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Abstract

During the planning process, a planner may often have
many different options for what kind of plan refinement
to perform next (for example, what task or goal to work
on next, what operator or method to use to achieve
the task or goal, or how to resolve a conflict or enforce
some constraint in the plan). The planner’s efficiency
depends greatly on how well it chooses among these
options.
In this paper, we present and compare two types of
strategies that an HTN planner may use to select which
task to decompose next. Both strategies facilitate ef-
ficient planning by making it easier for the planner
to identify plans that can be pruned from the search
space--but since the strategies accomplish this in two
different ways, each works better on different kinds of
problems. We present experimental results showing
how characteristics of the planning domain can be used
to predict which strategy will work best, so that these
domain characteristics can be used to select strate-
gies across application domains when building practical
planning systems.

Introduction
One characteristic of partial-order planners--regardless
of whether they use hierarchical task network (HTN)
decomposition or STRIPS-style operators--is that they
search a space in which the nodes are partially devel-
oped plans. The planner refines the plans into more and
more specific plans, until either a completely developed
solution is found or every plan is found incapable of
solving the problem. During this process, a planner
may often have many different options for what kind of
refinement to perform next.

A planner that uses STRIPS-style operators may
need to choose which unachieved goal to work on next,
which operator to use to achieve a goal, or which tech-
nique to use to solve a conflict. An HTN planner usu-
ally has an even larger array of options: it may need to
choose which unachieved task to work on next, which
method to use to accomplish the task, or which con-
straints to impose on the plan. The planner’s effi-
ciency depends greatly on its plan refinement strategy,
which is the way it goes about choosing among this
options. In particular, a large amount of the cost of

generating plans can be caused by making the wrong
refinement choices and having to backtrack over them
later (Tsuneto et al. 1996; Tsuneto, Hendler, & Nau
1997).

Many comparative analyses have been done for
STRIPS-style planning (Minton, Bresina, & Drum-
mond 1994; Kambhampati, Knoblock, & Yang 1995;
Barter & Weld 1994) aimed at identifying what kinds of
domain characteristics make different planning strate-
gies perform best. For practical purposes, the results
of such performance analyses can help a knowledge
engineer to select a problem-solving method adequate
to a given application. Such practical considerations
are particularly important for HTN planning since it
has been used in a number of practical planning sys-
tems (Aarup et al. 1994; Wilkins & Desimone 1994;
Agosta 1995; Smith, Nau, & Throop 1996). Many
heuristics have been developed for domain independent
HTN planning systems, most notably O-Plan (Currie 
Tare 1991) and SIPE-2 (Wilkins 1990) including some
heuristics which are evaluated in this paper. However,
little analysis has been done to explain the relationships
between each heuristics performance and domain char-
acteristics, and to evaluate the performances based on
them.

In this paper, we present two types of task selec-
tion strategies that facilitate efficient HTN planning by
doing task selection in a way that makes it easier for
the planner to identify and prune infeasible plans. One
strategy, which we call the Left-to-Right selection strat-
egy, makes use of the explicit step ordering information
in order to select the tasks that come earlier in the plan.
The second strategy, which we call the ExCon strategy,
pre-processes the domain description to automatically
extract a kind of constraint we call external conditions.
During the planning, ExCon’s first preference is for the
tasks that can establish or threaten the current external
condition.

Moreover, we present empirical results to confirm the
following two hypotheses about how various features
of planning domains relate to the applicability of the
above two strategies:

* in problems where there are many ordering con-
straints among the goal tasks and their subtasks, the
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Left-to-Right selection strategy performs better than
the ExCon strategy (when Left-to-Right is not used
as a tie-breaking strategy);

¯ the ExCon strategy performs better than the Left-to-
Right strategy in problems where the goal tasks (and
their subtasks) are highly interleaved.

Section 2 describes the two task selection strategies.
Section 3 presents the results of our experiments, which
were carried out using UMCP, a domain-independent
HTN planning system (Erol 1995) created at the Uni-
versity of Maryland. Section presents conclusion and
future work.

