
Mapping Planning Actions and Partially-Ordered Plans
into Execution Knowledge

Manuela M. Veloso Paola Rizzo
Computer Science Department Center of Cognitive Science, University of Turin, and

Carnegie Mellon University Institute of Psychology
5000 Forbes Avenue, Pittsburgh, PA 15213, USA National Research Council

mmv@cs.cmu.edu Viale Marx 15, 00137 Roma, Italy
paola@di.unito.it

Abstract

In essence, the underlying ultimate purpose of classical
deliberative planning systems is to model some world
task and generate plans that can then be executed.
Execution systems rely on the assumption that there
is a built-in library of a variety of plans and primi-
tive actions for performing tasks. Although hard and
time consuming, such libraries of execution plans and
actions are usually handcoded. Faced with two differ-
ent systems, a planner and an executor, we analyze
in this work the representational map between plan-
ning actions and partially-ordered plans and the exe-
cution knowledge. We developed algorithms to auto-
matically translate classical planning operators to ex-
ecution primitive actions, and partially-ordered plans
into executable tasks with partially ordered subtasks.
We implemented our work using the PRODIGY planner
and the RAP execution system. We provide illustrative
examples of how partially-ordered plans produced by
PRODIGY are translated to Reactive Action Packages
suitable for execution by the RAP system.

Introduction

In essence, the underlying ultimate purpose of classical
deliberative planning systems is to model some world
task and generate plans that can then be executed.
Execution systems rely on the assumption that there
is a built-in library of a variety of plans and primi-
tive actions for performing tasks. Although hard and
time consuming, such libraries of execution plans and
actions are usually handcoded.

Here we propose an approach to the automatic build-
ing of a library of executable actions by using the
knowledge contained in planning operators and plans
produced by planners; in particular, we propose an al-
gorithm for translating partial order plans produced by
a generative planner, PRODIGY, into lists of subtasks
that can be processed by an executor, RAP.

The paper is organized as follows. First an overview
of the PRODIGY deliberative planner and of the RAP
reactive planner is given. The third section describes

how PRODIGY actions are translated into Reactive Ac-
tion Packages (RAPs), and then how partially-ordered
plans are translated into RAPs with some illustrative
examples. The final section describes future work and
related literature.

The PRODIGY deliberative planner

The PRODIGY planner (Veloso et al. 1995) reasons
about multiple goals and multiple alternative opera-
tors relevant to achieving the goals; it combines state-
space search corresponding to a simulation of plan ex-
ecution with backward-chaining responsible for goal-
directed reasoning. The strategies used in PRODIGY for
directing its choices in decision points are called control
knowledge. These strategies include the use of control
rules (usually domain-dependent), complete problem
solving episodes to be used by analogy, and domain-
independent heuristics. Here we focus on explaining
control rules.

A control rule is a production (if-then) rule that tells
the system which choices should be made (or avoided)
depending on the current state, unachieved precondi-
tions of the operators, and other meta-level informa-
tion based on previous choices or subgoaling links. All
the control rules used by PRODIGY are distinguished
into three groups: select, reject, and prefer rules. If
several control rules are applicable in the current de-
cision point, PRODIGY will use all of them. Select and
reject rules are used to prune parts of the search space,
while prefer rules determine in what order to explore
the remaining parts.

The RAP reactive planner

RAP (Firby 1989), like other reactive planners, e.g.
(Georgeff & Lansky 1986; McDermott 1990) is a sys-
tem devoted to the execution of plans in a dynamic
environment. Usually systems of this family are not
able to generate plans by themselves but rather rely
on a complex plan specification language to handwrite

94

From: AAAI Technical Report WS-98-02. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



plans. These languages have several constructs to dif-
ferentiate the execution according to environmental
conditions, allowing the agent to profit from opportu-
nities, to suspend pursuing a goal and give priority to
another that has become more urgent, and to change
plan in face of execution failures or modified environ-
mental conditions.

RAP is composed of a library of Reactive Action
Packages (or RAPs), 1 a task agenda, and a mem-
ory. A Reactive Action Package is the basic execu-
tion unit. Each task (i.e., achieving a goal) is mapped
on a particular RAP, which specifies the set of meth-
ods (i.e., unistantiated plans) for achieving it and their
conditions of applicability. The methods may consist
of primitive actions (i.e. they can be directly executed)
or in subtasks to be executed by using other RAPs.

