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Abstract

We present a new method for partial order planning in
the STRIPS/SNLP style. Our contribution centers on
how we drop the closed world assumption while adding
a useful class of universally quantified propositions to
the representation of states and actions. These quan-
tified expressions allow expression of partially closed
worlds, such as "block A has no other block on it",
or "F is the only Tex file in directory D." In addition,
we argue informally that the time complexity of our
algorithm is no worse than traditional partial order
planners that make the closed world assumption.

STRIPS-style planning (Fikes & Nilsson 1971) is de-
cidable only if we restrict the language to finitely many
ground terms (Erol, Nau, & Subrahmanian 1992).
STRIPS-style planning becomes NP-complete only
when we bound the length of the plan being sought
(Gupta & Nau 1991). Thus, planning is intractable 
the general case. However, thanks to recent advances
in applying stochastic search to propositional satisfia-
bility problems (SAT) (Selman, Levesque, ~ Mitchell
1992) and planning problems (Kautz & Selman 1996),
much larger classes of NP-complete planning problems
can now be solved. Moreover, recent work demon-
strates that studying partial order planning (POP)
can lead to good encodings of planning problems for
eventual use by stochastic search algorithms (Kautz,
McAllester, &z Selman 1996).

Our long term research goal is to make planning
more realistic by discarding some of the simplifica-
tions of the STRIPS-style planning while still remain-
ing in the class of NP complete problems.1 Specifi-
cally, in this paper, we investigate a method for drop-
ping the closed world assumption (CWA) in the con-
text of SNLP-style (McAllester & Rosenblitt 1991)
partial order planning (e.g., (Penberthy ~ Weld 1992;
Weld 1994; Russell & Norvig 1995)). A common ap-
proach when dropping the CWA retains much of the
structure of STRIPS-style planners but re-considers
the set of propositions associated with each state of
the world. Instead of being a complete description

1Therefore, in large part, we agree with the strategy
proposed by Ginsberg (Ginsberg 1996).

of each state, the set of propositions is considered
to be a subset. Thus, with each state we have a
set of beliefs that are assumed to be true but incom-
plete (e.g., (Peot & Smith 1992; Etzioni et al. 1992;
Krebsbach, Olawsky, & Gini 1992; Russell & Norvig
1995)).2

The above approach for dropping the CWA is effec-
tive but limited in its expressive power if there is no
quantification. For example, you can represent a state
where the agent knows that directory D has Tex files
F and G in it, but you cannot represent that no other
Tex files are in directory D. To handle this deficit,
one can always add special encodings, such as the use
of Clear(x) in the blocks world to represent when no
other blocks are on x. However, use of Clear(x) is de-
ceptively simple because, in the blocks world, a block
can have at most one other block on top. If blocks were
allowed to have up to two blocks on top, we would need
more complex encodings.

A more direct approach represents the fact that no
other Tex files are in directory D using a quantified
proposition. For example, we might write:

In(F,D) A Tez(F) A In(G, D) A Tex(G)A
(Vx.-~In(x, D) V -~Tex(x) V ¢ = F V x = 

(1)
Here, In(x, y) is true if and only if (iff) ¢ is currently
in directory y and Te¢(¢) is true iff ¢ is a Tex file.
The quantified expression states that every object is
either not in D or is not a Tex file except possibly F
and G - i.e., the quantified expression does not com-
mit to the truth or falsity of "~In(F, D) V -,Tex(F)
nor to "~In(G, D) V -,Tex(G), but it does commit to
-~In(x,D) V -~Te¢(¢) for every other x. Using this
representation, one can also represent that the truth
of specific propositions is unknown. For example,

In(F,D) A Tex(F) A In(G,D) A Tex(a)A
(Vx.-~In(x, D) V -~Tex(x) V x = F V x = G V x = 

is similar to (1) except that nothing is known about
H.

2An excellent formal account of this style of represen-
tation as applied to planning with sensing actions can be
found in (Scherl & Levesque 1997).
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We introduce what we call C-forms to represent this
type of quantified information. While we have studied
several classes of C-forms, in this paper, we examine
only one class that has the following format:

-~Q1 (~, 4) V... V -~Qk(g,
= ^... = jk

Here, each Qi is a predicate symbol, Z~ is a vector of
variables, each ~ is a vector of constants and each ~/
is a vector of constants. We would thus represent the
fact that no Tex files are in directory D except possibly
F and G with:

{-~In(x, D) V -~Tex(x) l-~(x = F) A -~(x = G)}

We prefer to consider (possibly infinite) sets of ground
negated clauses instead of the universally quantified
sentences from above, although the expressive powers
of the two are identical.