Task Selection Strategies
In this section, we describe the LtoR and ExCon task
selection strategies. In these descriptions (and through-
out the paper), our notation for domain and problem
descriptions is that used in the UMCP planner.

The Left-to-Right strategy
In STRIPS-style planning, there are three ways to plan
actions: plan forward, plan backward and a combi-
nation of both. Constructing plans starting from the
initial state gives the planner the advantage of having
more information about the world state the planner is
dealing with and thus makes it easier to solve inter-
actions between actions. Planning backward from the
goals has the advantage of producing lower branching
factors because there are usually fewer actions applica-
ble to satisfy a goal than a state. Although both the
approaches of forward planning and bi-directional plan-
ning have been used successfully by some planners (Fink
& Veloso 1994; Blum & Furst 1997), the backward plan-
ning approach has been the most popular. For HTN
planning, the backward planning approach does not
have an obvious advantage since the planner constructs
plans by decomposing tasks into subtasks by applying
decomposition methods. On the other hand, the for-
ward planning approach has an advantage similar to
STRIPS-style planning. First, like STRIPS-style plan-
ning, the initial state is a complete description of the
state. Since only actions can affect the world state,
inserting actions starting from the initial state can pro-
vide more state information that is useful in reasoning
about later actions. Furthermore, an HTN domain can
contain explicit step orderings between subtasks, which
make it easier for the planner to select earlier tasks.

In HTN planning, the Left-to-Right (LtoR) task se-
lection strategy will decompose a non-primitive task
only when there are no other non-primitive tasks or-
dered to come before it. As a tie-breaking rule to han-
dle the case where more than one non-primitive task has
only primitive tasks ordered before it, we use the Fewest
Predecessors (FP) heuristic, which selects non-primitive
tasks which have the least number of tasks ordered be-
fore them. This heuristic has the advantage that it
does not have to check if the preceding tasks are prim-
itive or not because a non-primitive task A has fewer

tasks ordered before it than a non-primitive task B if
A precedes B. So using the FP heuristic automatically
implements LtoR and each computation takes polyno-
mial time with respect to the number of tasks in the
partial plan.

While LtoR has a similar advantage to forward plan-
ning in STRIPS-style planning, the LtoR strategy we
present does not necessarily "plan forward" unless the
goal tasks and their subtasks are totally ordered. For
example, LtoR may select to decompose a non-primitive
task A before it selects a non-primitive task B, yet the
subtasks of A may be ordered after the subtasks of B
as a result of satisfying some state constraints.

The ExCon strategy
The ExCon strategy makes use of a type of condition
called an external condition. Here, we give a brief de-
scription of what external conditions are and how the
planner can use them to select tasks. The formal defini-
tion of external conditions and the complete algorithm
of the ExCon strategy will be presented in another pa-
per (Tsuneto, Hendler, & Nau 1998).

External conditions can be described intuitively as
follows. Suppose that to accomplish some task in a
plan P, we decide to use some method M. Furthermore,
suppose that there is some condition c that must be
satisfied in order for M to be successful, but that there
is no way to decompose M into a sub-plan that achieves
c. In this case, the plan P cannot be successful unless
the condition c is somehow achieved elsewhere in P.
Thus, we say that the condition c is external to the
method M.

For example, suppose you want to eat breakfast.
Your typical breakfast is either pancakes made from
pancake mix or cereal. We can encode this situation as
an HTN planning problem in which there is a task called
Eat-Breakfast-Task that has two decomposition meth-
ods: one to eat pancakes (as shown in Figure 1) and
one to eat cereal. As shown in Figure 1, the pancake
method decomposes Eat-Breakfast-Task into three sub-
tasks: Prepare-Table, Cook-Pancake-Task, and Eat. Let
us assume that the methods for these tasks involve (1)
putting the syrup, fork and knife on the table, (2) cook-
ing the pancakes, and (3) serving and eating the pan-
cakes, respectively.

