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Abstract

This paper proposes a novel method to schedule paral-
lel execution of planning and action. The method is for
a class of planning problems which are hierarchically
decomposed into two subproblems: (1) determining
the next subgoal and (2) determining and executing
an action sequence to achieve the subgoal. In this
problem class, the upper-level planning process can
be viewed as a process of gradually reducing the sub-
goal candidates towards the final commitment to one
subgoal. Using criteria on deciding if a ground-level
action sequence is consistent with the remaining sub-
goal candidates (consistency criterion), and on when
to commit to one subgoal (commitment criterion), 
appropriate action sequence is selected and executed
while the upper-level planning process is still contin-
uing. Preliminary experimental results including the
comparison with a sequential method show that the
proposed method is promising.

Introduction

Resource limitation and uncertainty are two important
issues in planning for an agent in the real world. Since
planning under uncertainty is usually costly, the limi-
tation of computational resources tends to be critical.
Controlling the planning process by explicitly consid-
ering the planning cost certainly improves the overall
efficiency (Russell & Wefald 1991). Further improve-
ment would be made possible by scheduling parallel
execution of planning and action.

This paper is concerned with a vision and motion
planning for a mobile robot in a known but uncertain
environment. Fig. 1 shows an example planning prob-
lem treated in this paper. A vision-guided robot, which
has a rough map of the environment, is going to the
destination while avoiding obstacles. There is a route
which passes the narrow space (we call it the gate);
however the passability of the gate is initially unknown
due to the uncertainty of vision. The detour passing
through the hallway is known to be passable, although
it is longer. The robot estimates the gate width with
vision to determine the passability. Such a situation
is quite usual; for example, in a typical office environ-
ment, the position of desks, chairs, and other furniture
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Fig. 1: An example problem.

are roughly known, while their exact positions are un-
certain; some chairs may block the robot from taking
a certain path to the destination.

The objective of planning here is to determine a
sequence of observation points which leads the robot
to the destination efficiently. We have been develop-
ing planning methods for this problem, in which sev-
eral computational trade-offs are considered such as
the one between the cost of visual recognition and
the effect of visual information (Miura & Shirai 1993;
1997a) and the one between the planning cost and the
plan quality (Miura & Shirai 1997b).

These methods are, however, sequential; that is, the
planner runs while the robot is stopping, and once
the next observation point is selected, the robot moves
there. This sequential activation of planning and ac-
tion is repeated until the robot reaches the destination.
Since there is no physical limitation on executing plan-
ning and action in parallel, if we can properly schedule
their parallel execution, more efficient operation of the
robot will be realized.

Thus, this paper proposes a novel scheduling strat-
egy which determines an appropriate action according
to the information on the current planning process,
such as what plan candidates are now under investiga-
tion, how long the current planning process will take,
and what results will come out.

To solve the problem shown in Fig. 1, we hierar-
chically decompose the problem into the following two
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subproblems: (1) determining the next subgoal (i.e.,
the next observation point) and (2) determining 
executing an action sequence to achieve the subgoal
(i.e., the movement to the next observation point). The
proposed strategy can basically be applied to a class
of problems which are formulated in a similar manner.

Related Works
Realtime search algorithms (e.g., RTA* by Korf
(1990)), which interleaves action selection with 
depth-limited search and action execution, can be used
for parallelizing planning and action; a simple schedul-
ing strategy is to execute a selected action while search-
ing for the next action. Nourbakhsh (1997) proposed
criteria for controlling the search depth for interleav-
ing. Goodwin (1994) explicitly considered if planning
and action should be executed in parallel; his method
compares two options, pure planning and planning
while acting, in terms of the cost improvement rate,
and if the latter seems better, the current best action
is started. These methods deal with a class of prob-
lems in which a selected action is uniquely interpreted
by the execution subsystem; no further planning for
realizing an action is considered.

Zelek (1996) proposed a method of executing path
planning and path execution in parallel for a sensor-
based mobile robot navigation. Multiple path genera-
tors, which use maps with different spatial resolutions,
run in parallel while the robot is moving. As long as
the path is generated within one action control cycle,
the path generated in the finer resolution is used. This
method is also for the above-mentioned problem class.

If a planning problem is hierarchically decomposed
into subproblems, as in the case of our vision and mo-
tion planning problem, planning in multiple levels and
action in the ground level can be executed in paral-
lel. Nourbakhsh (1997) proposed an abstraction-based
planning method. The original problem is mapped into
abstract problem spaces, and once a solution is ob-
tained in one space, it is given to the lower-level plan-
ner as the subgoal; after the subgoal is achieved, the
lower-level process waits for the next subgoal informa-
tion from the higher-level.

