schedules office delivery tasks. The transforma-
tion rule revises the primary activities by adding another
global policy that generates an unscheduled plan bug when-
ever an assumption underlying the current schedule is de-
tected as violated. The rule also revises the active pri-
maries by adding the ordering contraints of the schedule
to the constraints of the primary activities. The scheduling
rule is applicable under a set of conditions specifying that
(a) There is a bug of the category "unscheduled plan;" (b)
The navigation tasks contained in the active primaries are
?NAV-TASKS; (C) ?SCHED-CONSTRAINTS ale ordering constraints
on ?NAV-TASKS such that any order which satisfies ?SCHED-
CONSTRAINTS will accomplish the active primary tasks fast
and avoid deadline violations and overloading problems;
(d) ?NAV-TASKS can be accomplished if ?SCHED-ASSTS are sat-
isfied. The rule is applied whenever the set of user com-
mands changes.

Robust and Efficient Schedules

To accomplish robust and efficient execution of sched-
ules we (1) explicitly record and monitor scheduling as-
sumptions; (2) install opportunistic delivery tasks; and (3)
reschedule the primary activities while they are executed
whenever a broken scheduling assumption is detected.

Currently, we only consider one kind of scheduling as-
sumptions and opportunities: the state of doors. To mon-
itor these assumptions, the FAXBOT controller employs a
global policy: whenever the robot passes a door it estimates
the opening angle of this door. The opening angles of each
door are stored in an fluent that has two dependent fluents:

one signalling that the door is closed and one that the door
is open.

The scheduling assumptions of the active primaries are
that all rooms that are destinations of navigation tasks are
open. Scheduling assumptions are handled by a policy of
the following form:

WITH-POLICY SEQ WAIT-FOR.(CLOSED(ROOMt) V...
V CLOSED(ROOM,i))

SIGNAL(CLOSED-DOOR-BUG ...)
Plan Body

Thus each violated scheduling assumption triggers the
application of the scheduling transformation rule shown in
Figure 9. In order to apply scheduling transformations to
the primary activities while the primary activities are exe-
cuted, the primary activities have to be restartable (BM96).
Restartability means that the robot controller can repeatedly
start executing a plan, interrupt the execution, and start it
anew, and the resulting behavior of the robot is very similar
to the behavior of executing the plan only once. Restartabil-
ity facilitates the smooth integration of plan revisions into
ongoing activities: a partially executed restartable plan can
be revised by terminating the plan and starting the new plan
that contains the revisions.

In practice, however, restartable plans work differently.
Consider, for example, a plan for the delivery of an object.
To determine which parts of the plan can be skipped, it is
sufficient to know the object’s location and some aspects
of the robot’s state (like its location and what it carries).
Because the FAXBOT controller updates the object descrip-
tions whenever it perceives and "manipulates" the object,
FAXBOT can determine the state of execution based on the
description of the object to be delivered.

To act efficiently, FAXBOT has to exploit opportunities.
A necessary precondition of exploiting opportunities is that
FAXBOT is able to specify what opportunities are. One kind
of opportunity that FAXBOT Can exploit is the opportunis-
tic completion of delivery tasks. Suppose a user command
cannot be completed because the room where the object is
to be delivered is closed. In this case, the execution of the
active primary plan for accomplishing the delivery fails and
the plan is installed as an opportunistic primary.

The revision of the FAXBOT controller that is triggered

71

1 .) ?ACT-PRIMARIES
AT ACTIVE-PRIMARIES

2.) ?OPP-PRIMARIES
AT OPPORTUNISTIC-PRIMARIES

1.) ?REM-ACT-PRIMAR~IES
2.) TOP-LEVEL

:TAG ?TLC-NAME
SEQ WAIT-FOR(OPEN(?ROOM))

?TLC-PLAN
I?OPP-PRIMARIES

CLOSED-DOOR-BUG
(?CMD-FAILURE ?DOOR-FCT ?ROOM
(?TLC) ?FAILED-TASK)