Consider which conditions of the pancake method are
external conditions. The method has four state con-
straints: the constraints (initially (Egg ?egg)) and (initially
(Milk ?milk)) are static state constraints and not con-
sidered for external conditions; the constraint (between
(/-/ave pancake-mix) nO nl) is an external conditions be-
cause the task of preparing the table (i.e. nO: (Prepare-
Table)) does not make (/-/ave pancake-mix) true and the
other two tasks are ordered after nO where the condition
must be established; the constraint (before (HotTpc)n2)
is not an external condition because the condition "the
pancake 7pc is hot" can be caused by task nl. Thus,
the constraint (between (/-/ave pancake-mix) nO nl) is the
only external condition is this method.
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(Eat-Breakfast-Task)

nO: (Prepare-Table) ~ nl: (Cook-Pancake-Task ?pc ?egg ?milk) ---~ n2: (Eat 

Constraints: (initially (Egg ?egg)) ̂ (initially (Mi/k ?milk))
^ (between (Have pancake-mix) nO nl) ^ (before (Hot?pc) n2)

Figure 1: The pancake method for (Eat-Breakfast-Task). The downward-pointing arrows represent task decomposition,
and the right-pointing arrows represent precedence. The tasks in the decomposition are label as nO, nl, and n2 so
that they can be referred to in the constraint formula.

External conditions are somewhat similar to unsu-
pervised conditions used in O-Plan2, although there
are several differences in their definitions. 1 First, un-
like external conditions, unsupervised conditions may
also specify a condition that can be established by a
subtask in the decomposition method. Second, the
types of conditions are explicitly specified in O-Plan2
to give the domain writer more power to control the
search. So unsupervised conditions are explicitly speci-
fied while external conditions can be automatically ex-
tracted. Moreover, conditions not specified as unsu-
pervised conditions may be regarded as external condi-
tions. For example, only_use_if conditions in O-Plan2
are conditions that are used to filter out inapplicable
decomposition methods. If the conditions are for non-
static state conditions (i.e. the conditions that may
change as results of other actions), then they are con-
sidered external conditions by our definition. Similarly,
some only_use_for_query conditions may be considered
external conditions. For a summary and comparisons
of condition types used in O-Plan2, Nonlin and SIPE-2,
see (Tare, Drabble, & Dalton 1994).

After some method M is instantiated, every external
condition of M becomes one of the applicability condi-
tions in the partial plan: the conditions that must be
established if the plan is to be successful. The ExCon
strategy makes the planner work on the tasks that may
establish or threaten an applicability condition of the
partial plan first. Task selection using external condi-
tions requires three steps: (1) Pre-process the planner’s
knowledge base to automatically extract the external
conditions for each decomposition method; (2) During
task decomposition, put the external conditions of the
decomposition method onto the stack; (3) When se-
lecting a task to decompose, choose a task which may
potentially establish or threaten the condition on top
of the stack.

The ExCon strategy needs a heuristic for breaking
ties. We have tried using two different heuristics for
this purpose. One heuristic is the LtoR heuristic de-

1Also, unsupervised conditions in Nonlin (Tate 1977) and
external-condition goals in SIPE-2 (Wilkins 1990) are de-
fined in a similar manner to unsupervised conditions in O-
Plan2.

scribed earlier. The other is the "fewest alternatives
first" (FAF) heuristic, which selects the task that has
the smallest number of applicable methods. In the
rest of this paper, we use the names ExCon-FAF and
ExCon-LtoR to refer to ExCon with the FAF and LtoR
tie-breaking strategies, respectively.

