
Integrating a temporal planner with a path planner for a mobile robot

Brigitte Lamare, Malik Ghallab
LAAS-CNRS

7 avenue du colonel Roche
31077 Toulouse cedex, FRANCE

lamare@laas.fr malik@laas.fr

Abstract

General planners enable to describe unrestricted
classes of planning problems, but have the drawback
of being relatively slow when compared to the per-
formance of domain-specific planners within their do-
mains. This slowness proves to be a major handi-
cap when faced with planning and executing in a real
world environment. In order to overcome this, we have
investigated the idea of using domain-specific planners
to assist a general one.
We have tested this concept by integrating the gen-
eral planner IxTET with a path-finding planner. In
our examples, where there are many movements to be
planned, the benefits thus obtained are significant.
In order to achieve the integration of the two planners,
we have exploited IxrI-ET’s use of an abstraction hierar-
chy, which enables us to control the planning system
formed by the two planners.

Keywords: domain-specific planner, temporal
planner, abstraction.

Introduction
A well-known limitation of general planners is that al-
though they offer the advantage of addressing all sorts
of problems, they also suffer a lack of performance
when compared to a domain-specific planner.
Many studies have been lead in order to improve the
overall performance of general planners. Two differ-
ent approaches seem to emerge from these studies: ei-
ther specialising a part of the planning process (e.g.
time, conflict or resource management), or using a spe-
cialised planning process, for example to resolve certain
domain-specific problems.
Some planning systems, like O-PLAN2 and IXTET, use
specific constraint managers for time, variable and
resource constraints. In O-PLAN2, these constraint
managers are supervised by a constraint associator [9],
which mediates between the actual planning part of
the system and the constraint managers, and handles
eventual conflicts between managers.
Other planning systems use an original approach for

the planning process itself. UCP [13] opportunistically
interleaves plan-space and state-space (both backward
and forward) refinement to benefit from both meth-
ods. J. Hertzberg suggests building a planning tool-
box, that would allow the user to build exactly the
system he would like for a given problem [8].
In [12], the authors use several domain-independent
heuristics with PRODIGY, that are changed according
to the problem to be solved. In the TLPlan system [3],
some domain-dependent information is used to guide
the forward-chained search of the planner.
The approach that we have chosen is to use a gen-
eral purpose planner combined with a domain-specific
one. A similar approach is used in CEP [2]. CEP is a
system that consists in a general planner which elab-
orates the main tasks, assisted by a domain-specific
planner which refines certain of these tasks. However,
we do not wish to use the domain-specific planner to
refine tasks already produced by the general planner,
but to replace the general planner’s whole computation
of these specific tasks.
This work has been motivated by a robotics domain.
Our purpose is to integrate a general temporal planner
on board of a mobile robot; this robot will evolve in
a real-world, dynamic environment, and be controled
by a supervisor overviewing plan production and exe-
cution. On the one hand mobility is a significant task
in most problem instances and a general planner de-
votes a large part of its efforts to it. On the other
hand, our robotic system has several domain-specific
planners, more efficient for their specific tasks.
We will begin by explaining in more detail in what
our approach consists, we will then give a description
of the two types of planners that we have linked to-
gether. We will explain how the change of planning
process is controlled, and will give some of the results
obtained using this method, before concluding.

144

From: AAAI Technical Report WS-98-02. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Our approach

The general planner that we use is called IXTET

(IndeXed TimE Table), [5], [7], [6]. It already includes
specialist time, variable and resource managers. The
expressiveness of IxTET enables to solve a wide range
of rich planning problems.

IxTET has been used aboard mobile robots on the
task-planning level. These robots also have specific
planners available: several classified path-planners
(itinerary planners, a trajectory planner with sensor
feedback primitives), a robotic arm command gen-
erator, a camera command generator. However, in
planning a mission, IXTET also uses the constraints
of the topological graph associated to the mission.
The itineraries computed by IXTET will then be
transformed into paths and sensor based movement
strategies. However, IXTET is not very efficient when
it comes to calculating an itinerary. Likewise other
general planners, IXI’ET’s planning process proves to
be too costly for this type of problem. Typically, it
will take IxTET about 73s to plan a mission in an
environment with 10 rooms (the corresponding graph
has 10 nodes and 28 edges), whereas it only takes 2s to
plan the same mission without taking into account the
robot’s movements1. As for an itinerary planner, the
result would be near instantaneous on the movement
part of the problem.

