
Domain-lndependent Planner Compilation

Derek Long and Maria Fox
D.P.Long@dur.ac.uk Maria.Fox@dur.ac.uk

Department of Computer Science,
University of Durham, South Road, Durham, UK.

Abstract

The contrast between domain dependent and domain
independent planning shares several characteristics with the
contrast between interpreted and compiled programming
languages. This observation has inspired an effort to construct a
compiler for declarative plamfing domain descriptions which
produces the code for a plamler within the target domain. Thus,
domain independent planning advantages are combined with the
efficiency of domain-dependent code. The compilation
procedure is described, together with the target abstract machine
and the process by which it is implemented in C++ and a brief
sunnnary of results is provided.

Introduction
Research in automatic planning has broadly divided

into two directions: domain-independent and domain-
dependent. Constructing domain-dependent planners
offers opportunities to tailor the mechanisms to the
particular domain for far greater efficiency (typically,
several orders of magnitude). For example, game-playing
algorithms, such as for chess, can plan strategic and
tactical sequences of moves, allowing for an opponent’s
responses, and do so in seconds. Some of these
algorithms can also work with uncertainty (playing
games in which chance plays a role). By sharp contrast,
domain-independent planning is far behind in terms of
efficiency and also flexibility. (although Smith et al.
report recent successes in applying an HTN planner to
bridge-playing (Smith, Nau, & Throop 1996)). However,
domain-independent planning offers far greater
opportunity for reuse of planning technology, abstracting
the mechanisms that give powerful and effective
planning capability from the domain-specific tricks and
short-cuts which allow the efficient behaviour within
particular domains.

Domain independent planning separates the planning
mechanism from the domain on which it operates by

providing a (typically) declarative representation of the
domain as input for the planner at execution time. Much
of the recent work in domain-independent planning has
been concerned with identifying what should be encoded
in these domain descriptions to enable the planner to
operate with greater efficiency and with greater
flexibility. Of course, as the representations of domains
are extended with more information to enable more
efficient performance, so the construction of these
representations becomes more complex and difficult for
the non-specialist.

One of the reasons that domain-dependent planners
can be so much more efficient than domain-independent
planners is that the information which might be captured
about a domain to enhance performance can be compiled
into the domain-dependent planner, with no excess
baggage to supply machinery for domain properties
which simply do not apply to the particular domain
being considered. The domain-dependent planner can be
hard-coded to consider the particular domain operators
and need not provide the machinery which would enable
an arbitrary, set of operators to be handled. These
advantages are similar to the advantages of a compiled
program over an interpreted program. Indeed, a domain-
independent planner has much in common with an
interpreter for a specialised language - a planning
domain description language. It is this observation which
has inspired the work described in this paper, the
construction of a compiler for this planning domain
description language, to enable relatively simple
declarative expression of planning domains to be
compiled into domain-dependent planners which
combine the basic architecture of a domain-independent
planner with the content of each particular domain
description.

Some work has been carried out considering
compilation in the context of domain-independent
planning (McCluskey & Porteous 1994; McCluskey
Porteous 1995; McCluskey & Porteous 1996). However,
this work is concerned with compiling rich domain
descriptions (that is, declarative domain descriptions

25

From: AAAI Technical Report WS-98-03. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

which contain more information than the traditional
simple operator specifications) into heuristic information
to improve the performance of a domain-independent
planner operating on that domain. The planner itself is
still essentially an interpreter for the enriched language,
with the compilation improving the access to some of the
information encoded in the domain description. Work
which has far more obvious common ground with that
described in this paper is described in Srivastava’s, Mali’s
and Kambhampati’s paper (Srivastava, Mali,
Kambhampati 1997) on the synthesis of planners from
specifications. Their work involves the use of a
collection of tools within a semi-automated software
synthesis system, KIDS (Smith 1992), supported through
a development system, CLAY. They describe the process
of construction of domain-dependent planners from
domain-independent components together with domain-
descriptions, and domain-dependent heuristics which are
provided, at least in part, in declarative style. The
construction leads to code generation in the first-order
language REFINE, which can, in turn, be compiled into
C or Common Lisp. REFINE is a general language,
supporting first-order logic, set theory, pattern-matching
and transformation rules, making it a powerful language
in which to express the planning process, but at the same
time imposing significant demands on the compilation
process which will almost certainly include overheads
which are unnecessary in the construction of planners.
The process Srivastava et al describe is not a trivial one,
clearly involving a close knowledge of the development
system: an advantage of the work undertaken by the
present authors is that the compilation process works
directly from an unmodified domain description input, so
no technical knowledge is required beyond that for the
usual process of domain construction. However, the
construction process in CLAY is far more flexible than
that described here, allowing a range of planning
strategies to be selected and combined in different ways.
The present work should be seen as complementary to
that of Srivastava et al, in that it initiates an exploration
of a compilation strategy which is more focussed than the
KIDS system, and offers the prospect of a planner-
construction tool which demands little or no additional
specialised knowledge of either planner-mechanisms or
of the construction process, but works solely on the
declarative domain description itself.

