
PROGRESSIVE PLAN EXECUTION IN A DYNAMIC WORLD

S. Au N.Parameswaran
Department of Information Engineering,

School of Computer Science and Engineering,
The University of New South Wales, P.O.Box 1, Kensington, N.S.W. 2052 Australia

Fax: 61-2-93851814, Phone: 61-2-93853940
{ sherlock,paramesh } @cse.unsw.edu.au

Abstract
In complex dynamic worlds, reactive behaviour alone is
inadequate for dealing with the diverse and unpredictable
situations which may occur. To overcome this inadequacy, an
agent in a dynamic world must exhibit goal directed behaviour,
which is acquired through the execution of plans. However,
completely specified plans are unsuitable in dynamic worlds for
several reasons, and in particular the view that plans may be
considered as executable programs is not suitable. We argue that
an agent working in such situations must explicitly incorporate
resource based abstractions in its plan representation. But,
while executing such plans, a plan executor must, at any point
during execution, be capable of recognising the current state of
the word in order to execute an action in the plan. Since this task
is difficult while an abstract action is executed, we suggest that
plans be made progressively abstract into the future. We
demonstrate that when an agent employs such a strategy, it faces
the problem of how to generate its own abstractions in order to
keep the plan simple and easy to maintain in a dynamic world.
We present a methodology as to how an agent can generate
simple abstractions in a small fire world, and we evaluate the
performance of the agent in its ability to achieve its goals when
the world changes unpredictably.

1 Introduction

Agents which exhibit goal oriented behaviour
often need plans, particularly in multiagent dynamic
worlds. Classically, plans are viewed as a set of actions
which are scheduled for execution in a particular order.
However in dynamic environments, classical long plans are
not always successfully executed due to unpredictable
changes in the world. A change in the world can make
plans invalid. When plans become invalid, they must be
either dropped or modified. (Modification is also called
maintenance.) Dropping plans is the least preferred option
in a multiagent world, since the plan structure may form
the basis for updating the values of other mental attributes
of the agent. However, maintaining a completely specified
plan is difficult as this plan tends to become invalid as
soon as any resource used in the plan changes its state.

In this paper, we propose a plan structure for
agents existing in a dynamic world, incorporating
abstractions explicitly in the plan structure. We believe
plans must not only be abstract but also be complete in the
sense that it should specify a complete solution to the
problem. In particular, they must be progressively abstract
as opposed to being uniformly abstract. As the world

changes in a major way, many objects, particularly the
abstract ones, may no longer exist, and an agent must be
able to invent suitable new abstractions. We present a
methodology for modifying a plan structure in response to
changes occurring in the world. Minor changes result in
the modification of plans at the action level, whereas major
changes in the world result in modifications of the world
model, using agent invented abstractions. We present a fire
world environment where changes are highly dynamic and
we evaluate our proposed plan structure in this domain.
Finally, we discuss the results from our preliminary
implementation.

2 Plan Structure

Planning involves the construction of a detailed sequential
list of actions which when executed will take an agent from
an initial state to a final goal state. Classical planning bases
its foundations on the assumption that the domain is static,
the agent has full knowledge of the world, and the actions
of the agent have deterministic effects on the state of the
world. However, for agents residing in a large and dynamic
world where the above assumptions no longer hold true,
classical plans of enumerating all basic actions are
unacceptable for one significant reason: the plan becomes
too long, and long plans are difficult to reason with and
maintain. Therefore, it is necessary to explicitly
incorporate abstractions in the plan. We discuss two types
of abstractions that an agent may use in its plan
representation: one is resource based abstraction and the
other one is action based abstraction.

2.1 Proposed Plan Structure

Our proposed plan structure consists of both primitive
actions and subgoals that are yet to be planned for. (We
refer to achieving subgoals as abstract actions henceforth.)
The actions (both primitive and abstract) in the plans, are
arranged such that the plan becomes progressively abstract
from the current time point to the future. Figure 1 is an
example of a progressively abstract plan structure.