Experiments
Since both the LtoR and ExCon strategies merely spec-
ify the order in which a planner will prefer to decompose
tasks, they have no effect on the planner’s soundness
and completeness. However, they do affect the plan-
ner’s efficiency; and we hypothesize that they do so in
the following ways:
¯ The FAF heuristic, which selects the task that has

the fewest decomposition methods, has been shown
to work well in a large variety of planning prob-
lems (:Joslin & Pollack 1994; 1996; Tsuneto e~ al.
1996). However, one major deficiency of the FAF
heuristic is that it ignores pruning. By choosing a
plan element with a larger number of refinement op-
tions, the planner may be able to do more pruning
later on.2 Thus, we hypothesize that the ExCon-FAF
strategy should outperform the FAF strategy, espe-
cially on problems where the goal tasks are highly
interleaved.

¯ In planning domains in which there are many con-
straints on the ordering of the subtasks, the LtoR
heuristic should be able to outperform the FAF
heuristic by expanding the tasks in an order that fa-
cilitates the pruning of infeasible plans. Similarly, the
ExCon-LtoR strategy should be able to outperform
the ExCon-FAF strategy in such problem domains.

To test these hypotheses, we implemented four task
selection strategies, FAF, LtoR,s ExCon-FAF, and

2In fact, O-Plan’s refinement choice mechanism (Currie
& Tate 1991) has been using a combination of the FAF
heuristic called Branch-1 with a Branch-N heuristic that
estimates how many possibilities lie down the refinement
path if it is taken. This Branch-1/Branch-N heuristic itself
is based on the Hayes-Roths’ OPM planner (Hayes-Roth et
al. 1979).

ZIn our implementation of FAF and LtoR, we used the
FP heuristic as the tie-breaking rule for FAF and the FAF
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Algorithm refine( PartialPlan)

1. (Pruning) If the constraint formula of PartialPlan is False then prune this plan by returning empty
set.

2. (Task decomposition) Otherwise, if the constraint formula is True and there are non-primitive
tasks in PartiaIPlan, then decompose a task and return the resulting partial plans.

3. (Solution check) If the constraint formula is True and there are no non-primitive tasks in Par.
tialPlan, then satisfy auxiliary constraints and return the resulting plans as solutions.

4. (Constraint enforcement) If the constraint formula is neither True nor False, then satisfy con-
straints, simplify constraint formula, and propagate auxiliary constraints. Return the resulting
partial plans.

Figure 2: The default refinement strategy in the UMCP planner.

ExCon-LtoR, using the UMCP planning system, a
domain-independent HTN planning system (Erol 1995),
and compared their performance in a number of dif-
ferent planning domains, including the Random Travel
Planning domain, the Translog domain, the Blocks
World domain and the Flat Tire domain. For our ex-
periments, we ran UMCP 1.0 on Sun ULTRA work-
stations using Allegro Common Lisp 4.3. We in-
corporated each task selection strategy into UMCP’s
default commitment strategy, which is described be-
low. The code for the UMCP planner is available at
http: / /www.cs.umd.edu/projects/plus/umcp /manual/.
The domains used in the experiments are available at
http: / /www.cs.umd.edu/projects/plus/umcp / domains/.

The default refinement strategies in UMCP For
our experiments, refinement choices other than task
selection are made using UMCP’s default refinement
strategy. UMCP’s default refinement strategy repeat-
edly (1) decomposes a non-primitive task, (2) enforces
each of the newly inserted constraints (3) evaluates and
simplifies the constraint formula, and (4) propagates
the previously postponed constraints. Figure 2 shows
the algorithm that UMCP uses to decide what refine-
ment to do next. It takes a partial plan as an input
and returns a set of partial plans as the result of the
refinement performed.