Planner-compilation: The Abstract
Machine

In compiling planning domain descriptions into
planners, a decision about the technology on which the
basic planner architecture will be built must be made
very early on, unless the system is to allow choices
between different technologies at compilation-time. This
decision influences the entire structure and process of
compilation. In the work described here it was decided to
begin with linear-planning technology. One reason for

this is that linear planners are relatively straightforward
technology, so the compilation process is (presumably)
simpler than for other planning technologies. Another
reason is that linear planning has much in common with
the process of theorem-proving in Prolog and there is a
well-established technology for the compilation of Prolog
programs based on the Warren Abstract Machine (WAM)
(Warren 1983).

Thus, the starting point for this work was the
examination of the architecture of the WAM as a basis
for the development of a Planning Abstract Machine
(PAM). This led to the construction of an abstract
machine based on a collection of stacks used to track
state (both for forward progress and for possible
backtracking) and with an instruction set containing some
30 instructions. Space prevents a complete description of
these instructions here, but the central instructions will be
described (several are essentially housekeeping-task
instructions, such as those used in the control of the
simple-establishment loops in goal-satisfaction code).

The planning domain-description language used in this
initial exploration has purposefully been kept succinct.
The language is a classic STRIPS language, with
operators having preconditions, add-lists and delete-lists,
all represented by sets of simple atomic propositions.
Operators generally use variables to represent place-
holders within the actions they encode, and the language
used in this work allows types to be assigned to both
these variables and to language constants which is a
convenience in constructing domain descriptions,
allowing same-name predicates to be used to capture
similar properties of objects of different types.

The Data Structures

Rather than attempting to describe the instruction set,
this description will begin with an account of the main
data-structures which support the PAM. One of the core
data structures of the PAM is an activation stack on
which are allocated the activation records, or frames, for
operators as they are initiated. Initially, an activation
record contains variables corresponding to the variables
in the operator schema. These are instantiated: some as
the result of the initial invocation of the operator in order
to ensure the operator instance has the desired effect and
others as a result of satisfying preconditions of the
operator. Thus, an operator can be seen as analogous to a
procedure in the compiled code, with the activation frame
analogous to the stack frame invoked on procedure entry.
The main difference between a stack frame and an
activation frame is that stack frame variables are
initialised by the calling procedure (except, possibly, for
reference parameters), while activation frame variables
are only initialised through unification of an add-list
entry of the operator and a goal which leads to initiation
of the operator call. This is exactly analogous to the
process of clause invocation in the WAM, where an
activation frame can also include both instantiated and

26

uninstantiated variables.

A second key structure is the choice stack, used to
record information required in backtracking. Each choice
point in the planning process generates a choice stack
entry of an appropriate type. There is a choice stack
entry for choices at simple-establishment, enabling
backtracking through alternative state-entries in the
simple-establishment of a goal. There is a choice stack
entry for choices between alternative step-additions,
enabling backtracking to attempt alternative actions to
achieve a goal. Finally, there are choice stack entries for
operator applications enabling the planner to unwind an
operator application before attempting other alternatives
in its search for a plan. The choice stack also has its
analogue in the WAM, although there choice frames are
homogenous, dealing purely with backtracking through
alternative clauses (although optimisations can lead to
some complication of this picture).