In figure 1, the agent is given a goal, G. Solid
lines denote planned actions while dotted lines indicate
plan segments that are yet to be derived. The plan contains
primitive actions that can be scheduled and executed by

136
From: AAAI Technical Report WS-98-02. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

the agent, but as we move forward into its future it
contains less and less refined subgoals (that is, more and
more abstract actions). The agent divides G into G,, 2,
etc., where G1 is to be executed before G2. GI is further
divided into several levels of subgoals. The leftmost
subgoal will have the immediate part more refined while
the future segment remains abstract. In this example, a1, az
and a3 are primitive actions. While the agent is executing
these three actions, it will also be deriving the actions (a4
a5 a6 aT) for subgoal GH2. Similarly, while the agent is
executing actions (a4 a5 a6 at), it will at the same time be
deriving actions for subgoal G~2. This process continues
until the given goal G is accomplished.

GI

GI1 I

Glll lGl12

V i[.....
~G12

i
iiJ
: i i T

G { G4. Gs,

I G2 G3 G6,.. }

is

time
t

a] a2 a3 (a4 as a6 a7)

Figure 1. A simple progressively abstract plan.

One merit of the plan structure proposed above is
that it subdivides a long plan into numerous short subplans
as short subplans are easier to maintain. In addition, the
progressively abstract nature of the plan ensures that the
agent focuses more on the immediate problems and yet at
the same time paying partial attention to the future
subgoals (that is, future commitments are attended to
continuously). A plan structure such as this is more
tolerant to changes in the world than a completely refined
plan.

It should be noted that the plan structure discussed
is a tentative, but nevertheless, a complete solution for the
entire goal. It is complete in the sense that it contains a
solution (albeit abstract) for the problem from the start
the end. A plan must be monitored not only at the action
level, but also at the subgoals level. In a dynamic
environment, changes occurring in the world often create
situations in which a planned action could still be
executed without failure but leading to the wrong subgoal.
This is because the agent would not know that the plan has
became a wrong plan because of the changes in the world
until the agent has fully executed all the actions. By
incorporating abstract objects in the plan, not only can the
plan tolerate more changes in the world, but can also help
agent to evaluate the progress and provide confirmation
about the subgoals during plan execution.

Also note that the progressive abstract plan
structure is only a general strategy for plan representation
and there can be exceptions to this strategy. For example,
sometimes committing to a primitive action in the distant
future will simplify the reasoning processes of the agent
while selecting a current option.

3 Plan Execution

As the world changes, plans are affected and consequently
must be repaired. Agents have to carry out different
strategies to maintain the plan for different kinds of
changes occurring in the world. For incremental changes
which result in action failure, agents may simply have to
plan and re-execute the action, but for major changes
where abstractions have been destroyed (for example,
wall has been burnt down in a fire world and therefore a
room has disappeared), agents will have to invent new
abstractions.

3.1 Action Failure

In our plan execution strategy, instead of taking an action
and carefully verifying it before execution, we would take
the action from the plan and execute it immediately with
the assumption that all of its conditions are already
satisfied. Because actions are always generated a short
while before they are executed, we believe that the
availability of the resources in appropriate states is
reasonably updated and it is therefore not necessary to re-
examine them. The advantage of this approach is that plan
execution can be sped up such that the plan is executed
before the environment changes again.

Although actions are always executed shortly
after they are planned, there is always a possibility that
changes affecting the validity of the action can still occur
within the period of its planning and execution. In this
case, an action will fail. An action could also fail during
execution as changes in the world directly affect the
resources that the agent is using for the action. In situations
such as these, the agent will rescue the plan by generating
new subgoals to repair the conditions of the action, achieve
these subgoals and then re-execute the previously failed
action.

3.2 Subgoal Failure

A change in the world may also affect a plan at the higher
(abstract) levels. This can happen when the abstractions
employed in the world representation are affected. For
example, in a fire world, where a fire burns down a wall
existing between two rooms, the two rooms are effectively
reduced to one single "large room". As a result, the two
rooms disappear from the world, and the "large room" is a

137

new abstract object introduced into the world and the agent
may not be able to reason with this new object¯ In order to
accommodate for this change in its plan, the agent
generates a flat plan for the affected subgoal, invents new
abstractions over this flat plan, and uses the new
abstractions to simplify the plan representation (so that the
plan satisfies the "progressive abstraction" requirement).
The agent then uses this abstraction to repair the world
model¯

Consider that, in figure 1, an unexpected change
in the world has made the decomposition of G. into Gt.
and Gn2 invalid¯ This will make the already planned
actions for G. meaningless because these actions are
related to the old abstractions. (see figure 2).