^TLC-NAME(?TLC ?TLC-NAME)
^ ROOT-TASK(?ROOT ?FAILED-TASK)
A DELETE-ACTIVE-PRIMARY-TLC-PLAN

(?ROOT ?TLC-NAME ?REMAINING-TLC-PLANS)
^TAGGED-SUBTASK(?ROOT ?TLC-NAME ?TLC-TASK)
A RPL-EXP(?TLC-TASK ?TLC-PLAN)

Figure 9: Plan revision rule for delivery tasks that cannot be completed because of closed doors.

by closed doors is accomplished by the plan transformation
rule listed in Figure 9. The plan revision rule is triggered
by a "closed door" bug that causes a user command to fail.
The rule deletes the failed plan for the user command from
the active primary activities and adds the plan to the oppor-
tunistic primary activities.

FAXBOT’s Scheduling Methods at Work
This section describes how FAXBOT accomplishes the
courier jobs described earlier. In the beginning, FAXBOT
carries out no primary activities. Its outermost policy en-
sures that new commands are received and processed.

WITH-POLICy[integrate d revisions [(P-l)

WITH-POLICY[replan/reschedule when necessary I (P-2)

[PR,MARY ACT,V,T,ES I
Upon receiving the two commands the policy P-1 puts

plans for the commands into the active primary activities of
the SRC. The insertion of the commands triggers the sched-
uler of the policy P-2 that orders the navigation tasks in the
primary activities. The scheduling policy also adds an addi-
tional policy I)-3 that monitors the assumptions underlying
the schedule, that is that the rooms A-110, A-111, A-114,
and A-120 are open.

WITH-POLICY integratecommandrevisions (P-l)

WITH-POLICY (P-Z)

WITH-POLICY (P-3)

NAV-4

After FAXBOT has picked up the red letter from the meet-
ing table and left room A-Ill, it notices that room A-120

has been closed in the meantime. Because FAXBOT cannot
complete the delivery of the red letter the corresponding
command fails. This failure triggers the replanning policy
P-3. Because FAXBOT cannot foresee when room A-120
will be open again it transforms the completion of the de-
livery into an opportunity. Thus as soon as FAXBOT no-
tices room A-120 to be open it interrupts its current mis-
sion, completes the delivery of the red letter, and continues
with the remaining missions after the red letter has been
successfully delivered.

WITH-POLICY[command revisions] (P’l)integrate

WITH-POLICY [replan/reschedule when necessary J (P-l)
i

WITH-POLICY [~ach~duM wh~n ~ HO,~, I I L
i ’

(p 3)
PRIMARY ACTIVITIES

2oi I
:rAa~;ii : ; I

rXo :! ii’:~’,,’I II

Discussion

Our research on scheduling the activities of an autonomous
robot office courier are still in an early stage. So far we have
only performed some simple experiments to validate that
the FAXBOT controller and its scheduler work; that is that
it can reliably monitor scheduling assumptions and sched-
ule delivery jobs during their execution (see our example in
the second section). In the future we plan to compare the
behavior generated by the FAXBOT controller with alter-
native controllers that apply different (re)scheduling strate-
gies. We also need to examine more carefully the literature
on robust scheduling, in particular (ZF94).

In this paper we have mainly focussed on the applica-
tion of scheduling techniques to plans that control an au-
tonomous mobile service robot. As such the contributions
of this paper lie mainly in the representation of complex
concurrent and reactive plans that facilitate scheduling op-
erations, the specification of plan revision methods in the
form of plan transformation rules, and the application of

these scheduling methods while the robot carries out the
scheduled activity.

FAXBOT accomplishes its jobs successfully because its
subplans are made interruptable and restartable using high-
level control structures that specify synchronized concur-
rent reactive behavior. FAXBOT achieves adaptivity through
plan revision and scheduling processes, implemented as
policies, that detect opportunities, contingent situations,
and invalid assumptions. Plan revision techniques are able
to perform the required adaptations because of the modu-
lar and transparent specification of concurrent and reactive
behavior. In particular the distinction of policies and pri-
mary activities increases the modularity significantly. Poli-
cies enable FAXBOT to specify opportunistic behavior and
to achieve reliable operation while making simplifying as-
sumptions.