The third vital data structure is the state stack which
records the current domain state. This stack is
constructed as an interlocking collection of doubly-linked
lists which each record the status of propositions linked
with a single predicate. The lists are constructed on the
stack so that they contain the valid propositions of the
current state, but so that the previously deleted elements
of the states visited earlier in the plan are still present.
This allows the planner to backtrack, restoring the state
to earlier stages in the planning process. There is, of
course, a trade-off between the storage of records of
older components of state to enable rapid restoration of
the earlier states and the reconstruction of those states by
careful unwinding of actions from a much smaller record.
This space-time trade-off has been deliberately made in
favour of time, since the storage requirements of the state
records for benchmark problems considered so far have
all been insignificant (under 3KbT) and time efficiency
has been put at a premium. A second consideration is
that the order of the elements in the lists representing the
states is significant in the current implementation, since
backtracking to attempt alternative simple-establishments
requires that it be simple to keep track of which
alternatives have been considered and which remain to
be considered. If states are retrieved by reconstruction
rather than simply restoration then the ordering must
somehow be reestablished too and this would demand
additional records, possibly undermining any space-
saving on the stale records themselves. State management
is not an issue in the standard WAM. The use of the
Prolog meta-predicates assert and retract has some
common features with the use of add and delete effects
in operators but these are not supported within the basic
WAM. Prologs do not, as far as is known to the authors,
allow backtracking over assert or retract in a way that
restores the original state, and this is a crucial feature of
the search machinery of linear planners.

The remaining stacks are used for minor details of
backtracking and storage during forward progress of the

planning process, including tracking the linkage between
successive goals. Several of these stacks correspond to
control stacks in the WAM, such as a trail to track the
instantiation of variables through unification. The trail
can be unwound to allow backtracking through
alternative search paths, undoing the effects of
unifications along earlier paths.

The PAM Code Structure

The code which runs on a PAM is structured in two
main blocks. One block is responsible for the attempt to
satisfy propositions and the second is responsible for the
sequencing of preconditions of operators and their
subsequent application. These blocks are subdivided so
that each predicate has a separate entry point in the
proposition satisfaction code and each operator its own
entry point in the operator code block. Rather like the
WAM, arguments to a goal are placed in PAM
machine-registers at entry to the code for a given
predicate. All predicate sequences begin with the code
which attempts to simply-establish the current goal. There
then follows a sequence of instruction groups, one for
each way in which an operator in the domain description
could be used to achieve the given goal. Each sequence
begins by setting up an activation frame for the candidate
operator, placing the arguments from the registers into
these frames at the appropriate points, corresponding to
the arguments instantiated by matching the goal against
the correct add-list entry for the operator, and then
calling the entry point for the correct operator. The call
creates a choice frame which records the registers and the
next instruction group entry point for return should this
step-addition fail for any reason. After all step-addition
instruction groups there is a final instruction, Fail, which
causes backtracking when there is no way left to consider
to satisfy the current goal. In case a predicate does not
appear on the add-list of any operator the corresponding
code sequence for the predicate will contain the sequence
for simple-establishment followed by the instruction Fail.

The code for each operator consists of a sequence of
code groups which each set up the registers for a goal
precondition and then call the appropriate predicate code
entry point, followed by a block responsible for the
effects of the operator. The code for the effects of the
operator treats delete effects first and then add effects,
updating the state stack accordingly. There is no explicit
conjunction-check as is common in linear planners.
Instead, propositions which are used to satisfy goals (and
preconditions) are marked and operators are not allowed
to delete marked propositions. This prevents harmful
interactions from undoing goals and means that there is
no need for a conjunction-check prior to step execution.
This process is equivalent to creating a causal-link
between the achieving step and the goal in SNLP/
UCPOP-style (Penberthy & Weld 1992).

If an operator attempts to delete a marked proposition
in the state then it must unwind its effects and a

27

backtrack is then executed. Once the add effects of an
operator have been completed then unwinding the
operator becomes slightly more involved, since then state
must be recovered in two stages - removal of added
effects and then restoration of deleted propositions.

The search machinery of the planner is depth-first, but
it uses a staging parameter, so that the search cannot go
deeper than the current depth constraint. The current
implementation of the planner does not increment this
parameter automatically, so the user must rerun the
planner with successively larger values if a plan is not
found at a given depth - but a modification to allow
automatic iteration would be a very straightforward
change to the existing code. Because depth-first search
does not necessarily find the shortest plan first, the
planner will not automatically report an optimal plan.
However, successively reducing the search depth
parameter will, of course, enable the user to find an
optimal plan once a plan has been found. Equally,
incrementing the search depth automatically from 1
would, in principle, allow optimal plans to be found. Of
course, the high cost associated with such slow
deepening of the search and repeated construction of
upper parts of the search space make this search control
strategy an unlikely candidate for continued
development.