G

GI I
Gll

] Gm
...t:

i D dg 1 iamage oa

{ G4, Gs,G2 G3 G6,....}
i
i

i

i
...........,

[:

al a2 a3 (a4 as aa a7)

Figure 2. A damaged abstract plan.

Since the abstractions in the world are destroyed,
the agent has to invent new abstractions to repair the plan.
For example, consider an abstract plan: [start, walk-
to(tree), turn-left, walk-to(building), stop]; suppose that
tree is burnt down; then, walk-to(tree) becomes non-
executable and this plan cannot be executed directly. New
actions have to be derived to replace "walk-to(tree)" with
the same action effect and obviously the new actions
cannot contain the abstract object "tree". For example, the
new plan may look like [start, move one step,
move_one_step, move_one_step, move one step,
move_one_step, move one step, turn-left, walk-
to(building), stop] The agent may simplify this plan by
introducing an abstract action called walk-some-steps, and
the plan can now be represented as [start, walk-some-steps,
turn-left, walk-to(building), stop]. This plan is short and
easy to reason with; however, it is specific to this agent
since the definition of walk-some-steps may not be known
to other agents.

Let us put this strategy into a more formal
structure. Consider the example in figure 1 again. The
agent first generates a completely refined subplan called P.
for G. where P.=[b.b2 b.], where b, is a primitive action
for each i. If this plan is short enough for the agent to
maintain, the plan structure for G has been repaired.
(Whether a plan is short enough for an particular agent
depends on the planning capability of each individual

.

agent.) If it is not (which will typically be the case), then
the agent performs the following steps;

1. Divide the plan P. into several segments. For
example, pl=[b.b2], p2=[b3,b,,bs],etc. Note that this
divides the plan P. into several subplans. For
example, the new representation for P. is P.=[P.P2,..]

2. Define a decomposition operator :
(operator: name new-decomp-operatorl

goal G.
subgoal-list [P.P2,..,PJ I* each p~

represents a subplan *1)
If the newly derived P. is not short enough, repeat

steps 1 and 2 above on this version of P.. This may result
in the definition of additional new decomposition
operators.
4. Now, the original sequence of actions for G. (that is

the original version of P.) is given a simpler
representation using the subplans defined in steps
1,2, and 3.

When this plan is finally executed, the newly
generated decomposition operators will be used by the
agent to decompose a goal into subgoals and then refine
them to actions. Continuing with the example in figure 1,
G. is refined first by a plan P. of nine actions: P. =
[a. ag]. Since we consider this to be too long, we
subdivide this plan into three subplans Pl = [a.ava3], P2 =

[a4,as,a6], and P3 = [aT,as,ag], where for example p. achieves
a new (hypothetical) subgoal Gm. This allows us to
define a new decomposition operator:

(operator: name opl
goal G.
subgoal-list [G.G2,G3] /* each Gi represents a
self generated subgoal, and Gi is achieved by the
execution of plan pi */)

Note that now the plan Pn can be rewritten as

P.=[P.P2,P3]. If this plan is short enough we stop here;
otherwise, we simplify Pn further by defining more
abstract decomposition operators and subplan segments,
until we arrive at a representation for P. which is short
enough for the agent to reason with. We then use the
resources in the plan segment to update the world model
(as discussed in the following section)¯

4 Fire World

The fire world that we have considered in this work
consists of a large number of objects (in the order of
hundreds) and a large number of agents (in the order
tens). Objects in the fire world include walls, buildings,

!38

furniture, open areas and LPG gas tanks. An example of
such a fire world is shown (partially) in figure 3. In a world
such as this, no agent can have full knowledge of the whole
world. This world contains all the significant features of a
dynamic environment and thus serves as a suitable domain
for our plan execution agent.