In our representation, an agent’s knowledge of a
given state is a set of propositions, where each propo-
sition is either a ground atom or a C-form. We note
that a negated literal is a special case of a C-form.
Throughout this paper, when we refer to negated lit-
erals, we actually mean such C-forms. We present a
POP algorithm for our representation that is a slight
modification of the simplest POP algorithm found in
(Russell & Norvig 1995). As you will see, we only in-
troduce operations with polynomial time complexity.
We thus argue informally that our algorithm is NP-
complete if we bound the number of steps and ground
terms.

The advantage of C-forms is that they can represent
useful information and we can reason efficiently with
them as quantified expressions. We do not need to ex-
pand them to a large set of explicit ground literals as is
done with certain universally quantified preconditions
in UCPOP (Penberthy & Weld 1992). In this paper,
our universally quantified C-forms can appear in ini-
tial state descriptions, goals and in the preconditions
of actions. They cannot, however, appear in the effects
of actions.

We do not include sensing nor conditional actions
nor plan execution in this paper due to space limita-
tions. However, we will present these extensions in a
future paper. In that work, C-forms can appear in
the effects of sensing actions. Our work is similar
to the use of locally closed worlds (LCWs) in plan-
ning (Golden, Etzioni, & Weld 1994; Etzioni, Golden,
& Weld 1997), which we examine later.

Our Formalism

We assume that the signature is finite and the only
function symbols are constants. Also, any two distinct
constants are assumed to denote distinct individuals
in all models. Finally, we assume informally that the
number of constants is fairly large, at least. If the
number of constants is small, then it is probably easier
to use ground negated literals in place of quantified
¢-forms.

We base our representation of a changing world on
STRIPS (Fikes & Nilsson 1971), which in turn is based
on the situation calculus (McCarthy & Hayes 1969). 
changing world is thus viewed as a sequence of states,
where state transitions occur only as the result of de-
liberate action taken by the (single) agent.

We use a to represent a substitution and write Aa
to represent the formula or term that results from in-
stantiating A by a. When convenient, we will treat
formulas of the form A = B as substitutions and vice
versa. We say that two formulas or terms, A and B,
unify iff :la. Aa -- Ba. We say that A matches onto B
iff 3a. Aa -- B. We write MGU(A, B) to denote the
set of most general unifiers (MGUs) of A and B and
MGUc_(A,B) to denote the set of MGUs such that
Aa C_ Ba. Moreover, when we write MGU(A, B, V),
we are limiting unification to the variables in the set V.
Similarly for MGUc_ (A, B, V). Assuming that unifica-
tion takes constant time (it can be bounded by the size
of the largest term), computing MGU~(cl, c2), where
c] and c2 are clauses, takes time 0(c2), where c is the
maximum number of disjuncts in cl and c2.

Let a proposition be either a ground atom or a C-
form. A C-form is a set of negated ground clauses
represented as follows.

C - v... v 4) I ^... 
Here, Qi(~, c~) is any atom that uses all and only the
variables in Z and all and only the constants in ft. Each
ai is just (Z -- 5) for some vector of constants ~. 
is, of course, finite. We also define the following.

¯ A4(¢) is the main part of C, -~Ql(~,c-) v ... 

¯ 1;(C) denotes the variables of C, x, though we usu-
ally treat it as a set,

¯ ~(¢) is the formula that describes the exceptions,
~al A ... A "han.

¯ £i(C) is the instantiation of the i-th exception,
(A~(¢))ai. Note that this always ground.

¯ E(¢) is the set of all instantiations of its exceptions,

Note that the cardinality of a C-form can be zero.
An unquantified proposition is either an atom or a

singleton C-form. A negated literal is a singleton C-
form whose clause has exactly one term. Moreover, the
interpretation of a proposition or of a set of proposi-
tions is just the conjunction of all sentences it includes.

A clause can be considered simply as a set of dis-
juncts. For two clauses Cl and c2 we write Cl C c2 iff
the set of disjuncts of cl is a subset of the set of dis-
juncts of c2. Therefore, for any two ground clauses cl
and c2, cl ~ c2 iffcl C_ c2.