If the constraint formula of the partial plan is False,
then UMCP prunes the partial plan by returning an
empty set in Step 1. When the constraint formula is
True, UMCP decomposes a non-primitive task t in the
partial plan at Step 2. Decomposing t involves, for each
decomposition method M of t, (1) replacing t with the
subtasks in M, and (2) replacing the current constraint
formula C in the partial plan with the conjunction of
C and the constraint formula in M. If t is a predicate
task, t is also phantomized by creating a plan with the
task t replaced with a do-nothing task and the con-
straint formula specifying the predicate is accomplished
at the beginning of the do-nothing task. Step 3 checks
if the partial plan is a solution plan or not. If there
are no non-primitive tasks in the partial plan and the

heuristic as the tie-breaking rule for LtoR.

constraint formula is True, then UMCP satisfies the re-
maining auxiliary constraints by instantiating variables
and ordering steps, and return the solution plans. If
the constraint formula is neither True nor False, then
UMCP enforces the constraints in the partial plan at
Step 4. Enforcing constraints involves adding step or-
dering to the tasks, binding variables to a value, accord-
ing to the constraint types. If it requires further task
decomposition to fully enforce some constraint, the con-
straint will be put into the auxiliary constraint lists to
be enforced later. If a constraint is not enforceable,
then an empty plan is returned.

Plan selection Our experiments used best-first
search for the Block-World problems and depth-first
search for all the other problems. For best-first search,
each time the planner wants to select a partial plan for
refinement, it selects the one with the lowest value for
the following quantity:

number of non-primitive tasks
+ number of tasks (both primitive and non-primitive)
+ number of ordering and variable constraints

that are postponed.

This selection heuristic is based on the heuristic pre-
sented by Gerevini and Schubert (Gerevini & Schubert
1996) and seems to perform well on many problems.

Random Travel Planning Domain

In our description of the LtoR strategy earlier, we
pointed out that the explicit step orderings given in the
task descriptions make it easier for the planner to select
the tasks in a left-to-right manner. To see how much
this can help the performance of the planner, we created
a small domain called Random Travel Planning where
there is only one level of hierarchy (i.e. no non-primitive
task is decomposed into another non-primitive task). In
this domain, there are three types of goal tasks, Sight-
see, Travel and Eat. Their decomposition methods are
shown in Figure 3. The task $ightsee is to go sightsee-
ing ourselves (Method 1 in the figure) or to join a tour
bus (Method 2), depending on if we are tired or not.
Going sightseeing makes us tired. Taking a flight, or
eating a food makes us recover from tiredness. In other
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Figure 3:
primitive

Si,qhtseeO Method 1

n:
(go-sightseeing ?city)

Constraints:
(before (in ?city) n)
&(before (~tired?city) n)

Si,qhtsee() Method 

n:
(Join-tourbue ?city)
Constraints:
(before (in ?city) n)
&(before (tired ?city) n)

Travel(?cityl)

n:
(stay-more ?city1 )

Constraints:
(before (in ?city1) n)

Method 1 Travel(?cityl Method 2

nl: n2: n3:
(goto-airport ?cityO) ~ (fly ?cityO ?city1 ) ~ (goto-downtown ?city1 

Constraints:
(before (in ?cityO) nl )&(?cityO# ?city1)

Eat(?food) Method 1
nl: n2:
(goto-local-restaurant) ~ (have ?food ?city)

Constraints:
(initially (local-food ?food ?city)
&(before (in ?city) nl)&(between (in ?city) nl n2)

Eat(?food) Method 2

nl: n2:
(goto-good-restaurant ?food) ~ (have ?food ?city)

Constraints:
(initially (-local-food ?food ?city) &(before (-tired ?city) n 
&(before (in ?city) nl )&(between "(in ?city) nl n2)

Eat(?food) Method 3

nl: n2:
(goto-closer-restaurant ?food)--~ (have ?food ?city)

Constraints:
(initially (-local-food ?food ?city) &(before (tired ?city) nl)
&(before (in ?city) nl)&(between (in ?city) nl n2)

The decomposition methods for the Random Travel Planning domain. The tasks shown in boldface are
tasks.