There are many open issues that we would like to in-
vestigate more carefully in the near future. These issues
include the development of more sophisticated schedul-
ing methods (ZF94), the application of learning techniques
to acquire useful information that can be exploited by
heuristic scheduling methods (HC92b; HV98a; HV98b;
ZDD+92), and a thorough experimental investigation on
the effects of different scheduling techniques on the behav-
ior exhibited by autonomous service robots (HC92a).

References
M. Beetz. Structured reactive controllers for service robots in
human working environments. In G. Kraetzschmar and G. Palm,
editors, Hybrid Information Processing in Adaptive Autonomous
Vehicles. Springer, 1998. to appear.

M. Beetz and H. Grosskreutz. Causal models of mobile service
robot behavior. In R. Simmons, M. Veloso, and S. Smith, editors,
to appear in Fourth International Conference on AI Planning
Systems, Morgan Kaufmann, 1998.

M. Beetz and D. McDermott. Declarative goals in reactive plans.
In J. Hendler, editor, First International Conference on AI Plan-
ning Systems, pages 3-12, Morgan Kaufmann, 1992.

M. Beetz and D. McDermott. Improving robot plans during their
execution. In Kris Hammond, editor, Secondlnternational Con-
ference on AI Planning Systems, pages 3-12, Morgan Kaufmann,
1994.

M. Beetz and D. McDermott. Local planning of ongoing behav-
ior. In Brian Drabble, editor, Thirdlnternational Conference on
AI Planning Systems, pages 3-12, Morgan Kaufmann, 1996.

M. Beetz and D. McDermott. Expressing transformations of
structured reactive plans. In Recent Advances in AI Planning.
Proceedings of the 1997 European Conference on Planning,
pages 64-76. Springer Publishers, 1997.

M. Drummond, K. Swanson, and J. Bresina. Scheduling and ex-
ecution for automatic telescopes. In M. Zweben and M. Fox, ed-
itors, Intelligent Scheduling, pages 341-369. Morgan Kaufmann
Publishers, 1994.

M. S. Fox and S. Smith. Isis - a knowledge-based system for
factory scheduling. Expert systems, 1(I):25--49, 1984.

D. Hart and P. Cohen. Predicting and explaining success and task
duration in the phoenix planner. In J. Hendler, editor, AIPS-92:
Proc. of the First International Conference on Artificial Intelli-
gence Planning Systems, pages 106-115. Kaufmann, San Mateo,
CA, 1992.

A. Howe and P. Cohen. Isolating dependencies on failure by
analyzing execution traces. In J. Hendler, editor, AIPS-92: Proc.
of the First International Conference on Artificial Intelligence
Planning Systems, pages 277-278. Kaufmann, San Mateo, CA,
1992.

K. Haigh and M. Veloso. Learning situation-dependent costs:
Improving planning from probabilistic robot execution. In To
appear in Autonomous Agents 98, 1998.

K. Haigh and M. Veloso. Planning, execution and learning in a
robotic agent. In to appear in Fourth International Conference
on AI Planning Systems, 1998.

D. McDermott. A reactive plan language. Research Report
YALEU/DCS/RR-864, Yale University, 1991.

D. McDermott. Transformational planning of reactive behavior.
Research Report YALEU/DCS/RR-941, Yale University, 1992.

S. Thrun, A. BUcken, W. Burgard, D. Fox, T. Frrhlinghaus,
D. Hennig, T. Hofmann, M. Krell, and T. Schimdt. Map learning
and high-speed navigation in RHINO. In D. Kortenkamp, R.P.
Bonasso, and R. Murphy, editors, Al-basedMobile Robots: Case
studies of successful robot systems. MIT Press, Cambridge, MA,
1998. to appear.

M. Zweben, E. Davis, B. Daun, E. Drascher, M. Deale, and
M. Eskey. Learning to improve constraint-based scheduling. Ar-
tificial Intelligence, 58:271-296, 1992.

M. Zweben and M. S. Fox. Intelligent Scheduling. Morgan Kauf-
mann, 1994.

73