The management of initial state and of goals was
considered carefully, and it was decided that both of
these components should be separated from the main
body of the domain description. Therefore, the compiled
planners do not include specific initial states or goals and
these are both entered at execution time making the
compiled planners flexible. This appears to be an
important decoupling if the compiler overhead is to be
considered an off-line cost, since it is unlikely that many
planners would be run repeatedly from the same initial
state, or with the same goal sets. The initial state is
entered as a file given as a command-line argument to
the planner when it is invoked (together with optional
arguments which set run time parameters such as search
depth and stack sizes). Goals are entered interactively to
a prompt once the planner is running, although this input
scheme could, of course, be modified very easily.

Code Generation

The target language selected for the compiler is C++.
This has the advantage of being extremely portable.
Planners compiled using the planner-compiler have been
run on a PC under Borland C++ and on Sun workstations
using UNIX with Gnu C++. The compiler currently
produces a single file output with the entire self-
contained C++ source for the planner in it. Typical
test-bed domains produce executables of some 40Kb.

The planning domain descriptions are compiled into
PAM-code which is then placed in C++ procedures
enabling entry points at the necessary points within the

PAM-code. An inner-interpreter loop is used to control
the PAM-code, which controls jumps to the PAM-code
entry points. This uses a clever trick to avoid growth of
the C stack which was used in the Glasgow Haskell to C
compiler (Peyton Jones 1993) and attributed by its author
to (Steele 1978).

The compiler itself is written in Haskell. It constructs
PAM-code as an intermediate stage and then outputs this
as C++. Much of the translation of the PAM-code to C++
is actually trivial, since the C++ routines themselves are
almost entirely written as PAM-code. The C++ code
contains definitions of the PAM operation codes which
expand on C++ compilation. Under Gnu C++ the
compilation of the planner code is completed using the
caller-saves option which generates marginally more
efficient code for the inner interpreter loop.

Performance

With the optimisations described below, planners have
been constructed and compiled for a range of domains,
including familiar test-bed domains, such as Towers of
Hanoi, Blocks World, the Ferry Domain and The Molgen
Domain. Performance figures are promising, but it should
be emphasised that the figures provided here are not
intended to demonstrate that the PAM should be treated
as a competitor, in its current form, to UCPOP or other
public-domain planning-systems. Rather, it is intended to
give a clear guide to performance and to indicate the
initial success of the project and to support the intention
to continue to explore this avenue of research.
Interestingly, a search of web-sites has not revealed the
existence of any live-links to simple linear planners, in
order to guage more directly the advantages of
compilation. Therefore, the intuitions regarding the
benefits of compilation remain to be fully tested, but the
analogy between the PAM and the WAM is strong
enough that all of the improvements of compiled Prolog
over interpreted Prolog can reasonably be expected to
apply.

All of the compiled plannners are produced from
simple declarative domain descriptions with no domain-
specific heuristic additions to the code (although with
heuristic optimisations compiled in as discussed below).
Specific results in comparison with UCPOP and
Graphplan (Blum & Furst 1997) can be found in the
following table (figure 1). This comparison is made
because these planners represent key leading performance
indicators, but it should be emphasised that the
comparison should be seen in the light of the fundamental
limitations of linear-planning as a planning strategy. The
comparison clearly indicates the potential for
development of the compilation approach, without
implying that this approach has somehow overcome the
usual constraints on linear-planners. The basic
mechanisms of the PAM can be exploited across other
planning algorithms and, indeed, progress has already
been made on simple modifications to the machinery to

28

Problem UCPOP Graphplan Compiled

Linear Planner
Ferry 0.49 0.03 0.03
Molgen 0.83 0.27 0.04
Roads 0.02 0.01 0.01
Hanoi-3 80.13 0.13 0.02
Hanoi-4 1.54 4.86~t
Monkey-1 0.14 0.07 0.02
Plumbing 0.02 0.05t 0.01
Sussman 0.04 0.04 0.06
Invert-3 0.06 0.05 0.07
Invert-4 0.43 0.18 0.51
Robot- 1 0.02 0.04t 0.04
Robot-2 9.76 0.07t 0.04
Fridge-1 0.42 0.54 0.02
Fridge-2 , 1.45t 0.02
Tyre- 1 0.01 0.04~ 0.02
Tyre-2 0.02 0.02t 0.02
Tyre-3 0.66 0.07t 0.03
Tyre-4 0.03 0.02t 0.05

Figure 1: Performance

Comparison of results: Figures for UCPOP and Graphplan are taken from (Gazen & Knoblock 1997), and
are reported for a execution on a SUN ULTRA/1. The compiled linear planner figures are measured user-time
for execution on a SUN SPARC/10 (the ULTRA is about 1.5 times faster than a SPARC/10).