4.1 A Simple Fire World

In the fire world, humans and animals are modelled as
heterogeneous agents. While animals run away from fire
instinctively, fire fighters can tackle and extinguish fire.
An agent responds to fire at different levels. At a lower
level (the physical level), the agent burns like any object,
such as a chair. At a higher level, the agent reacts to fire by
quickly performing actions, generating goals and achieving
goals through planning and plan execution.

Figure 3. A fire world.

Our world is different from others (like the air
combat world of Tambe [Tambe 97] and Robocup [ICJAI
95]) in that problems posed to the agents and the changes
in the environment are not only caused by the actions of
other agents but also by the changes the objects themselves
undergo in the world, caused by the fire. The main aim in
this domain is for the agents to co-operate in order to
achieve some goals (both common and individual).

4.2 Plan Execution
Consider a subworld (figure 4), where the agent
required to perform a subactivity of reaching the exit
starting from the entrance (subgoal GI). To make the
problem interesting, we have placed several inflammable
objects (shelves Sh) in the world.

This subworld has been hierarchically divided
into several regions and subregions. There are two rooms,
the store room and the research room and they are
subdivided into eight smaller rooms (with entrances and
exits) marked rl r8. These rooms are further subdivided
into tiles marked 1 16. The sections are grouped to form
four regions R1 R4. Figure 5 shows a hierarchical

R1

o
o

r,o

R4

entrance

1 S~ 2

i rl
3

r2 r3
R2

9 10 i 11 1 [~] 12!
r7 i ~ 1

I r5
i r6

¯ 15 L lb.....J.13 14[
i R3r8

Figure 4. Map of store room and research room.

representation of the store room where each node refers to
an object (also referred to as resource).

In order to solve the problem, the agent generates
a (progressively abstract) plan P0=[1,5,r2,R4,RR] and starts
executing it. The plan P0 is to be read as: plan P0=[move-

to(I), move-to(5), move-to(r2), move-to(R4),
to(RR)]. Plan execution involves attending to action
failures and repairing plans at the higher levels of
abstraction whenever unpredictable changes take place in
the world (as discussed in Section 3). In the following,
only consider subgoal failures.

Subgoal Failure Consider a fire that has burnt down the
walls between tiles 6 and 10, and tiles 10 and 14. This
change affects the plan at subgoal level as the fire has
affected two major abstractions R1 and R4. This has
produced several primitive object (tiles) which the agent
does not yet know how to group. The subworld at this
)oint looks like the one shown in figure 6.

Sub World
I

I I
Store Room Research

I
I

r....-< 2:,,....i’ I I ,

9 10 13 14

Room
i

I

1 5 2 6

Figure5. Representation store room and research room.

In order to repair this world, the agent begins
with a plan. Since the abstraction over the tiles 6,10, and
14 are lost, the agent derives a completely refined plan
[6,10,14] for this region and inserts it in the plan P0 to
produce a new version Pz where PI=[1,5,6,10,14,RR].
However, let us suppose this plan looks too long for the
agent, and the agent would like to simplify it. As a result,
P1 is simplified into P2. P2= [1,5,6,rp’,RR]. This plan now is
both short and progressively abstract and allows us to
define two new (abstract) resources rp’ and rp based on the

139

Store Room

1 5 9 13 2 6 10 14

Figure 6. World after fire has burnt part of the walls.

newly introduced subplan segments (See figure 7). These
new abstractions are incorporated into the world model as
shown in figure 8. Notice that the original abstractions are
spatial abstractions while the newly created ones are agent
action based. There are several interesting differences
between action based abstractions and the spatial
abstractions originally supplied by the designer. For
example, action based abstractions are more convenient for
plan generation by a planning agent.

rp

6 10 14

Figure 7. New resources depend on rp and rp’.

world object based

91’//~4/Nrpacti°nbased

rl r7’ r8’ ~__,action based

1 5 9 13 6 10 14

Figure 8. Incorporating new resources in the world.