Initial State:

i!ical-foodAmerican-food NewYork) (local-food American-food LosAngeles)cal-food French-food Paris) (local-food English-food London)
cal-food Italian-food Rome)
LosAnge/s)

Goal tasks:

If G3: (Eat American-food)~

G l: (Eat French-food)~4~

G7: (Sightsee) G5: (Eat Italian-food)-~G2:

QG6: (Travel LosAngeles)~

(Travel Rome)~Gg:G4:(Sightsee)-II~GO:(sightsee) (Eat American-food)

GO: (Travel London)"

Figure 4: A sample problem of w = 15 (the actual number of unordered pairs of task is 14) in the Random Travel
Planning domain.
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words, the primitive task (go-sightseeing ?city) has an ef-
fect (tired ?city} and the primitive tasks (fly ?city0 ?cityl 
and (have ?food ?city0) have an effect (,,,tired?cityO}. The
task (fly ?city0 ?cityl} also has effects (,~in ?city0} and (in
?cityl ). Other primitive tasks have no effects. The task
Travel is to move to another city, if it’s different from the
current location. The task Eat is to go to a restaurant
for a type of food we want and eat there. If the type
of food we want is local to the location, such as Italian
food if the current location is Rome, then going to a
local restaurant suffices (Method 1). If not, we go to 
good restaurant if we are not tired (Method 2), or 
go to a closer restaurant if we are (Method 3). In these
methods, every ’before’ and ’between’ state constraint
is an external condition.

A problem in this domain consists of 10 goal tasks,
randomly generated. A goal task is either (Sightsee),
(Travel ?city), or (Eat ?food). where ?city is a value
randomly chosen from {LosAngeles, NewYork, Lon-
don, Paris, Rome}, and ?food is a value randomly cho-
sen from {American-food, English-food, French-food,
Italian-food}. Since the subtasks in each method are
totally ordered, how the problems are ordered depends
on the step orderings between the goal tasks. If the goal
tasks are totally ordered, then every partial plan gen-
erated from the goal also has the tasks totally ordered.
The step orderings between the goal tasks are randomly
generated based on the parameter w, which defines the
maximum number of pairs of goal tasks that can be left
unordered. Lower values of w indicate that there are
more ordering constraints among the goal tasks. The
initial state consists of the food-city pairs for each city
such as (local-food Italian-food Rome) and the current lo-
cation, i.e. (in ?city), which is randomly assigned. 
sample problem of w = 15 is shown in Figure 4

We created 20 problems each for 0~ = 5, 10, 15, 20 or
25 and solved them using FAF, LtoR, ExCon-FAF and
ExCon-LtoR strategies. The results are shown in the
Table land Figure 5. For low 0~ values, LtoR does bet-
ter than FAF because LtoR can use the step orderings
to correctly choose the earliest tasks. Many applicabil-
ity conditions considered by ExCon-LtoR can be easily
established at the time the conditions are inserted into
the plan by using LtoR selection. Also, there are fewer
non-primitive tasks that may affect the establishment of
the current applicability condition, so the performance
of ExCon-LtoR is similar to that of LtoR.

The performances of FAF and ExCon-FAF are also
similar for the low w value problems. Since FAF uses
the LtoR heuristic for tie-breaking, PAP picks up the
tasks relatively from left-to-right, although it skips Eat
in preference to Sightsee or Travel. So, similarly to
ExCon-LtoR, only a few possible non-primitive tasks
exist that may affect the establishment of the cur-
rent applicability condition. Since the performance of
the ExCon strategy greatly depends on its tie-breaking
strategy for low w value problems (i.e. problems where
goal tasks are not interleaved much), ExCon-LtoR does
better than ExCon-FAF.

For the high w value problems, there are not very
many ordering constraints among the goal tasks, so
there can be many more interactions among goal tasks.
In these problems, the performance of LtoR is worse
than any other strategy because LtoR does not have
enough step ordering information to correctly work in
a left-to-right manner and thus not be able to find con-
straints that can never be established early. FAF per-
forms better than LtoR, but not as well as ExCon-FAF
or ExCon-LtoR. The performances of ExCon-LtoR and
ExCon-FAF are similar because for the problem with
highly interleaved goal tasks, ExCon selects tasks and
does not have to use its tie-breaking strategy (i.e. LtoR
or FAF).