Given a set of ground clauses C and a single ground
clause cl, C ~ cliff Sc~. E C.c2 ~ Cl. For any two sets
of ground clauses C1 and C2 we define difference:

{clceC ^ c V:c}
and image (the image of C2 in C1):
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C2 [:>Cl-~ {clcEC1 A C2 ~c}.
C1 - C~ is the subset of C1 that is not entailed by C2
while C2 t> C1 is the subset of 6’1 that is entailed by
C2. Thus, (C1 - C2) and (C~ I> C1) always partition
C1. Moreover, we have the following equivalences.

1. C1-C2 = C1-(C2 t>C1) and
2. C2~,C1 = c~-(C~-C2)

The image operation is critical, as we will show,
because a clause may be entailed by several different
other clauses, and vice versa.

Let a world state, W, be a consistent set of proposi-
tions where every atom A is either true or false. Thus,
a world state is complete and has only definite knowl-
edge. Let a state of knowledge (SOK) be a consistent
set of propositions that represents the knowledge that
our (single) agent has about a particular world state.
Our agent, and thus our planner, never has access to
complete world states, but only to SOKs. We assume
throughout this paper that an agent’s SOK is always
correct.

An action is ground and is represented in a fashion
similar to STRIPS. However, we do not use the add-
list and delete-list format because it would be possible
to write action descriptions that produce inconsistent
states. Instead, each action a has:

¯ a name, N(a),

¯ a set of propositions called the preconditions, "P(a)
(which may include general C-forms), and

¯ a set of literals called the assert list, ~4(a) (i.e., all
e-forms here must be negated literal@

The precondition identifies the conditions necessary for
executing the action. The assert list, also called the
effects of the action, identifies all and only the propo-
sitions that change as a result of the action.

It is possible to execute an action a in a world state
W iff W ~ P(a). If executed from world state 
the state that results is consistent with (W - .d(a)°) U
A(a). 3 Here, we define S° be the closure of S. For
either an atom A or a negated literal -~A, the closure is
the set {A, -,A}. For a set of propositions, the closure
is the union of the closures of its members. We first
remove the closure of the assert list so that we can add
the assert list back without conflict.

However, our agent will only have SOKs. Thus, it
will only execute an action a iff its SOK about the
current state is S and S ~ :P(a). The agent’s SOK

about/he state that results is

)
S’= IS-,4(a)°- U U ({-’p} i:>,¢) u,A(a).

\ vpe~(a) yeas
For an example, we characterize the action

a = mv(fig,/img,/tex), which moves the file

3Note that set difference operator, "-", requires further
definition, which we delay until the next section. However,
its meaning in this context is the obvious one.

fig from directory /img into /tex. We use
PS(x) to represent that file x is in postscript for-
mat. Let /)(a) {I n(fig,/img)} which st ates
that fig must be in fling. Also, let .A(a) 
{-,In(fig,/img),In(fig,/tex)}. We begin with an
SOK:

{ In(a.tex,/tex),In(fig,/img),PS(a.ps), s = {~In(x,/i~g) l-(x = y/g)},
{-,In(x,/tex) v --PS(x) I "-,(x = a.ps)}

a = mv(fig,/img,/rex) is e.ecutable, and the result-
ing SOK is:In(fig,/tex), In(a.tex,/tex), PS(a.ps), 

S’ =
{--In(x,/img)},
{--In(x,/tex) v --,PS(x) 

--(x = a.p,) ̂  --(x = fig)}
Note that S contained -,In(fig,/tex) V -,PS(fig) and
that we added In(fig,/tex) when determining St. If
our update rule retained ",In(fig,/tex) V-~PS(fig) in
St, then in St we could perform resolution and conclude
that -,PS(fig). However, this would be wrong because
we have no information on fig being a postscript file or
not. Instead, our update rule deletes any clause that is
entailed by -,In(fig,/tex), and so S~ does not contain
-~In(fig, /tex) -. PS(fig).