If we can link the general planner with the specialist
planner, by getting the two planners to cooperate, we
will benefit from the advantages of both systems. Our
idea is to sub-contract the domain-specific planner to
find a solution to part of IXTET’s planning problem.
This is what we have done with IXTET and an itinerary
planner, in such a way that the itinerary planner sup-
plies IXTET with information to complete its partial
plan.

subproblem

subplan

Figure 1: The cooperation

The general idea (figure 1) is to let IxTET plan

1 calculation times on a Sparc Ultra machine

normally until it comes across a problem that the
domain-specific planner is better suited to manage.
When this happens, the domain-specific planner
computes a plan from the information that IXTET has
given it. It then feeds back this plan to IXTET. The lat-
ter can then continue with its normal planning process.

The general planner

Our study is based on the specificities of the general
planner that we have used: IXTET. Our study is based
on the specificities of the general planner that we have
used: IXTET. IXTET is a temporal planner and searches
through a plan-space, guided by an Ae-type algorithm.
It uses the least commitment approach: each choice is
made to constrain the plan the least possible. IXTET is
hierarchical in the sense that the attributes that appear
in the problem description are ordered according to
their importance in the plan.

Representation and overall control

Ixrl7ET is based on a reified temporal logic formalism
[14]. The predicates of this logic express

* the persistence of the value of an attribute over a
laps of time declared by an assertion

hold(att(xl,.., xn): v, (tl, t2))

¯ the change of value of an attribute at a given
time-point

event(art(x1,.., xn): (vl, v2),

There are also predicates for resource management,
which we will not detail here. A description of resource
representation and management can be found in [11].

The possible actions of the planning problem are
expressed as Casks, consisting of a set of events (the
effects), a set of assertions (the preconditions or causal
links between task events) and a set of constraints
between time-points or variables of the task.

The initial state of the world, the goal, and possible
events occurring at time-points between the start and
end of the plan are all described in a task which is the
initial plan Pi,it.

There are three types of flaws to be solved:

¯ pending subgoals, which are unexplained events or
assertions

¯ threats on protections of the plan

145

* resource conflicts

The non-deterministic algorithm used by the plan-
ner is the following:

PLAN(I))

1. Termination: if I) is consistent then
return I)

2. Analyse : calculate the FLAWS(I))
3. Select a flaw : (I) FLAWS(I))
4. Choose a resolver :

4.1. If resolvers(q)) -- q} return failure
4.2. Else choose p E resolvers(~)

5. Recursive invocation : return PLAN(I) ~ p)

7) is the current partial plan and the operator @ sym-
bolises the insertion of a resolver in the partial
plan.

Abstraction

IXTET is a hierarchical planner, in the way that its
control is based on an Ordered Monotonicity Property
similar to the one described in [10].

Ordered Monotonicity Property for IxTET
(OMP). For all possible current plans, each refinement
of those plans only creates new flaws belonging to the
current or next abstraction levels.

This property orders the planner’s search space.
The flaws appearing in the partial plan will be pro-
cessed according to the order of the attribute of each
flaw in the hierarchy. Thus all the flaws of an attribute
atti will be resolved before the planner attempts to
resolve the flaws of attribute art j, attj being of lower
lever than atti. This is an important point for the
following explanations about the functioning of the
cooperation of the two planners.

IxTET’s different abstraction levels are built in-line,
according to the evolution of the search, and to a
partial order < , defined when the tasks are compiled
and that complies with the OMP property.

A partial order <1 over attributes is defined as fol-
lows.

Definition 1
Let attp be the name of the attribute of a temporal
proposition p (event, assertion or resource use).
For each task T of the domain, if e is an event or
a resource production of T, and if p is a temporal

proposition ofT, then attp <3 atte.
We identify <1 and its transitive closure.

The order att v <1 atte means that IXTET will not be
able to resolve flaws with attribute symbol attp before
all flaws with attribute symbol atte have been resolved
(providing atte <1 artv is not also true).

Definition 2
Let art and art’ be the names of two attributes.
The abstraction class of attribute art, [art], is the
<1-equivalence class of art, such that

[att]= {art’; att <1 art’ A att <1 art’}

Given these definitions, we can now give the defi-
nition of the partial order < that we mentioned earlier.

Definition 3
Let att and att’ be the names of two attributes, [art]
and [att’] their abstraction classes.
[att] < [art’] if and only if [art] ~ [att’] and art <1 art’.