4.3 Implementation

We implemented the agent and the fire world, using our
multiagent production system language called MPS
(Multiagent Production System) which we developed for
multiagent applications [Au 97]. An MPS program is
similar to an OPS5 program and has the capability of
communicating with other MPS programs and sharing
resources. Often a single agent is implemented by several
MPS programs working cooperatively and concurrently
together. The agent primarily consists of two concurrent
modules (units) called the deliberative reactive unit (DRU),

and the physical reactive unit (PRU). We use MPS in our
implementation because MPS provides a natural
programming paradigm for building communicating
reactive modules.

PRU will carry out the actions assigned by the
plan and at the same time react to any local situations
which are harmful to the agent, such as hot tiles.

DRU defines the mental behaviour and mostly
carries out the planning, plan execution, and plan
maintenance activities. It is the core component of the
agent and the generator of the progressively abstract plans.
It is also reactive in the sense that it generates goals and
plans in response to changes in world situation. When the
agent notices that there is a fire in the campus, it generates
a progressively abstract plan and executes it. In the case
where the plan fails, the agent creates new abstractions
based on its actions and saves the plan by modifying any
necessary section of the plan without regenerating the
whole plan from the start again.

The world model simulator unit (WSU) is another
MPS program that maintains the world by propagating fire
in the world, and simulating the actions sent by the DRU
and PRU in the world. During each simulation cycle,
temperature of each primitive object (for example, tiles
1,5,2,6...in Region 1) is computed, and then propagated
upwards towards the root in the hierarchical model world
using heuristics, and the state of each object (node in figure
5) is then set as normal, hot, burning or ash. Thus, it is
often the case that while lower level nodes are hot or
burning, higher level nodes may still be normal. (This is
the reason why our progressively abstract plan structure
appears more tolerant than a flat plan.)

4.4 Evaluation

In order to evaluate the effectiveness of the plan structure
and the plan maintenance scheme, we carried out several
experiments under different fire situations. The goal of
the agent in our experiment is to get to the exit whenever
there is a fire. Given the goal the agent generates a plan
similar to the one shown in figure 4 and executes it to
reach the exit. Notice that the agent can take one of the two
paths to get through region R3.

Along the exit path of the agent there are shelves
which can catch fire. The agent tries to get to the exit
without being burnt. Effort expended by the agent is
measured by means of the number of rules fired and the
number of working memory elements (WME) made in the
DRU during execution. The PRU module implements the
physical reactive behaviour of the agent, and as such does
not contribute directly towards deriving any efficient plan
by the DRU, rather, the behaviour of PRU had made
planning more difficult for the DRU.

Fires of varying intensities were created in the
world. A small fire refers to a single occurrence of fire in

140

the world. A medium fire refers to two to three
occurrences of fire in the world. A large fire refers to five
or more simultaneous occurrences of fire in the world .
Furthermore, we only consider those occurrences of fire
which directly affect the plan of the agent. We ran our
experiments using three different strategies: progressively
abstract plan, the flat plan and the uniformly abstract plan.

When the agent employs a uniformly abstract
plan, we found that whenever it encounters fire, it keeps
bouncing from tile to tile but doesn’t actually go anywhere.
This is because the agent takes a long time to transform an
abstract action in the plan to a list of executable actions. By
the time the list of actions are derived, the fire has already
spread to where the agent is standing and forces the agent
to jump. Therefore, the agent has to plan again and so on.
This loop keeps repeating until the agent is finally burnt to
death. This shows that an agent cannot afford to have
totally abstract plans.

Long flat plans and progressively abstract plans
perform better than uniformly abstract plans. Figure 9
shows the performance of the agent when it employed the
progressively abstract plan and the flat plan structure
respectively. The world simulator unit (WSU) consists
58 MPS rules, while the agent contained 80 rules of which
the DRU had 42 rules and the PRU had 38 rules. In each
module, the number of rules fired and the number of
WME’s made give an indication of the total effort put in by
that module towards solving the given problem. We ran
the experiment over several sets of data and in a variety
situations. The results of a typical run are summarised in
figure 9.