While preconditions can use arbitrary C-forms, the
assert list can only use literals. The reasons for this
limitation is that we are only interested in simple4 ac-
tions (for now), and that each action must identify
exactly those propositions that change due to the ac-
tion. This precision is needed so that we can accurately
compute the state that results from the action. Thus,
removing an object from a briefcase, or copying a file,
are actions that fit into our model while the action of
removing all files from a directory do not.s

There is, however, one notable exception. We allow
quantified C-forms in the START action, whose assert
list holds the initial SOK for a planning problem, which
we assume is consistent. Thus, in this paper, the initial
SOK is the only place where C-forms can be introduced
into a problem.

For this initial SOK, we compute all possible reso-
lutions and add them back to the SOK. The number
of such resolutions is limited by the number of atoms
in the SOK. Thus, the initial SOK is saturated in the
sense that any atom entailed by the SOK is explicitly
in the SOK and for any negated clause entailed, there

4By simple we mean an action that has causal (Etzioni
et hi. 1992) effects only and makes only finite number of
changes to the state. We also assume it is deterministic.
All effects of a simple action can therefore be described by
a finite set of literals, without universal quantification in
the effects.

5For actions like rm., we cannot use C-forms to de-
scribe the effects because we require knowing precisely
which propositions changed. C-forms could be used with
rm. to describe the state of affairs that results (i.e., all files
in directory are removed), but this is not helpful because
they cannot identify precisely which files were removed.
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is a sub-clause in the SOK. As it turns out, all SOKs
after the initial S0K are consistent and similarly sat-
urated thanks to our update rule above.

Entailment and e-difference
We now present both theory and methods for deter-
mining entailment and set difference for sets of proposi-
tions that may include C-forms. Essentially, we trans-
late these tests into operations of unification, instantia-
tion, identity, and simple set operations. The methods
presented here via theorems are readily translated into
algorithms. Due to space limits, we do not present
proofs in this paper.

Entailment

Everywhere in this section A, A1, ̄  ¯., An denote atoms
and 15,151,-.., ¢n denote 15-forms. Also, C and E de-
note maximum number of disjuncts and exceptions in
a C-form respectively, L is the maximum number of
15-forms in a SOK, and N is the maximum number of
literals in any action’s assert list.

Let a simple e-form be one that has no exceptions
- i.e., g(15) = 0 (and thus, E(9) tr ue).

Theorem1 Let 9,¢1,...,9n be simple 15-forms.

{151,..., 15,} ~ ¢ iZf
3i.(l<i<n) A (¢i ~15).

Thus, if we ignore exceptions, then to show that a set
of e-forms entails 15, we need find only one element of
the set that entails 15. This turns out to be a critical
factor in keeping 15-form reasoning tractable as there is
no need to examine combinations of 15-forms for this.

Theorem 2 Let ¢ and 151 be simple 15-forms where
variables are renamed as needed so there is no
variable overlap between ¢ and ¢1. 91

15 iff ~.(M(9’)~ _c M(15))or, equivaZenay,
MGUc(M(9’), M(9), V(15’)) 

Thus, to test whether a simple 15-form entails another,
we simply test whether there is a subset-match between
the main part of the former and the main part of the
latter. The time complexity for this test is O(C2).

To determine whether or not {¢1,..-, 15-} ~ 15 in
general,we first find a ¢i whose main part entails the
main part of 9. However, the exceptions of 9i weakens
15i- Therefore, we must also account for every clause in
15 not implied by 15i, i.e. 15 - 15i which is exactly the set
(g(¢i) I> !b) - (15i t> 9) (see Theorem 7). The following
two theorems describe the procedure for calculating
this set, and Theorem 5 defines necessary and sufficient
conditions for 9-form entailment.

Theorem 3 For an arbitrary finite set of ground
clauses {cl,..., en}

{cl,..., e,} ~ 15 = {M(15)~ I~ ~ a} - E(15)
nwhere ~ = Uj=I MGUc(cj,M(¢)), and is a set of 

o(nc).

Thus, computing {cl,...,cn} I> 15 takes time
O(nC(C + E)).6

Theorem 4 For an arbitrary finite set of ground
clauses {cl, ..., cn }

({~1,..., e,} ~ 15~) - ((15 - {c~,..., ~,}) ~ 15p) 
{~ I~ e ({el,...,e,} ~9~) 

V~ E MGU~(A4(¢), cp).[Ad(¢)~ e £(9) 
M(15)~ e {~l,..., ~,} 

is a set of size O(nC).