The initial tasks to be performed are put on the task
agenda. The interpreter selects one task at a time from
the agenda by considering task selection constraints
and heuristics. The RAP associated with the selected
task is taken from the RAPs library, and an applica-
ble method is chosen for execution. The choice of a
method from those listed in the RAP is based on the
contents of the memory, which is RAP’s internal model
of the world. If the method is a primitive action, it is
executed; otherwise all of its subtasks are put on the
agenda, and the main task is put on the agenda to be
checked for success after all of its subtasks are finished.

Transforming planning operators and

plans into executable tasks

Our architecture is composed of a deliberative planner
that off-line builds plans that can be executed by the
reactive planner. Since PRODIGY’S operators and plans
and Reactive Action Packages do not have the same
syntax, it is necessary to translate the former into the
latter.

Here we will see the automatic process through
which (1) PRODIGY operators are translated into RAPs
consisting of directly executable primitive actions, and
the effects of PRODIGY operators are translated into
"memory rules" for changing the contents of the RAP
memory after the successful execution of a primitive
RAP; 2 (2) PRODIGY’S (possibly multiple) plans 
translated into complex RAPs composed of partially
ordered primitive RAPs previously translated from the
planning operators.

1RAp refers to the whole system, while RAP(s) refer 
Reactive Action Package(s).

2Currently, in such translations we deal with operators
containing neither conditional effects nor quantifications;
later work will be devoted to such issues.

From PRODIGY operators to RAPs and mem-
ory rules. The translation from operators into RAPs
is straightforward: an operator is defined through its
name, parameters, preconditions and effects; the name
and parameters are translated into the RAP index,
while the preconditions are mapped into the RAP pre-
conditions, a Since the RAP’s effects cannot be rep-
resented inside the RAP itself, the operator’s effects
are mapped into a so-called memory rule in the RAP

system; such rule represents how the RAP affects the
world after its successful execution. Here follows an
example:

;;; Prodigy operator

(operator EAT
(params <food>)
(preconds (has myself <food>))
(effects O

((del (hungry myself))
(del (has myself <food>)))))

;;; RAP translated from the operator

(define-RAP (index (eat ?food))
(preconditions (has myself ?food))
(method

(primitive
(enable (eat ?food))
(wait-for (succeeded eat ?result)

:succeed ?result)
(wait-for (failed eat ?result)

:fail ?result)
(disable :above))))

;;; RAP memory rule

(define-memory-rule (eat ?food) :finish
(match-result (okay

(rule (t
(mem-del (hungry myself))
(mem-del (has myself ?food)))))))

From PRODIGY plans to RAPs. We describe the
translation from PRODIGY plans to RAPs by referring
to a simple problem, solved by PRODIGY by producing
2 alternative solutions. The problem (in which the ob-
ject declarations are omitted) and solutions are shown
below.

; ; ; problem

(serf
(current -problem)

(create-problem

3The object declarations are omitted.

95



(name have-fun)
(state

(and (has other-agt toy)
(has myself book)
(willing-to-play other-agt)))

(goal (have-fun myself))))

; ; ; solutions

Solution #i :
<play-with-agt other-agt >

Solution #2 :
<bargain-obj-with-agt book toy other-agt>
<play-with-obj toy>

The Reactive Action Package shown below is composed
by both plans: each of them maps into a different
method. Notice that the ordering constraints of the
solutions (taken from a contingency table not shown
here) are represented also in the methods through the
use of/or clauses, that specify which task depends on
the successful execution of another. The context for
each method refers to a subset of the initial state of
the problem that must be true for using that partic-
ular method. Finally, notice that RAPs represent a
generalization of PRODIGY plans, by transforming lit-
erals into predicates with variables.