We note that when the fire is small, both the
structures of the plan seem to do equally well. In both the
cases, the agent manages to start from the entrance and
arrive at the exit safely. However, the agent, when
employing the fiat plan structure seems to spend more
effort in its attempt to reach the exit, than when employing
the progressively abstract plan structure.

For medium fires, the flat plan structure demand

8000

6000

40O0

2OO0

fire intensity

Figure 9. How progressive abstract plan structures
compare with the traditional long plan methodology.

about twice as much processing effort than what the
progressively abstract structure seems to demand. In the
flat plan case, whenever the agent had to modify its plan,
the plan always turned out to be much longer. Since the
plan specified all the participating lower level resources
explicitly, the plan had to be modified every time a
resource was affected by the fire. Thus, more work had to
be done and it took more time to get to the exit.
Meanwhile the fire continued to spread making the plan
invalid again. As a result, the number of times the flat plan
failed is much higher than the progressively abstract plan.

The increase in the resource usage for the
traditional planning agent compared to the progressively
abstract planning agent in the DRU is close to 250%. In
situations where large areas of the world is on fire, the
agent can only save itself by using the progressively
abstract plan structure. The flat plan structure took up too
much time for planning/plan modification that the fire
spread everywhere making it impossible for the agent to
execute any plan: the DRU module and the PRU module
were excessively busy responding to world changes.

Commenting on the behaviour of the agent, when
the agent adopted the flat plan structure, it appeared to be
over cautious with regard to its future. The progressively
abstract plan structure produces an agent behaviour that
appeared "less fuzzy" about future, unless it turned out to
be a "major" one. In our implementation, after
experimenting with several sets of data, we found that the
progressively abstract planning methodology makes use of
the alternative path (via tile 16 in figure 4) four times
more often than the flat plan approach. Agents executing
long flat plans do not consider the alternative path unless
tile 11 itself has a large fire thus putting themselves in
greater risk. Thus, progressively abstract structure seems to
produce a behaviour in which the agent appears more
systematic and acreful about its future.

Progressively Abstract Plans as a Complex Mental
Attribute Apart from guiding the agent to achieving the
goal, the abstractions in a plan can also be used as a basis
to judge the severity of the fire in the world. Whether a fire
is major or minor fire is estimated relative to the
changes it causes to the plan structure. When the fire is
large enough to affect the abstraction used by the agent, it
may be regarded as major. A fire may be considered
minor as long as it only affects the local actions, no
matter how large the fire otherwise is.

5 Related Work and Conclusion

Most of the research done on plan execution and
monitoring relates to viewing planning and plan execution
as functions of stand alone software systems as opposed to

141

the activities of an agent intending to achieve a goal in a
dynamic world. According to Pollack [Pollack 90] plans
can be viewed either as an abstract structure which can be
synthesised and executed by any computational system, or
as a mental attribute of an intelligent agent existing in a
complex dynamic world. Some researchers treat plans as if
they are executable programs [Musliner 96]. This view is
not wholly suitable for our dynamic world. In our
progressively abstract model, plans are viewed as mental
attributes at the higher levels; and at the same time lower
subplans are viewed (partially) as executable programs.

Plans in [Wilkins 94] are represented as abstract
structures. Wilkins integrates sophisticated planning
techniques (SIPE-2) with a reactive execution system
(PRS). When plans fail, error recovery procedures are used
to re-plan, ensuring that the future consequences of the
new plan do not interfere with the still-active execution
threads of the original plan. The plan executors need to
encode procedures that will allow recovery from failure
states. Our system extends the techniques used by Wilkins
in that potential plan failure can be detected in advance. As
a result, re-planning for the failed future plan segment can
be carried out in parallel with plan execution so that the
current set of activities may have no need to be aborted.

Tambe [Tambe 97] discusses executing (team)
plans in a dynamic environment (a battlefield simulator)
where team plans are explicitly provided to the agents.
However, the representation of these plans appears to be
explicit only to the agent designer, and not necessarily to
the agents themselves. Such plans are hard to maintain
during execution when the environment changes.