Theorem 5 {151,...,15n ~ ¢} iff

3i.0 < i < n) A ({M(¢~)} ~ {M(15)}) 
Vc e (9 - 15d.~.0 < k < n) A 15k 

Difference Operation Among e-forms

Our planner encounters only two special cases of 92 -
91, namely when ¢1 is a singleton ground clause and
also when the main part of 151 entails the main part of
152.

When 91 is a singleton ground clause and 151 does
not entail any clause in ¢2, then 152 - 151 = ¢2. Oth-
erwise, (151 J> ¢2) become new exceptions in the differ-
ence.

Theorem 6 Let 151 be a singleton ground clause . If
(151 1> 152) = 0 then 92 - ¢1 = 152. Otherwise,

152 - 151 = { M(¢2) I ~(¢2) A ~#1 ... A 
where {~dL, = MGU~_(15~, M(¢~)).
We know that the above {~i}~=1 ¢ 0 when (91 i>152) 
0. The time complexity of this calculation is the same
as of computing ({c} l> 92), namely, O(C(C+E)).

When {1~¢[(151)} ~ {A4(¢2)}, the only residuals
from 92 - 151 are the clauses in (g(91) 1> 152) that 
not implied by any clause of 91.

Theorem 7 Let {Ad(91)} ~ {Ad(152)}. Then

¢2 - 151 = (E(¢1) > ¢2) - (9~ > 15~)

As follows from Theorem 4, ¢2 - 91 is a finite set of
singleton ground clauses , i.e. set of e-forms, and the
time complexity for computing 152 -¢1 is O(EC2(E 
C)).

Combining the complexity measures for the above
computation with the result of Theorem 5, we conclude
that 15-form entailment in a SOK takes O(EC2L(C 
E)) in the worst case. Assuming all propositions 
SOK are stored in a hash table, time complexity of the
state update rule is O(NLC~’(C + E)).

Sin comparison to LCW work (Golden, Etzioni, 8: Weld
1994; Etzioni, Golden, & Weld 1997) our E term roughly
corresponds to M - the number of all ground literals in their
main database.
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Algorithm. POP (< S, O, L >, open)

1. If open is empty, return < S, O, L >

2. Pick a goal < c, Sc > from open and remove it from
open. choose an existing step $8 from S, or a new
step $8, that has an effect e where e ~ c. If no such
step exists then fail.

8jC
3. Add link Sa --~ Sc to L.

1. Add Ss -< Sc to O.
15. if $8 is a new step:

¯ Add START-< $8 and S, -<FINISH to L.
* For each p in P(S,) (the preconditions of&), 

< p, S~ > to open.

6. For every step St that threatens a link S~ ~:~ Sc non-
deterministically choose either:

¯ Demotion: Add St -< Ss to O.
¯ Promotion: Add Sc -< St to O.

7. If O is inconsistent then fail.

8. Recursively call POP with updated < S, O, L > and
open.

Figure 1: Original POP algorithm. Triple < S, O, L >
denotes a partial plan; S is a set of steps, which are
(ground) actions, initially contains only START and
FINISH; O is a set of ordering constraints of the form
Si -< Sj, where Si and Sj are steps in S, initially con-
tains START-<FINISH; L is a set of (causal) links of
form Si ~-~ Sj, where p is a precondition of Sj, e is an
effect of Si (i.e., e is in the assert list of S~), and e ~ 
We call Si and e the source step and proposition, and
Sj and p the target step and proposition.L is initially
empty, open is the list of open preconditions; initially
contains preconditions of the FINISH step.

POP Algorithm with t-forms

We first present the algorithm for partial order plan-
ning (POP), which we take largely from (Russell 
Norvig 1995), and then describe modifications needed
for including t-forms. We assume that the reader is
already familiar with SNLP-style planning (McAllester
& Rosenblitt 1991), and will rely upon the tests that
are defined in the previous section.

Figure 1 shows the POP algorithm written for a non-
deterministic machine. We made two minor changes
to the standard algorithm so that it easily generalizes
to handling t-forms. First, our links have both source
and target conditions, which may differ - a link in stan-
dard POP has only one condition since the conditions
on the source and target steps must be identical. Sec-
ond, in step 2, we pick a step whose effect e ~ c - in
standard POP, we pick a step whose effect is exactly
the same as c.