* : These problems were not solved within the resource constraints set for UCPOP.

I" : These figures include a small amount (typically 0.01s) involved in a preprocessing phase to allow the
expressive power of Graphplan to be extended.

$: All the figures presented for the compiled planner are taken with plan depth search set to a reasonable
margin (beyond the actual plan length), and without using the facili .ty to control resources used in separate
goals. By sharing resources in the Tower of Hanoi problem, Hanoi-4 can be solved in 1.01 seconds.

offer a compilation strategy for the graph construction
process used in Graphplan.

Since the compiler produces C++ output, it is possible
to take the compiled code and extend or modify it to
include domain-specific heuristic mechanisms. This is not
a trivial task since the code is obviously automatically
generated PAM-code, and therefore integrating new code
into it or modifying it in any way requires a thorough
understanding of the PAM and its operations.
Nevertheless, it is feasible to add modifications such as
code to make execution of operators also manage
physical hardware effectors or simple establishment code
include readings of physical state sensors. Code could be
integrated to attempt satisfaction of goals by calculation
using C++ procedure calls rather than through the
standard unification with state propositions. Equally, the
search space could, in principle, be manipulated
(although it is represented implicitly through the

sequence of choice frames on the choice stack) adding
domain heuristics to modify or prune the search space.

An Example
To illustrate the compilation and execution processes

in a little more detail, a simple example is presented.

Consider the following domain description. The syntax
used is exactly that read by the compiler.

x: :type. (op l (x)

pre : p(x)

add: q(x)

del: p(x)

)

29

p/l-0 : SE prelude

p/l-i : Fail

q/l-0 : SE prelude

q/l-i : Countop ()

Alloc (i, i)

Getvar (0,0)

Callfor (q/1-2,1, op0)

q/l-2 : Realloc (2, i)

Getvar (0,0)

Callfor (q/l-3,1, opl)

q/l-3 : Dealloc (i)

Fail

r/2-0 : SE prelude

r/2-1 : Fail

op0 :

op0-1 :

Setvar (0,0)

Call (op0-1 ,p/l- 0)

Effects (1, theop0)

Setvar (0,0)

Del (pred D, i)

Add (pred_q, i)

Putarg (0)

Proceed (

Figure 2: Code produced by the compiler

opl: Setvar (0,0)

Setvar (1,1)

Call (opl- 1, r/2-0)

opl-i : Setvar (0, i)

Call (opl-2 ,p/l-0)

opl-2 : Effects (2, theopl)

Setvar (0, I)

Del (pred_p, i)

Add (pred_q, i)

Putarg (0

Proceed (

x:: .type.y: :type. (op 2 (x,

pre : r (x, y)

P(Y)
add." q(x)

del: p(y)

)
Note that the values used in the domain are typed (in

this case with the simple type "type"). The compiler
uses types in disambiguation of instances of operators
and predicates, so that two predicates of the same name
and with the same argument count will be treated as
distinct if they take arguments with different types. The
distinction is compiled into the code for the planner and
then entry, points are chosen appropriately at run time
according to the .types of arguments in goals.

The code produced by the compiler for this example
has the structure shown in figure 2.

This example illustrates the two-block-structure of the
code for the PAM, with the proposition satisfaction code
first and then the operator code. The code sequences for
both the predicates p and r have no achieving steps, so
consist of only simple establishment code and then the
instruction Fail. The two operators each consist of
sequences to set up the calls for the satisfaction of their
preconditions and then the code creating their effects.
The instructions Alloc and Realloc are the activation
frame allocators. Dealloc reclaims the last frame. The
Getvar instruction is used to set up the appropriate frame
entries before an operator is called by the Callfor
instruction. Note that this instruction includes a
continuation amongst its arguments - this is in order to
lace together the C++ procedures. The other arguments

are the add-list entry being used and the operator entry
point. The add-list entry is required to allow protection of
the correct effect if the operator is subsequently applied.
The operator code uses Setvar instructions to set up the
goal parameters before Calling the appropriate goal
satisfaction code sequence.

Turning attention to execution, consider the following
initial state:

p(b : : type)

r(a: :type, b: :type)

and the goal q(a::type).

The goal is set up by placing the constant a in the first
argument register and then the code entry point for
predicate q is called (q/l-O). Simple establishment fails
on this goal, so the code sequence starting at q,7-1 is
executed. This begins by incrementing the operator count
(CountopO). This instruction causes backtracking if the
current search depth limit is exceeded. The Alloc
instruction that follows it creates a new activation frame,
its arguments indicating how many entries to place in the
frame and how many arguments there are to the current
predicate. This is used to allow the arguments to be
stored in case they must later be retrieved for
backtracking.