In [Haddawy 96], abstract plans are derived while
searching for completely refined optimal plans. The DRIPS
planner permits interleaving execution and planning. This
could result in a plan in which the initial segment is
completely refined but the future segments still remain
abstract (though not progressively abstract). However, this
abstract structure appears more incidental than intentional;
further, the effect of world changes on the plan and its
abstractions have not been considered.

Knoblock [Knoblock 94] presents automated
techniques for generating abstractions for planning. His
algorithm generates abstraction hierarchies by dropping
lower levels of abstractions from the original problem
definition. In our approach, the agent generates new
abstractions based only on its primitive actions and they
are used to reconstruct the world model that is more
suitable for a planning agent.

Steel [Steel 88] implemented the IPEM structure
which enables interleaving planning and execution.
Control of the system is done by IF-THEN rules
production system architecture. Both our plan structure and
the IPEM offer replan capability either after execution
failure or after the occurrence of unexpected effects, and

both systems are based on rule based architecture. In
constract, we provide concurrent planning and execution,
and the capability to handle agent generated abstract
resources.

Firby [Firby 87] proposed a reactive action
package (RAP) that pursues a planning goal until that goal
has been achieved. Failures caused by unexpected world
situations are relegated to the underlying hardware
interface in an attempt to remodel the world.

Chapman and Agre [Chapman 86] do reactive
planning organised around situation-action like rules.
However, they do not seem to use abstractions for handling
action failures, since they do not employ explicit
representation for plans.

In our approach agents often modify their plans at
the lower levels in their plan structure, leaving the over all
plan appearance unaffected as far as possible. This is
important because agents often use each others plans as a
basis for working out co-operation strategies. Dynamic
environments also require that the agents be capable of
building abstractions on their own. While traditionally long
flat plans are too long and therefore difficult to maintain,
uniformly abstract plans are not responsive enough for
changes that happens in the immediate future. Abstraction
in plans seem to generate an agent behaviour wherein the
agent appears to care for its future more systematically. As
a result we believe a progressively abstract plan is more
suitable for agents residing in a dynamic environment. In
this paper, the abstractions generated are specific to the
agent that generated it, and are not suitable for
communication purposes. Our future work will involve
generating abstract operators automatically and
abstractions that are compatible to all agents in a society.

References

[Tambe 97] Milind Tambe. Implementing Agent
Teams in Dynamic Multi-agent Environments.
Applied AI, 1997.

[Au 97] Sherlock Au, MPS: A Multiagent
Production System Language, Master Thesis,
UNSW 1997.

[Haddawy96] J. Helwig and P. Haddawy. An
Abstraction-Based Approach to Interleaving
Planning and Execution in Partially-Obserable
Domains. Working Notes of the AAAI Fall
Symposium on Plan Execution: Problems and
Issues. Cambridge, MA, November 1996.

[Musliner96] David Musliner. Plan execution in
Mission-Critical Domain. Working Notes of the
AAAI Fall Symposium on Plan Execution:
Problems and Issues. Cambridge, MA, November
1996.

142

[ICJAI 95] H.Kitano, M.Asada, Y.Kuniyoshi,
I.Noda, E.Osawa. Roboup: The robot world cup
initiative. In Proceedings of ICJAI-95 Workshop
on Entertainment and AI/Alife, 1995.

[Knoblock 94] Craig Knoblock. Automatically
generating abstraction for planning. AI journal
Vol 68. No. 2 1994.

[Wilkins 94] David E. Wilkins and Karen L. Myers, A
Common Knowledge Representation for Plan
Generation and Reactive Execution, Journal of
Logic and Computation, 1995.

[Pollack90] M. Pollack. Intentions in
Communication. Edited by P. Cohen, J. Morgan
and M. Pollack. Massachusetts Institute of
Technology. 1990.

[Steel88] Jose Ambros-Ingerson and S Steel,
Integrating Planning, Execution and Monitoring.
AAAI, 1998.

[Firby 87] R James Firby, An Investigation into
Reactive Planning in Complex Domains, AAAI,
1987.

[Chapman 86] David Chapman and Philip E. Agre.
Abstract reasoning as emergent from concrete
activity. In Workshop on Planning and Reasoning
about Action, Portland, Oregon, June 1986.

143