Basic Scheduling Strategy
The basic idea in the proposed method is as follows.
The higher-level planning process of determining sub-
goals for the ground-level can be viewed as a process
of gradually reducing the subgoal candidates towards
the final commitment to one subgoal (Kambhampati,
Knoblock, & Yang 1995). If there are some ground-
level actions which are consistent with (or, do not
largely conflict with) remaining subgoal candidates,
such actions can be performed while the higher-level
planning process is still continuing.

In our vision and motion planning problem, we de-
fine a subgoal as an observation point and action as a

(a) destination

I
!
I

I
/

;/FSS
([’e~ible subgoal spoc e 

destination(b) .......
i"

;,,:’: ..
\ ¯ .. !

move , ¯ s
~¯ ¯ ¯ g

"-, " ..~" FSS

(G) ~ destination

/-;-;..,
¯

l¯ ~ ¯ |

move o ",’,,.i,,SFSS

(d)
move ¢~ ~ ~

de:tinatio.

observe
selected

¯ ..,"""’"~ 0/~?
subgoal

Fig. 2: Gradual reduction of subgoal candidates (FSS)
and selection of actions.

movement towards the next observation point. An ac-
tion can be executed in parallel with the planning of
the next observation point as long as it is consistent
with the remaining subgoal candidates.

The above idea can be schematically explained in
Fig. 2. Fig. 2(a) shows an initial state. The initial set
of feasible subgoal candidates is derived, which are col-
lectively called an FSS (feasible subgoal space). Once
an FSS is calculated, a set of actions which are con-
sistent with the FSS is selected (see the shaded area
in Fig. 2(a)). Then, among the candidate actions,
the best one is selected and executed (see Fig. 2(b)).
As the planning process proceeds, the FSS is reduced
and actions are selected and executed repeatedly (see
Fig. 2(c)). Finally the planning process selects 
subgoal, and, a few moments later, the robot reaches
the selected observation point and observes the envi-
ronment (see Fig. 2(d)). If we employ the sequential
method, the robot is still at the initial position when
the commitment to the subgoal is made. Thus, the
distance which the robot travels until the commitment
is made is the merit gained by the parallel method.

Since the planning and the action processes, in prin-
ciple, can be executed asynchronously and in parallel,
the space of possible schedules could be too huge to
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Fig. 3: Time chart of planning and acting processes.

search. Thus, we limit the timing of changing actions
only to the end of each candidate-reducing cycle of the
planning process. The time chart of the planning and
the action processes would look like Fig. 3.

To implement the above scheduling strategy, the fol-
lowing should be provided:

¯ A planning process which gradually reduces the can-
didates.

¯ A criterion to commit to one subgoM (or one plan).
We call it commitment criterion.

¯ A criterion to evaluate the consistency between an
action candidate and an FSS. We call it consistency
criterion.

The planning process will be described in the next sec-
tion. The concrete algorithm including the criteria for
an example problem setting will then be described.

Planning Process

We use a modified version of the previously developed
planning method (Miura & Shirai 1997b) as the plan-
ning part (subgoal determination part). This section
briefly explains the modified planning method.

Plan Representation
A state is represented by the current estimate of the
gate width and the current robot position. Due to the
uncertainty in observation results, the robot cannot de-
termine the gate width deterministically but obtains
its probabilistic distribution (Miura & Shirai 1997a).
After an observation, the robot classifies the state of
the gate into one of the three categories (passable, im-
passable, and unknown) according to the relationship
between the probabilistic distribution and the robot
width (see Fig. 4).

Since the actual state after an observation depends
on the observation result and cannot be determined
beforehand, a subplan is generated for each possible
state. Fig. 5 shows an example plan for the prob-
lem shown in Fig. 1. Such a plan is represented by a
special AND/OR tree which has one OR node at each
level; an OR node corresponds to a selected action; an
AND node corresponds to a possible state. The qual-
ity of a plan is measured in terms of its execution cost,

which is the expectation of the total execution time for
movement and observation.

Iterative Refinement Formulation

To trade the planning cost against the plan quality, we
formulate the planning process as an anytime itera-
tive refinement process (Boddy & Dean 1989); i.e., the
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Fig. 4: Three possible state of the gate.
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Fig. 5: An example plan for the problem shown in
Fig. 1. Dotted arrows indicate possible movements
after observation. Bold arrows indicate observation of
the gate.
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Fig. 6: Expansion of an open node of a plan candidate and its corresponding situation. Ellipses drawn with bold lines
indicate open nodes. In the leftmost and the rightmost figures, solid arrows, dashed arrows, and dotted arrows correspond
to movement when the gate’s state is passable, impassable, and unknown, respectively.

planner searches the space of feasible plans (executable
plans) for the final plan. This formulation entails an
easily-obtainable feasible plan for any open node. We
here use the following one:

The robot moves from the current position to the
position just before the gate1. If the gate is pass-
able, the robot passes it; if not, the robot takes the
detour from that position.