The Getvar instruction loads the argument from the
register into the activation frame for the operator and
then Callfor enters the operator code (in this case opO).
On entry to the operator code (opO) the entry in the
activation frame is used to set up the register for the call
to achieve the first (and only) precondition -p(a). Calling
the entry, point for p (p/l-O) executes an attempt to
simply-establish the goal, which fails, and then the
instruction Fail is executed. This causes a backtrack to

30

whitby: dcs0dpl [7] : compile
Compile which operator set? testops
Output file? t. cc
Done
whitby:dcs0dpl [8] : g++ -03 -fcaller-saves t. cc -o
testplan
whitby: dcs0dpl [9] : time testplan test. ini
Reading initial state from test. ini

p (b)
r (a,b)

Enter goals, one per line (Cntl-D or ’-’ terminates)
q(a: :type)

Final plan:
op2(a,b)

0.00u 0.06s 0:08.83 0.6%
whitby:dcs0dpl[10]:

Figure 3: Example of use

the last choice point, which was the point at which opO
was called in attempting to satisfy q(a). The next
continuation is q/1-2, which reallocates an activation
frame - this time containing two entries (the values used
in opl) and then sets up the first of these to be the
register value (constant a). The entry point for opl is
then called.

In similar fashion to the code for opO, this sets up the
first precondition for opl, r(a, ?), and calls the code for
satisfaction of it (r/2-O). The simple-establishment
successfully achieves this, binding the second register
(and therefore the second entry in the activation record)
to be the constant b. The simple-establishment prelude
then enters the continuation for the operator, op1-1,
which sets up the precondition p(b) (the second entry in
the activation frame having now been set to b). The
attempt to simply-establish this is also successful, and
execution continues from opl-2. This entry is the effect
code for opl. It begins by recording the fact that operator
opl is being executed (Effects(2,theopl)), so that the
finished plan can later be reported. The first argument to
Effects is the number of preconditions of the current
operator. This information is required so that
preconditions can be unmarked prior to deletion. This is
important not for the deletion itself, but so that the marks
can be restored on backtracking in order to ensure that
preconditions are protected during the satisfaction of
later preconditions of the same operator. Following this,
the registers are set for the delete effects. Each deletion
is achieved by a similar mechanism to the simple-
establishment code - the current state is searched for a
matching proposition and then the mark is checked to

determine whether deletion is safe. Provided it is possible
to delete it, the proposition is then unlinked from its
appropriate doubly-linked list. If a match is not found in
the state the deletion is ignored. This means that it is
possible (intentionally) to include on delete lists effects
which are not necessarily present within the state at the
point of execution. Add effects are achieved by creating a
new entry in the state stack, linked to the correct
predicate list (Add(pred_q,1)). The second argument for
Add is used to identify the distinct add effects of an
operator. This value is compared with the second
argument of the Callfor instruction in the proposition
achievement code which initiated the operator code call.
When a match is made the add list entry is marked as it is
created to ensure that the effect is protected against
subsequent deletion. The arguments of the add list effect
are placed onto the state stack by simply pushing the
correct entries from the activation record onto the state
stack.

In this example, this operator concludes the
achievement of the final goal and therefore ends the
planning process altogether. The final step is to report the
plan.

The practical process of compilation and execution of
this example is illustrated in the session illustrated in
figure 3.

A fragment of the C++ produced for this example is as
follows:

31

long i15 ()
{

Countop ()
Alloc (i, i)
Getvar (0,0)
Callfor (i16, l,op0)

);
long i16 ()

{
Realloc (2, I)
Getvar (0,0)
Callfor (i17,1, opl)

};
long i17 ()

{
Dealloc (1)
Fail ()

};
This corresponds to the sequence q/1-1, q/l-2 and

q/1-3. The procedures return long values which are
actually pointers to continuation code. The inner
interpreter loop receives these continuations and invokes
them.

Optimisations

The planner-compiler has been optimised in three
ways. The first is that the staged depth-first search
mechanism has been refined so that it is possible to
associate search depths with the initial goals separately,
where a conjunction of goals is set. This is illustrated in
the following example.