The abstraction hierarchy built according to these
rules can be represented by a graph where the nodes
represent abstraction classes and an edge from node
j to node i means that [i] < [j], [i] and [j] being the
abstraction classes associated to each node (figure 2).
IXTET explores the abstraction graph dynamically
during the planning process. If L represents the
current abstraction level, that is to say the set of flaws
of the partial plan that can currently be analysed,
then IXTET doesn’t wait until all flaws of L have been
resolved before changing to level L’. This is done by
taking into consideration in L’ all attributes whose
predecessors in the partial order have had all their
flaws resolved.

paper_on_robot-

machine_state

mail_received

have_mail -
.. j

trunk_size

- - robot_location

basket_state

Figure 2: An abstraction graph

A more detailed description of IXTET’s least commit-
ment hierarchy can be found in [4].

! 4 6

The domain-specific planner

To be more precise, the specialised planner only knows
how to manage one specific attribute. Its entries are
the description of the world, the initial situation, a
set of goals to be obtained, and a set of constraints on
these goals.
The constraints give a partial order on the goals, thus
enabling to express a certain order of achievement of
the goals in the resulting plan. If there are solutions to
the problem, the planner returns a single solution plan.

We intend to eventually bind the general planner
with several different domain-specific planners, but
to start with, we have linked Ixq’ET with an itinerary
planner. Its entries are the topological graph of the
problem, the starting point in the graph, a set of
places (nodes) to be visited, and a partial order
which to visit these places. The topological graph is
valuated and its edges are directed.

For example, the topological graph could be that
of figure 3, the starting point node R2, the places
to be visited M, R3 and R4 and the constraints
restricted to "M to be visited before R4". The fact
that the starting point should be visited before all
others is implicit. A resulting solution could be the
path R2 R3 I2 M D4 I1 R4.

R3 ~R2 R6

M --~..~ D4 R4

Figure 3: Topological graph

Linking the two planners

The principle

The specialised planner is going to be used to solve
all flaws concerning a given attribute, which we have
called "special attribute". When IXTET is linked to
the itinerary planner the special attribute will be
the robot location attribute. IXTET will consider this
attribute as a special one: it will not be dealt with
in the ordinary way. All flaws involving the special
attribute will be left open for IXTET: the specific
planner will handle them. IXTET will handle all other
attributes as usual. The fact that a certain attribute
is special is specified by the user in the description of
the domain. The user will declare which planner will
handle each attribute, the default being the general
planner.

The itinerary planner is only asked to find a single
solution. Indeed it would be too costly to provide IXTET

with several resolvers for a subproblem submitted to
the itinerary planner. It would involve calculating all
possible paths (with possible repeats of points visited)
starting from one point and going through the places
specified, respecting the given partial order. To enable
IXTET to backtrack on the choice of the path if needs
be, a "continuation" resolver is to trigger a new call to
the itinerary planner for another path (figure 4).

special attribute
IxTeT ~ ’ ~-....~ itinerary

planning planning
process ~ ~ process

solution

~~ "continuation"~J
resolver / / no

/solution
IxTeT ’1/

bactracking
process

Figure 4: General process

As in the example, the planner may return a solution
with places that were not specified in the request, but
that have to be in the solution path in order to meet
all the requirements, or that are on a less costly path.
The algorithm that searches through the topological
graph given by the user is based on the Moore-Dijkstra
algorithm. It gives one of the shortest paths -in terms
of cost- that satisfies the conditions submitted.

The control

The itinerary planner needs to have complete in-
formation as it is designed to find a solution to
IXTET’s entire movement problem. It is possible to
know for certain, at a specific step of the planning
process, that all possible flaws concerning the special
attribute belong to the actual partial plan. No other
flaws concerning that attribute will be introduced at

lh7

a further step. This is due to the abstraction hierarchy.

The only way to introduce a flaw with attribute i,
is to resolve a flaw with an attribute j of higher level.
Only flaws of the current abstraction level may be re-
solved.
The abstraction level is updated by

¯ removing a node when all flaws of the attribute(s)
of the node have been resolved

¯ adding a node which is a descendant of the node
removed, and has no other ascendants in the last
abstraction level

Let’s suppose that the special attribute is at node
3 of the abstraction graph (figure 5). At a certain
step of the planning process, the abstraction level is L:
attributes of nodes 1 and 4 can both introduce flaws
concerning the special attribute, as their abstraction
classes are higher than that of the special attribute. A
few steps further on in the planning process, L~ could
be the current abstraction level. Now no other flaw can
contain an attribute at a higher level than the special
attribute: all flaws of attributes of higher level have
been resolved. So no other flaw resolution could intro-
duce a new flaw concerning the special attribute (OMP
property).

paper_on_robot-

machine_state

mail_received

have_mail

trunk_size

robot_location

- ¯ basketstate

~)L’

Figure 5" Abstraction evolution

When the node of the special attribute is introduced
into the current abstraction level, we can thus be sure
that no other flaw concerning this attribute will ap-
pear in IXTET’s partial plan. This is therefore the mo-
ment from which we may give over the control to the

itinerary planner. This is done as soon as the flaw
selected to be resolved contains the special attribute.