Each plan candidate has the temporary cost, Ctemp,

which is obtained by temporarily assigning this feasible
plan to all of its open nodes.

In the refinement process, all of open nodes of each
plan are expanded. Before expansion, an unknown
state is treated as an open node and has a feasible
plan with it (see Fig. 6(a)). The expansion of 
open node consists of discretizing the range of possible
gate width for the node with some granularity, search-
ing for the best action for each discretized state, and
assigning the feasible subplan to newly generated open
nodes (see Fig. 6(b)).

Suppose we can predict the plan improvement (i.e.,
cost reduction) AC of a plan candidate, which will be
obtained by expanding all of its open nodes2. Then,
the new cost Cnew after expansion is given by subtract-
ing the plan improvement from the temporary cost:

C~ = Ct~’~p - AC. (1)

Let CEp* be the cost of the incumbent FP* (the
best feasible plan among those which have been ob-
tained so far). During planning, the plan candidates
are kept whose new costs are less than CFp.. The

1At this position, the robot is assumed to be able to
measure the gate width without uncertainty; this position
is called the zero-uncertainty point, indicated as x*.

2A prediction method will be described later.

plan candidate p* which has the minimum new cost is
determined by:

p* = arg min C~~. (2)
P

CFp* and C~2w will be used later for defining the com-
mitment criterion (i.e., for determining when to stop
the iterative refinement process).

Note that although the planning process iteratively
refines plan candidates, the refinement at deeper levels
than the first level is for comparing competing candi-
dates for the first subgoal.

Scheduling Algorithm for 1-D Planning

Problem

Problem Description

Fig. 7 shows an example planning problem. This is a
simplified 1-D version of the problem shown in Fig. 1.
The robot is initially at x0; x* is the zero-uncertainty
point used in feasible plans. The next observation
point is selected on the line segment connecting x0 and
x*. If the robot decides to take the detour from an ob-
servation point, it turns back and passes ~0 towards
the detour.

FSS and Consistent Action Candidates

For each plan candidate p, we calculate temporary cost
Ctemp and predicted plan improvement ACp, thus ob-
taining new cost C~e~ using Eq. (1). The plan can-
didates whose new costs are less than the cost Crp*
of the incumbent compose a set of feasible plan can-
didates. The current FSS is constructed as a set of
the first subgoals (observation points) of feasible plan
candidates.
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Fig. 7: 1-D Planning problem for simulation.
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Fig. 8: FSS and candidate actions.

In this 1-D problem, an FSS collapses into a 1-D
segment as shown in Fig. 8. Thus, the consistency
criterion here is that an action is consistent with an
FSS if it is to move to a point before the FSS. Using this
criterion, consistent candidate actions are generated as
shown in the figure.

Determining Best Action

The degree of parallel execution is maximized if the
ground level action finishes just at the end of the cur-
rent refinement step of the planning process. Thus, to
determine the best action, explicit estimation of plan-
ning cost is necessary. We estimate the time required
to perform the next refinement step as follows. For
each candidate p, we calculate the cost (i.e., time) 
expansion C$xp, which is obtained as the sum of ex-
pansion costs for p’s open nodes. From all such costs,
the time for the next refinement step is given by

Ca~p ~ C;~p. = .
P

Then we calculate the two distances: Dall and
Dto-m~n. D~u is the distance covered if the robot
moves at its maximum speed Vrnax for the duration of
C eZp Dto-min is the distance to the nearest feasible

ll "
candidate, that is, the distance to the leftmost point
of the FSS in Fig. 8. The relationship between Dall
and Dto-m~n has an important role in the scheduling
algorithm. Possible cases are enumerated as follows.
(Case 1): If Da/l is less than or equal to Dto-min (see
Fig. 9(a)), since the robot finishes the next refinement
step before arriving at the FSS, the robot can move at
Vrna~ while performing the refinement. After finishing
the refinement, a new action is selected based on the
updated FSS.

"~-"--Dto-min FSS
-------DaTr---"

x* destination

(a) Ball <- Dto-min

x* destination

"~-----Dto-min : : : FSS

"------Dau I "
penalty imposed by not moving at v max

(b) Ball > Dto-min

Fig. 9: Two possible relationship between Dau and
Dto-min.

(Case 2): If D~n is larger than Dto-r~i, (see Fig.
9(b)), performing the next refinement step instead 
executing the current incumbent (FP*) has a loss;
namely, to perform the next refinement step, the robot
has to move at a slower speed than vm~ so that
the robot does not pass any of candidate observation
points; on the other hand, the robot can move at v,na~
in executing FP.3. Thus, we compare CFp. and the
minimum of the new cost C~el° with a certain penalty
being imposed on the latter. The penalty is calculated
as the time needed to move the distance Dan-Dto-min
at Vmax. Using this penalty, the decision is made as
follows.
(Case 2-a): If C~ew + penally is less than or equal to
CFp., the robot moves to the nearest candidate while
performing the refinement. After finishing the refine-
ment, a new action is selected based on the updated
FSS.
(Case 2-b): If C~ew + penalty is larger than CFp.,
the robot stops the iterative refinement process, and
executes FP*. This is the commitment criterion. Ex-
ecution of FP* is composed of moving to the specified
observation point and observing the gate. If the pass-
ability is decided after the observation there, the robot
passes the gate or takes the detour towards the goal. If
the passability is still unknown, a new action is selected
based on the updated FSS.