T~anslog Domain
Translog (Andrews et al. 1995) is a transport logistics
domain where the methods of transportation are spec-
ified based on the locations, the types of packages, and
availabilities of the necessary equipment. It is a con-
siderably larger domain than many used in planning.
It is specified with 17 compound tasks, 42 primitive
actions, and 29 predicates. We have randomly chosen
10 problems from the one-package problems created by
Kettler (Kettler 1995) for this experiment. Table 2 lists
the results. For one-package (i.e. one goal task) prob-
lems, there are many ordering constraints among the
subtasks. So the relative performances of the task selec-
tion strategies are similar to the low w values problems
in the Random Travel Planning domain.

Blocks World and Fixit Problems
For the next set of experiments, the problems Sussman’s
anomaly, tower invert3 and tower invert 4 in the Blocks
World domain and the fixit problem in Russel’s Flat
Tire domain were tested. For these two domains, there
are not very many ordering constraints among tasks as
one-package Translog problems. The results are shown
in Table 3.

The non-primitive tasks in the Flat Tire domain have
either one or two decomposition methods. So, the FAF
heuristic is not very decisive. The LtoR strategy does
not work quite as well because there are not very many
ordering constraints among the tasks in the domain.
ExCon-FAF creates more partial plans than FAF does.
ExCon may not do well if search branches fail for rea-
sons such as the failure of variable bindings, or state
constraints except external conditions.

For Blocks World problems, the performances of FAF
and LtoR are the same. There are no explicit step
orderings specified between non-primitive subtasks, so
LtoR always uses the tie-breaker FAF to select a task.
However, there are only two non-primitive tasks on and
clear in this domain. The FAF heuristic prefers the task
on to clear, but does not decide on which one of the on
tasks or clear tasks, so the task selection returns the
one that happens to be found in the partial plan first.
Thus the performances of FAF and LtoR depend on
what order the tasks are specified in the problem. For
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Actual FAF LtoR ExCon-FAF ExCon-LtoR
Plans Time Plans Time Plans Time Plans Time

5 2.95 63.55 0.32 36.95 0.16 63.60 0.36 36.90 0.17
10 7.35 51.25 0.27 41.00 0.21 50.45 0.29 38.40 0.19
15 11.85 58.55 0.32 50.80 0.26 46.90 0.28 41.05 0.22
2O 15.8 66.65 0.47 131.85 1.16 53.75 0.33 54.15 0.34
25 22.2 168.10 2.57 431.55 5.54 62.15 0.44 62.00 0.41

Table 1: The results of the Random Travel Planning problems. The actual average number of unordered pairs
is shown next to w values. "Plans" is the average number of partial plans created, and "Time" is the average
non-garbage collection CPU time in seconds.
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Figure 5: The results of the Random Travel Planning problems. The x-axis shows the average number of pairs of
unordered goal tasks and the y-axis shows the average number of partial plans created.

Problems FAF LtoR ExCon-FAF ExCon-LtoR
Plans Time Plans Time Plans Time Plans Time

1 218 5.51 217 5.45 219 5.32 217 4.81
2 87 1.04 87 1.02 87 0.91 87 0.91
3 303 9.97 302 9.05 309 11.59 302 8.13
4 442 16.59 243 6.56 258 7.38 243 6.18
5 77 0.79 76 0.76 77 0.81 76 0.79
6 8O 1.04 78 1.03 8O 1.04 78 1.04
7 77 0.79 76 0.79 77 0.77 76 0.78
8 8O 1.07 78 0.13 8O 1.05 78 1.09
9 8O 1.03 78 1.03 8O 1.03 78 1.02

10 287 7.79 331 8.47 529 10.50 331 8.45
average 173.1 4.56 156.5 3.52 179.6 4.04 156.5 3.32