Several changes are needed for the POP algorithm

to handle t-forms. First we preprocess the initial SOK
and perform all possible resolutions. The other modi-
fications affect steps 2 and 6.

Modifying Step 2

In step 2, we nondeterministically seek every step Ss
that has an effect e where e ~ c. It should be clear
that when c is an atom, then e must be an atom, and
when c is a t-form, then so must e. In the latter case,
however, we also seek steps where e does not entail
c but where e does meet the following criterion: the
main part of e entails the main part of c. Then we
perform goal splitting.

If we have two t-forms, ¢c and te, where both are
not single clauses and where {2¢1(¢e)} ~ {lk4(¢c)),
then "most" of te is entailed by te. The only "left-
overs" are the clauses of ¢c for which there is no entail-
ment from any clause of te. These clauses are a subset
of clauses implied by exceptions of te. In fact, this set
of "leftovers" is precisely ¢c - te as defined in Theo-
rem 7. The result of this difference is a set of singleton
ground clauses -i.e., unquantified t-forms. Thus, goal
splitting is the act of taking such a te and te and
splitting ¢~ into a set of C-forms, ̄  = {¢) t_J (¢~ - te),
where ¢ = te I> ¢¢ = ¢¢-(¢c-¢~). Here, ¢ is just 
after we add more exceptions to it as defined by The-
orem 6. Then, we remove ¢, from step S, and replace
it with the equivalent set of t-forms in 9. Next, we

add a link from ¢, to ¢, namely S, ¢:4¢ S,. Finally,
we add the new t-forms to open. In this way, we have
split ¢c into a quantified t-form, ¢, which is linked
from te, plus a set of singleton ground clause t-forms,
namely ¢~ - ¢,, that still need links.

Example 1. Let te = {’~P(x,y) l--,(zy = ab)A
-~(zy = aa)},¢, = {-~P(z,b) V -~P(a,z)}. Then
{A/l(¢e)} ~ {A/I(¢e)}. £(¢e)t>¢c = {’~P(a,b)V
-~P(a, a),-~P(b, b) V -~P(a, The second clause in
this set is entailed by te’s clause "~P(b, b), and there-
fore ¢, - te = {’~P(a, b) V -~P(a, a)}. Thus after the
goal splitting ¢¢ is set to {-~P(z, b) Y -~P(a, z) l-~(z 

a)}, causal link $8 ¢~c S, is created, and a new sub-
goal {’~P(a, b) V -~P(a, a)} is added to Se and open.

Note that goal splitting is an equivalence-preserving
transformation.

Modifying Step 6

For a step to be a threat, its effect must remove the
supporting proposition for the precondition from the
SOK , t-forms can only be threatened by atoms, and
vice versa.

We add goal splitting to the arsenal of threat resolu-
tion techniques. Goal splitting applies when an atom
threatens a causal link that supports a quantified t-
form. An atom c that is an effect for step Ss is a threat

to a causal link Se ¢~P Sp iff it removes all clauses of
te that support some clause(s) in tp. In particular,
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the clauses of ep that lose support as the result of the
threat, c, are exactly

¢ - (({-~e} ~, ¢~) ~ ep) - ((¢~ - {-~c}) 

Here, ({-~c} I> ¢~) are those clauses that will be "lost"
from ¢~ due to effect c of $8, and ({-~c) I> ee) t> 
are those clauses in ep that depend on those "lost"
supports. However, some of these clauses in ep might
also be entailed by other clauses in ee that are not
going to be "lost" due to step Ss. The clauses that will
not be "lost" from ee are (¢~ - {-~c}) and the clauses
in ep that benefit from these remaining clauses are
((¢~-{-~c}) t>¢p). Note that ¢ is emptyif {-~c} l>¢e 
0.

Applying goal splitting, we first find all such clauses,
remove them from ep (as defined in Theorem 6) and
add them to the preconditions of Sp and to open. The

link Se ¢~P Sp is still valid, because removing the
threatened clauses from ep weakens it so that c is no

¢~,¢p
longer a threat to Se ~ Sp. Thus, the threat is
resolved. However, we must find new links to support
the clauses in ¢.