Operators:

a:: block, b:: block, c: : block. ~4ove (a, c)

pre: on(a,b)

clear(a)

clear(c)

add." on(a,c)

clear(b)

clear(a)

clear(tab le : : b lock)

del: c&ar(a)

clear(c)

on(a,b)

clear(table:: block)

Initial

Goal:

state:

on (a : : block, tab le : : b lock)

on(c: :block, a: :block)

on (b : : b lock, tab le : : b lock)

clear(b: :block)

clear(c: : block)

clear(table: :block)

on (a : : b lock, b : : b lock) :

on (b : : b lock, c : : b lock) :

The goals have been annotated with a search depth
indicating that the first goal must be satisfied with 3 steps
and the second goal within 0 further steps after the first
goal has been satisfied. This ensures that the planner will
not attempt to uselessly satisfy the second goal by
changing the state following satisfaction of the first goal.
In other words, it is a signal to the planner that the
second goal must actually be satisfied during satisfaction
of the first goal. Of course, the planner can be executed
without giving this information, causing it to find the
plan only after a longer search. Similarly, giving a larger
search bound will, in this example, possibly yield a
sub-optimal plan.

Although this information is often not available as
accurately as in this trivial example, the ability to divide
resources between goals, in order to restrict effort
invested in the satisfaction of whhat is considered a
trivial goal, is a powerful possibility.

It is worth observing, lest the reader’s suspicions be
aroused by the example, which bears a striking
resemblance to Sussman’s anomaly (notoriously
unsolveable by linear-planners), the operator is defined to
ensure that the table is always clear and it also, slightly
counter-intuitively, deletes and then reasserts that the
block being moved is clear. This device ensures that the
given goal can be satisfied optimally by allowing
movement of b onto c to be used as a way to satisfy the
sub-goal clear(b) in preparation for the movement of a
onto b.

The second optimisation is the inclusion of hints into
the planning domain specification. Careful analysis of the
planner’s behaviour on tower of hanoi problems showed
that the planner attempts many redundant operators which
simply move a disc twice in a row. This dramatically
increases the size of the search space. If the planner is
told that there is never any point in moving the same disc
twice then this improves its efficiency by several orders
of magnitude. More generally, many domains contain
pairs of operators which should not appear adjacent to
one another, instantiated in particular patterns, in efficient
plans, so these hints have the power to improve the
planning process quite significantly. It is interesting to
observe that this heuristic is one of those employed as

32

domain-dependent heuristics (LIMIT-USELESS-MOVES)
to control the planners synthesised in the CLAY system,
described in (Srivastava, Mali, & Kambhampati 1997).

The way in which this restriction is achieved includes
three parts: the declarative component which affects the
writing of domain descriptions, the compilation part
which affects what code is generated for these hints and
finally the execution process for the PAM.

The hints are provided very simply in the declarative
form. An example for the blocks world specification
provided above is to amend the domain specification
with the hint:

Never Move(a,b) then Move(a,c)

Generally, a hint takes the form:

Never opO(xI x,) then op l (y ~ Yn)

where each Yi may be an instance of some xl.

Hints are currently restricted to only allow overlap of
variables between the first and second operator
references, so, for example, the hint:

Never Move(a,a) then Move(b,c)

would not be allowed.

The compiler compiles code so that when an operator
is about to be executed a check is made that it is not the
second half of one of these hint-pairs. If it is, then a
further check is made to ensure that any common
variables in the two operator references in the hint are
distinct values in the two operator application. If this
check fails then the planner backtracks without applying
the operator. In practice, this check is compiled into the
satisfaction Of the final precondition (if there is one) and
a small further optimisation is used to prevent the
satisfaction of this precondition by simple-establishment
if these checks fail. This short-circuits a certain amount
of work in satisfying the final precondition. It has proved
frustrating that the check establishing that a hint is being
violated cannot apparently be usefully carried out any
earlier than the moment almost immediately before
execution of the operator. This means that significant
work might be done to satisfy the preconditions of an
operator which will simply not be allowed because of the
hints.

A final optimisation in the current version of the
planner is to note which preconditions are deleted by an
operator so that simple-establishment of these
preconditions will not use state propositions which are
marked as protected. Correspondingly, these effects can
be safely deleted by the operator without checking
wether they are marked, since the check is done at the
time when the precondition is first satisfied. This
optimisation is achieved by the compiler, which uses a
different deletion operation code and a different simple-
establishment prelude entry point for propositions that
are affected.

These optimisations have proved successful in

improving performance of the compiled planners
considerably, so that even in a very hard domain, the
towers of hanoi, the 31 step solution to the 5 disc
problem can be solved in less than 30 seconds. This is a
considerable achievement for pure linear planning
technology.