Table 2: The results of the one-package Translog problems. Plans are number of partial plans created. Time is
non-garbage collection CPU time in seconds.
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Problems FAF LtoR ExCon-FAF ExCon-LtoR
Plans Time Plans Time Plans Time Plans Time

sussman-anomaly 36 0.15 36 0.14 33 0.13 33 0.14
tower-invert3 45 0.22 45 0.21 49 0.28 49 0.28
tower-invert4 229 6.41 229 6.43 100 1.32 100 1.34
fixit 160 5.93 159 2.54 236 5.28 137 1.78

Table 3: The results on the Blocks World problems and fixit problem. Plans are number of partial plans created.
Time is non-garbage collection CPU time in seconds.

Problems FAF LtoR ExCon-FAF ExCon-LtoR
Plans Time Plans Time Plans Time Plans Time

sussman-anomaly 71 0.53 71 0.50 5O 0.52 50 0.51
tower-invert3 8O 0.76 80 0.72 36 0.22 36 0.23
tower-invert4 4983 221.72 4983 216.14 107 1.41 107 1.45

Table 4: The results on the Blocks World problems where the goal tasks are specified in the reversed order.

instance, the goals of the tower-invert4 problem used
for the above experiments are ordered as (n] on B C)
(n2 on C D) (n3 on D A). Thus, the goal (nl on B 
decomposed first and then later the goal (n2 on C D) 
decomposed before the decomposition of the goal task
(n3 on D A). Table 4 lists the results of the same Blocks
World problems, where the goals are specified in reverse
order. The results show that the performances of FAF
and LtoR are quite different from the results shown in
Table 3, while the performances of the ExCon strategies
are very similar regardless of the goal specification.

Conclusion
Many search techniques have been presented to increase
the efficiency of planning. However, many of them lack
clear explanations of how they are better than other
techniques, what types of planning domains they work
well with, and how much one technique may perform
better than another in specific problems. The lack of
study is especially significant in HTN planning, which
many practical applications employ. Systematic stud-
ies of various search techniques are necessary. This
includes identifying domain characteristics, and eval-
uating and comparing various techniques empirically
and/or theoretically. Not only can the results of such
performance analyses help further improve the search
techniques, but they can also help a knowledge engineer
select a problem-solving method adequate to a given
application.

We have presented two types of strategies in HTN
planning that select which non-primitive task to de-
compose. Each one is focused on different HTN prob-
lem domain characteristics in order to use domain in-
formation for pruning. The LtoR strategy selects a task
that has no non-primitive tasks ordered before it and
tries to develop a detailed plan starting from the ini-
tial state. It is easier for the planner to identify the
unsatisfiable conditions associated with a task if the
planner knows more about what primitive actions come
before the task. Thus, the LtoR strategy performs well

for problems where there are many ordering constraints
between the goal tasks and their subtasks, because the
ordering constraints help the planner decide which task
comes earlier.

The ExCon strategy makes use of external condi-
tions. The planner pre-processes its knowledge base
to extract external conditions for each decomposition
method. During task decomposition, the external con-
ditions of the method used are placed onto the partial
plan as its applicability conditions. When selecting a
task to decompose, ExCon selects a task that may be
used to satisfy an applicability condition of the partial
plan. ExCon performs well on the problems where the
goal tasks are highly interleaved.

Our empirical studies show that LtoR consistently
outperforms other strategies on problems with many
ordering constraints. The results also show that ExCon
does well on the problems where there are fewer order-
ing constraints and the goal tasks are highly interleaved.
Moreover, ExCon-LtoR, the ExCon strategy combined
with LtoR, does better than FAF or ExCon-FAF on
problems with many ordering constraints because LtoR
is used for tie-breaking. It does better than FAF or
LtoR on problems with fewer ordering constraints be-
cause ExCon works well for interleaving tasks.

Since we have only run our experiments on a rela-
tively small sample of problems the results presented in
this paper are preliminary. We are currently working to
fully analyze LtoR and ExCon both theoretically and
empirically.
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