A limitation of this control method is that it
cannot be used as such on a problem where there
is another attribute in the same attribute class as
the special attribute. This happens when attributes
are interdependent. For example in the following
two tasks, robot_location and have_key are in the
same abstraction class (robot_location <~ have_key and
have_key ,~ robot_location).

task get _key(?key) (start,end)
{

variable ?place;

hold (robot_location(): ?place, (start,end));
hold (key_position(?key): ?place, (start,end));
event (key_position(?key): (?place,Robot),

(end- start) in [00:01:00,00:03:00];

}
task go_to(?room 1,?room2) (start,end)
{

variable ?key;
ROOM_KEYS(?key,?room2);

hold (key_position(?key): Robot, (start,end));
hold (robot_location(): ?rooml, (start,end));
event (robot_location(): (?rooml,?room2),

(end- start) in [00:04:00,00:09:00];

To overcome this limitation, the idea is to only
partially resolve the flaws on the special attribute,
enough to recursively introduce all the flaws on the
attributes linked to it (have_key in the example).
Let’s call these attribute in the same abstraction
class as the special one the linked attributes. By
partial resolution, we mean that we will not attempt
to add causal links, temporal constraints or variable
constraints, nor call the path planner to complete
the path until we have reached a certain point of the
process. We will only add task resolvers, that will
themselves add new flaws. We then resolve flaws on
the linked attributes either by finding a trivial resolver
(one already in the partial plan) or by using a new
task resolver (which implies a new flaw on the special
attribute). When only the flaws concerning the special
attribute remain,we are back in the previous case: we
can call the special planner to finish resolving these
flaws. This may lead to new flaws on the problem
attribute that may not have a trivial solution. We

!48

have to repeat the whole process until all flaws are
solved.

Algorithm :

While there are flaws on either attribute
1. while there are flaws on linked attributes

1.1 resolution of linked flaws
1.2 partial resolution of special flaws

2. path planner

Experimental results

Several tests have been carried out using IxTET com-
bined with the itinerary planner. Here are some of the
results obtained.
Examples 1, 2, 4 and 5 are based on a maintenance
robot domain: an indoor mobile robot has to feed ma-
chines that run out of paper and to deliver arriving
mail to the right offices.
Figure 6 gives a description of the domain for examples
4 and 5, figure 7 gives the solution plan found for exam-
ple 4 (with temporal constraints between tasks, maxi-
mum and minimum starting and ending time-points).
The topological graph associated to these examples is
the one in figure 3.

I
Inway2

RoomM 02)
(M)

@

(~) RoomD4
(~ (D4)

LabRooml
(RD

Inwayl (I1)

LabRoom4
(R4)

LabRoom5
(R5)

LabRoom3
(R3)

[]

LabRoom2
(R2)

LabRoom6
(R6)

I
Figure 6: The initial state

Examples 3 and 6 again feature a mobile robot,
this time having to move containers from one place to
another.
Example 7 is based on a shopping expedition: a person

[go....to (L abI~o on2, LabRoo,a3)

go_to (Iavay2, RooaR) r

go.go (RoonM, Roo~)
~t~get ~ail (Baak4)

gO_tO (Rooltl~, Inwayl)

~ ~ k
feed_machine (Ptrl) r

go_to (Inwayl, LabRoo~tl)
r.

! get aail(aask6) r /

go to (LabRooal, Invayl) r

get .mail(BaakS) r ~ j

i go_to (Invayl, LabRoo~t6) r ~
L~t

i go_to (habRoom6, habRoomS) r

! deliver_nail (habRo oa6) ~. . A
! go_to (L~bRoo~, LabRoolt4) t" ~

deliver_tail (LabRool~) "

deliver mail (LabRoem4)

Figure 7: The solution plan

has several things to buy in different shops, and an
appointment to go to at a set time. An interesting
point to note is that whereas IXTET backtracks three
times before finding a solution to this problem, IxffET

planning with the itinerary planner doesn’t backtrack
at all.