Conclusions

The chief contribution of the work described here is to
demonstrate that compilation of planning algorithms is
both possible and, as might be anticipated, offers
significant efficiency gains. In addition to demonstrating
the feasibility of planner compilation, the work opens
some exciting new avenues for further research. Initially,
there are possibilities for further optimisation of the
linear planner compiler output and execution of the PAM
code. There are also possibilities for extension of the
expressiveness of the domain description language. In
particular, it would appear relatively straightforward to
include free variables in delete effects (to achieve the
same effect as $ variables in delete lists of the original
STRIPS planner (Fikes & Nilsson 1971)). Existentially
quantified variables in top-level goals should also be
possible. Other extensions along similar lines to those in
the UCPOP planning language might well be worth
exploring (Penberthy & Weld 1992).

A second, and probably more rewarding, avenue is to
explore compilation into different planning technologies.
Non-linear planning using causal links has already been
considered and initial design work for an appropriate
abstract machine architecture has been conducted. An
interesting possibility which is also being pursued is to
reuse the compilation techniques described here in the
compilation of a Graphplan-style planner, compiling the
graph-construction phase. These technologies present
major challenges to the process of compilation, of course,
but the several orders of magnitude performance boost
achieved by compilation makes the possibility an exciting
one which could open up whole new application areas for
domain-independent planning.

The compiler has already proved a valuable tool in
simply exploring the structure of the search space
associated with various domains it being a
straightforward task to introduce callibration mechanisms
into the planner code which allow carefully controlled
viewing of the search process and the areas in which the
greatest search effort is devoted (indeed, the profiling of
the generated C++ is already a significant source of
information). The speed of the compiled code and its
flexibility have made this exploration a much more
practical possiblity than would be the case with the code
for a single large domain-independent planner. This
exploration can, in turn, feed back into the construction
of improvements in the efficiency of the planning
machinery.

33

References

Blum, A., and Furst, M. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90(1-
2):281-300.

Fikes, R., and Nilsson, N. 1971. STRIPS: A new
approach to the application of theorem-proving to
problem-solving. Artificial Intelligence 2(3): 189-208.

Gazen, B.C., and Knoblock, C.A. 1997. Combining the
expressivity of UCPOP with the efficiency of Graphplan.
In Proceedings of European Conference on Planning,
Toulouse.

McCluskey, T.L. and Porteous, J.M. 1994. Learning
Heuristics for Ordering Plan Goals through Static
Operator Analysis Methodologies for Intelligent Systems.
Lecture notes in Artificial Intelligence 869, Springer-
Verlag.

McCluskey, T.L., and Porteous, J.M. 1995. The Use of
Sort Abstraction In Planning Domain Theories. In
Planning and Learning: On to Real Applications. Papers
from the 1994 AAA1 Fall Symposium. American
Association for Artificial Intelligence (AAAI Press),
ISBN 0-929280-75-X, FS-94-01.

McCluskey, T.L., and Porteous, J.M. 1996. Planning
Speed-up via Domain Model Compilation. In New
Directions in AI Planning, Frontiers in AI and
Applications Series 31, IOS Press, Amsterdam, Holland,
ISBN 90-5199-237-8.

Penberthy, J.S., and Weld, D.S. 1992. UCPOP: A sound
and complete partial order planner for ADL. In
Proceedings of KR’92 - Third International Conf. on
Principles of Knowledge Representation and Reasoning.

Pe~on Jones, S.L. 1993. Implementing lazy functional
languages on stock hardware: the Spineless Tagless
G-machine, version 2.5. Release documentation .for
Haskell, University of Glasgow.

Smith, D.R. 1992. Structure and design of global search
algorithms. Kestrel Tech. Report, KES.U.87.11.

Smith, J.J.; Nau. D.S.. and Throop, T. 1996. A planning
approach to declarer play in Contract Bridge.
Computational hTtelligence 12(1): 106-130.

Srivastava, B.; Mali. A.D., and Kambhampati, S. 1997. A
structured approach for synthesising planners from
specifications. In Proceedings of l 2th IEEE Intl. Conf. on
,4utomated Software L~lgineering, Lake Tahoe.

Steele. G.L., 1978. Rabbit: a compiler for Scheme.
AI-TR-474, MIT Lab for Computer Science.

Warren, D.H.D. 1983. An abstract Prolog instruction set.
Report 309, AI Centre, SRI International, Menlo Park,
CA.

34