Simulation Results
Prediction of Plan Improvement

The improvement ACp which is to be obtained by ex-
panding open nodes of a plan candidate is predicted

ZThis is true under the assumption that D~u is smaller
than the distance to the observation point specified by
F P*.
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Fig. 10: Plot of actual improvements in the 2-D pa-
rameter space.

using the learned data collected by solving actual plan-
ning problems with various parameter settings. In the
previous work (Miura & Shirai 1997b), we first con-
structed a generalized expression with several coeffi-
cients to represent the relationship between the prob-
lem parameters and the plan improvement, and then
adjusted the coefficients using the experimental data.

In this paper, however, we use a simpler method.
That is, in the learning phase, we store the plan im-
provements in the space of several problem parame-
ters. In the planning phase, for a specific combination
of these parameters of an actual problem, the plan
improvement is predicted by using a nearest neigh-
bors method using k neighbors, namely, by selecting
k nearest neighbors from the learned data, and then
by calculating the mean of the corresponding stored
plan improvements. If a plan candidate has multiple
open nodes, we use the weighted sum of such retrieved
plan improvements, using the probability of reaching
each open node as the weight.

From the calculation results of actual plan improve-
ments, we found that the plan improvement is well
described by two parameters, an upper bound of the
improvement (Miura & Shirai 1993) and the variance
of the probabilistic distribution of the gate width; we
also use the probability of the gate being passable as
another parameter to switch the learned data set used.
Fig. 10 shows the plot of actual improvements in the
2-D parameter space, for the case that the probabil-
ity of the gate being passable is 0.4. In the planning
phase, an appropriate data set is selected according to
the actual probability.

Results

On the 1-D range between initial position x0 and zero-
uncertainty point ~*, we set grid as candidates of the
next observation point. Fig. 11 shows some simulation
results, in which (i) the movement of the robot in a 
D time-distance space and (ii) the gradual reduction
of the subgoal candidates (i.e., FSS) until the robot
reaches the next observation point are indicated. In

the figures, a bold arrow indicates the movement of
the robot; a filled circle on the movement indicates
the end of one refinement step; the shaded horizontal
strip corresponding to the filled circle is an FSS and its
nearest point may be the destination of the next action.
The FSS is gradually reduced to the final commitment
to the next observation point (FP*).

In the three figures, the initial probability of the gate
being passable is the only difference; the probabilities
are 0.1, 0.25, and 0.4 for cases (a), (b), and (c), respec-
tively. As the initial probability increases, the position
of the FSS becomes nearer to ~*; thus the speed of the
first action becomes larger. If the probability is much
larger (e.g., 0.8), the FSS is initially an empty set, and
the initial incumbent is immediately executed.

Fig. 12 shows another simulation result, in which the
time saved by using the parallel scheduling method in-
stead of the sequential one is plotted for various initial
probabilities. The effect of the parallel scheduling is
mainly determined by the number of plan candidates
examined. If the initial probability is close to 0.0 or 1.0,
the situation is almost certain and the number of plan
candidates is small, therefore, little planning effort is
needed to find the best solution. If the probability is
in the middle of the range, however, the situation is
more uncertain and much planning could be needed;
for such a case, the parallel scheduling of planning and
action is more effective. Fig. 12 roughly shows such a
tendency.

Concluding Remarks

We have proposed a novel method to schedule paral-
lel execution of planning and action for hierarchically-
decomposable planning problems. The planning part
is realized by an iterative refinement planner. By con-
sidering the current set of plan candidates and the ex-
pected time for the next refinement step, the action is
selected which is consistent with plan candidates and
the most efficient. The consistency criterion and the
commitment criterion are the important concepts in
the method. Simulation results show that the proposed
method is promising.

We are now applying the method to 2-D planning
problems like the one shown in Fig. 1. Although the
structure of the algorithm designed for the 1-D prob-
lem could be used unchanged, the consistency criterion
needs to be modified, because the action towards one
observation point is not necessarily on the direction to-
wards another observation point. The set of consistent
actions would look like the one shown in Fig. 2(a). 
the FSS forms two (or more) clusters at different posi-
tions, however, there may be no consistent actions, and
the robot may have to continue planning while stop-
ping. The design of consistency criterion considering
various cases would be the key to overall efficiency of
the method.
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