The following table gives the number of nodes and
edges for each problem’s topological graph, as well as
the number of movement tasks over the total number
of tasks in the solution plan.

IEx I[Nodes ledges II Tasks I
1 4 8
2 5 10 4/6
3 27 148 4/6
4 10 28 11/20
5 10 28 9/17
6 27 148 8/12
7 11 24 15/20

The next table compares the time 2 spent in planning
by IxTET to the time spent when IXTET cooperates with
the itinerary planner. It also gives the gain achieved.
The average gain over all examples is of 88%

2calculation times on a Sparc 10 machine

.149

1 0.5s 0.2 s 60 %
2 2.4 s 0.4 s 83 %
3 14 s is 93 %
4 71 s 6.5 s 91%
5 94.9 s 4.1s 96 %
6 124 s 3.5 s 97 %
7 178.8 s 4.3s 98 %

We have compared the results we have obtained to
those that Graphplan [1] obtains on the same exam-
ples. An exact comparison isn’t possible, as IXTET
allows temporal planning, resource management, dy-
namic domains and gives partially ordered plans. We
gave similar but reduced problems to Graphplan. Fig-
ure 8 shows a comparative graph of results obtained
with IxTET combined with an itinerary planner and
Graphplan. The examples are ordered in growing
execution-time for IXTET. The graph shows that IXTET

with the itinerary planner compares quite well to
Graphplan -a very efficient planner- on the examples
tried out. Such a comparison shows that it is not nec-
essary to give up expressiveness to reach a high level
of efficiency.

Comparative resuits
i v v
i i

... i ..

~raphplan --
~it planr~er ~.,~
............... i

...............i

...............i

............... i

1 2 3 4 5
Examples

............. ~.//////.~

v//’~/~l I
6 7

Figure 8: Comparative graph

Conclusion

We have proposed a method enabling to improve the
performance of a general planner by using a domain-
specific planner in order to perform part of the plan-
ning process. This idea has been tested on the gen-
eral temporal planner Ixff~T, integrating it with an
itinerary planner. We have shown how to use IXTET’s
abstraction hierarchy to control the integration pro-
cess. The results obtained show a dramatic improve-
ment of IXTET’s planning time, and compare favourably

to the fast-planning Graphplan’s results, even with its
reduced expressiveness.
These results encourage us to think that the extension
we intend to achieve in order to generalise this ap-
proach -by using several different domain-specific plan-
ners cooperating with IXTET- should give us a good
improvement of the general planner’s overall perfor-
mance. Another specific planner that would be in-
teresting to integrate to IXTET is a manipulation sys-
tem for part assembly planning. We would then have
a performing system, composed of an expressive gen-
eral planner assisted by specialist planners for various
robotics tasks: navigation or assembly. It would also
enable us to make better use of the systems that we
have at our disposition, by making them cooperate.
An important side effect of the contribution proposed
here is that it permits to better and more easily in-
terface the planner with the supervision and execu-
tion control system of the robot. But this issue, cur-
rently carried out in our research group, is outside of
the scope of this paper.

References

[1] M. Furst A. Blum. Fast Planning Through Graph
Analysis. Artificial Intelligence, 90:281-300, 1997.

R.Aylett G.Petley P.Chung J.Soutter A.Rushton.
Planning and Chemical Plant Operating Proce-
dure Synthesis: a Case Study. In Fourth European
Conference on Planning, 1997.

F. Kabanza F. Bacchus. Using Temporal Logic to
Control Search in a Forward Chaining Planner. In
New Directions in IA planning, 10S Press, pages
141-153, 1995.

[4]P. Laborie F. Garcia. Hierarchisation of the
Search Space in Temporal Planning. In New Di-
rections in IA planning, 10S Press, pages 217-
231, 1995.

[5]M. Ghallab and H. Laruelle. Representation and
Control in Ixtet, a Temporal Planner. In Proceed-
ings AIPS-94, pages 61-67, 1994.

[6]M. Ghallab and A. Mounir-Alaoui. The Indexed
Time Table Approach for Planning and Acting.
In Proc. NASA Conference on Space Telerobotics,
February 1989.

[7]M. Ghallab and T. Vidal. Focusing on a Sub-
graph for Managing Efficiently Numerical Tempo-
ral Constraints. In Proceedings FLAIRS-95, 1995.

150