;;; RAP translated from the solutions

(define-RAP (index (have-fun))
(succeed (entertained myself))
(method 0
(context (willing-to-play ?agt))
(task-net

(1 play-with-agt ?agt)))
(method 1
(context (and (has ?agt ?toy)

(has myself ?obj)))
(task-net

(I (bargain-obj-with-agt 7obj ?toy 7agt)
(for 2))

(2 (play-with-obj ?toy)))))

Final Remarks

If our way of using planning techniques is not strictly
conventional, other works exist that are somehow sim-
ilar to ours. RAP has been coupled with PRODIGY also
in (Blythe & Reilly 1993), and with another gener-
ative planner (AP) in (Bonasso et al. 1995). Both
works differ from ours mainly because of their rather
"conventional" view of the integration of generative
and reactive planning. In fact, the following differ-
ences emerge: (a) RAPs are not automatically created
by translating the planner’s operators and plans, but
are written and mapped to the planning operators by

hand; (b) the generative planner interacts with RAP on-
line rather than off-line, by passing its plans to RAP for
immediate execution, and by monitoring the results.
Another work (Wilkins & Myers 1995) has addressed
the problem of making a generative planner (SIPE-2)
and a reactive planner (PRS-CL) speak a common lan-
guage. Their solution differs from ours because they
have created an interlingua (the ACT formalism) used
for handwriting plans that can subsequently be un-
derstood and used by both systems; on the contrary,
in our work there is a unidirectional translation from
PRODIGY to RAP, and only the planning operators must
be written by the designer, while plans are produced by
PRODIGY and automatically transformed into RAPs.

We are currently using this architecture for build-
ing behaviors for believable agents that interact with a
user. The architecture has produced a set of plans for
each agent specification and for several agents (Rizzo
et al. in press).

Further developments of our work concern the use of
our architecture for realizing agents that interact with
each other; to this aim, we are currently working on
a multi-agent version of RAP. In addition, we aim at
realizing a tighter integration of the deliberative and
the reactive planner, in which the former would inspect
the task agenda, and build new plans on the fly during
interactions among agents; this would allow to take
into account the interactions between tasks occurring
at execution time.

Acknowledgements

Part of this work was done while the second au-
thor was visiting the Computer Science Department
at Carnegie Mellon University. Manuela Veloso’s re-
search is sponsored in part by the Defense Advanced
Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL) under agreement num-
ber F30602-97-2-0250. The views and conclusions con-
tained herein are those of the authors and should not
be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied,
of the Defense Advanced Research Projects Agency
(DARPA), the Air Force Research Laboratory (AFRL)
or the U.S. Government. Paola Rizzo is currently sup-
ported by a scholarship from CNR Committee 12 on
Information Technology.

References

Blythe, J., and Reilly, W. 1993. Integrating Reactive
and Deliberative Planning for Agents. Technical Report
CMU-CS-93-155, Carnegie Mellon University, School of
Computer Science.

96



Bonasso, R. P.; Kortenkamp, D.; Miller, D. P.; and Slack,
M. 1995. Experiences with an Architecture for Intelligent,
Reactive Agents. In Proceedings of ATAL-95.

Firby, R. J. 1989. Adaptive Execution in Complex Dy-
namic Domains. Ph.D. Dissertation, Yale University.
Technical Report YALEU/CSD/RR ~672.

Georgeff, M., and Lansky, A. L. 1986. Procedural Knowl-
edge. Proceedings of IEEE 74(10):1383-1398.

McDermott, D. 1990. Planning Reactive Behavior: A
Progress Report. In Sycara, K., ed., Proceedings of
the Workshop on Innovative Approaches to Planning,
Scheduling and Control. San Mateo (CA): Morgan Kanf-
mann.

Rizzo, P.; Veloso, M. M.; Miceli, M.; and Cesta, A. in
press. Goal-based personalities and social behaviors in
believable agents. Applied Artificial Intelligence.

Veloso, M. M.; Carbonell, J.; Perez, A.; Borrajo, D.; Fink,
E.; and Blythe, J. 1995. Integrating Planning and Learn-
ing: The PRODIGY Architecture. Journal of Experimental
and Theoretical Artificial Intelligence 7:81-120.

Wilkins, D. E., and Myers, K. L. 1995. A Common
Knowledge Representation for Plan Generation and Re-
active Execution. Journal of Logic and Computation.

97