Example 2. Let I be the link $8 ¢~-~° S¢ defined
in the previous example. Effect cl = P(c, d) is clearly
not a threat to I, because (({--el} t:> ee) I:> ¢c) 

Let’s check if c2 = P(c, b) is a threat to I. (({-~c2} 
¢~) I>¢~) {’ ~P(c, b)V’~P(a, c)}, which is also implied
by ¢~’s clause ~P(a, c). Thus, (({-~c2} t> ee) 1> ¢c) 

((¢e - ({-~c2} 1> ¢~)) I> ¢c) and c2 is not a threat 
Example 3. Let 1 be the link Ss ¢~-~° So, where

ee = {-~p(x)v-~Q(x)), ¢c = {~P(y)V~Q(y)V~R(y)},
and c = P(a). c is a threat to l, because it removes
support from ¢c’s clause -~P(a) V -~Q(a) v -~R(a). The
result of goal splitting is ¢c = {-~P(Y) -~Q(y) v
-~R(y)[’~(y = a)}, and a new precondition -~P(a)V
-~Q(a) V -~R(a) in S~ and open.

Note that a situation in which a non-singleton e-
form threatens a causal link supporting an atom goal
is not possible, simply because non-singleton ¢-form
effects appear only in the START step, and every other
step in the plan is ordered after START. Singleton e-
forms, however, are handled by the original POP algo-
rithm, and so we do not need any changes in case the
threatened link supports an atom goal.

This algorithm, which we believe (but have not
shown) to be sound and complete when the domain
of objects is infinite, can be extended to handle condi-
tional effects and work with non-ground actions.

Comparison with LCWs
As mentioned above, there are numerous works on
STRIPS-style planning without the closed world as-
sumption. To our knowledge, however, only the LCW
work (Golden, Etzioni, & Weld 1994; Etzioni, Golden,
& Weld 1997) deals with the type of quantified infor-
mation that is similar to our e-forms. The planner

presented in these papers handles sensing actions and
information loss, which we do not address here.

An LCW sentence represents local closed world in-
formation. LCW(~) means that for all ground sub-
stitutions ~, the agent knows the truth value of ~0.
Syntax of ¯ sentences is limited to the conjunction
of positive literals (which corresponds exactly to the
disjunction of negative literals in simple e-forms) and
cannot express statements with exceptions, like "we
know sizes of all files, except a.tez and a.ps", which
can be expressed with a e-form.

Because of this deficiency, the changes in the world
state cannot be accurately reflected in the agent’s
knowledge database consisting of ground literals and
LCW sentences, and as a result some information gets
discarded. The LCW reasoning in itself is incomplete
even without sensing and information loss. The query
mechanism is also incomplete - it cannot deduce all
ground facts that are implied by the agent’s database.

The language of C-forms doesn’t have any of these
problems and thus is more adequate in representing in-
complete knowledge. It allows us to express statements
with exceptions, while keeping the reasoning complete
and tractable. Time complexity measures of state up-
date rule and e-form entailment, for example, compare
favorably to those of LCW language.

The e-forms presented in this paper have a limita-
tion that every disjunct in a e-form must use all the
same variables, and thus there’s a "gap" between the
expressive power of simple C-forms and LCW sentences
which have no such restriction on their conjuncts. For
example, the constraint {-~PS(~) "~In(z, y)} cannot
be represented with a e-form used in the presented
language, because its first disjunct uses only one of
the two quantified variables, but can be encoded as an
LCW sentence. However, if we drop that requirement
and also allow for non-ground exceptions, the e-form
language becomes strictly more expressive than LCW,
while retaining completeness and tractability of rea-
soning.

Finally, e-forms can be used efficiently to describe
the effects of sensing actions.

Conclusions and Future Work
We have presented a method for SNLP-style partial
order planning (POP) that does not make the closed
world assumption and that allows limited quantifica-
tion. The key idea is the use of C-forms to represent
quantified negative information and to integrate e-
forms into POP such that it adds only polynomial cost
algorithms. We thus argue informally that, even with
our expanded representation, we can keep the complex-
ity of planning within NP if we have a finite language
and if we bound the length of plans. The extension of
the presented algorithm to a lifted version with condi-
tional effects is straightforward.

Future work is already in progress. We will continue
to explore richer representations for e-forms, particu-
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larly the use of non-ground exceptions. Also, we will
continue developing methods for integrating sensing,
conditional planning and plan execution. Finally, we
will formally examine the issues of soundness, com-
pleteness and complexity of the planning algorithm.
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