From: AAAI Technical Report WS-98-03. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Learning to Improve Quality of the Plans Produced by Partial Order
Planners

Muhammad Afzal Upal

Reneé Elio

Department of Computing Science
University of Alberta, Edmonton
Canada, T6G 2H1

Considerable planning and learning research has been
devoted to the problem of automatically acquiring
search control knowledge to improve planning efficiency.
However, most speed up learning systems define plan-
ning success rather narrowly, namely as the production
of any plan that satisfies the goals regardless of the
quality of the plan. As planning systems are applied to
real world problems, concern for plan quality becomes
crucial. Many researchers have pointed out that gener-
ating good quality plans is essential if planning systems
are to be applied to practical problems (Wilkins 1988;
Drabble, Gil, & Tate 1995; Perez 1996; Ruby & Kibler
1993).

The problem is that in most practical situations we
only have the post-facto' knowledge about plan qual-
ity. Such knowledge allows us to determine the qual-
ity of a plan once complete plans have been generated
but it is of little use during plan construction. The
learning problem then is that of translating the post-
facto quality measurement knowledge into operational
knowledge that can be used during plan generation to
guide the planner towards making choices that lead to
better plans. To address this issue, we outline a tech-
nique of learning to improve the quality of plans gen-
erated by partial-order planners. This technique can
be integrated with speed-up learning methods (such as
(Thrig & Kambhampati 1997)’s DerSNLP). We call the
resulting approach a Performance Improving Partial-
order Planner (PIPP). This paper presents the key ideas
underlying this approach.

The post-facto Plan Quality
Measurement Knowledge
Consider the following observations:

Real-world problems are multi-objective... Each of
our lives is filled daily with multiobjective prob-
lems. Should I take the car or the bus? Well, the
bus is cheaper (when the cost of gasoline, main-
tenance and insurance are computed for the car),
but the car is more convenient, particularly since

!The term post-facto was first defined by Perez (Perez
19961 to refer to the quality knowledge that can only be
used to measure plan quality only after planning.

I should stop at the store on my way home from
work. The bus will save energy, but I can listen
to the radio in the car. There are probably other
attributes or objectives in addition to cost, con-
venience, energy consumption and comfort that
might be considered in choosing between the car
and the bus... Problems like this abound. (Cohon
1978)

We call the plan quality measurement knowledge to
be complez if it depends on multiple variant quality
factors (or metrics) and simple if it depends on a single
static quality metric. A static quality metric assigns
a fixed value to each action whereas a variant quality
metrics may assign different values to the same action
depending upon the situation in which that action is ap-
plied. For instance, a simple quality measure would be
m. The amount of fuel consumed in traveling

between various locations is an example of the variant
quality metric as the amount of fuel varies depending on
the distances between the locations. A few learning sys-
tems that do possess quality knowledge (Perez 1996;
Iwamoto 1994), all assume simple quality knowledge.

Unfortunately, in most practical domains, operators
need to be expressive and general enough to be appli-
cable in a number of situations (such as drive(X,Y)
to denote the action of driving from a location X to a
location Y) and the value of a quality metric (such as
fuel-cost) cannot stay the same for an action in all the
situations. Also, as a number of planning and opera-
tions research experts have noted, in most real world
scenarios plan quality depends on a number of compet-
ing factors. We agree with Keeney and Raiffa (Keeney
& Raiffa 1993) that most interesting planning problems
are multiobjective.

Value-theoretic functions are a well-developed mech-
anism devised by operation research workers to repre-
sent the evaluation function for multiobjective prob-
lems. A value function is defined on the outcome (i.e.,
the final-state) of a complete plan. The world states
are described by a finite number of attributes. The
first task towards the formulation of a value function
is identification of the decision attributes. Keeney and
Raiffa (Keeney & Raiffa 1993) suggest a hierarchical
refinement scheme starting with the highest level objec-

tives and refining them down to the low level measur-
able attributes. For instance, the overall objective of an
agent using a transportation system maybe to “have a
good trip” which can be refined down to the measur-
able attributes such as “minimize door-to-door travel
time” and “minimize fare costs.” Once various objec-
tives have been identified, the next step is to elicit the
degree of user’s degree of preference of one attribute
over another. Operations research and choice model-
ing researchers study different techniques for eliciting
domain expert’s preference knowledge (Hensher 1981;
de Soete & Hubert 1990). Based on the expert’s re-
sponses to various combinations of multiple decision
attributes, techniques such as conjoint analysis (Lou-
viere 1988) are used to estimate attribute utilities and
to encode the revealed preference structure into a value
function V.
V:DxD—>®R

where D is the set of decision attributes and & is the
set of real numbers.

If an agent’s preferences constitute a partial-order
over outcomes and satisfy certain rationality criteria
(such as transitivity), the central theorem of decision
theory (Fishburn 1970) states that these preferences
can be represented by a real-valued wvalue function V
such that if s; and s, denote two outcomes then s;
is preferable to s, i.e., s; = sg iff V(s1) > V(s2).
Even if the agent’s preferences do not form a partial-
order, the value function can still be used to form
good approximations (Yu 1985). We believe that value
functions are expressive enough to denote the post-
facto plan quality measurement knowledge. And in-
deed, many Al planning researchers (Williamson 1996;
Ephrati, Pollack, & Milshtein 1996; Haddawy & Hanks
1998) have used value functions to solve Al planning
and reasoning tasks.

The Operational Quality Knowledge

Definition 1 Operational knowledge o is a func-
tion from the set of partial plans to the set of refinement
sequences.

Operational knowledge can be considered to be a set of
operational rules.

Definition 2 An operational rule has a function s
defined on a partial plan as its antecedent and planning
decision sequence as its consequent.

s(PPm) —-)d,‘,d,‘.*.l,... (1)

s is a Boolean function (such as the viability function
which is true if the refinement sequence d;, ..., d; is ap-
plicable to the partial plan PP,,) defined on the partial
plans.

d;

We define (j — ¢) to be the specificity of an operational
rule. Specificity of a sequence of planning decisions
that, when applied to an initial plan, refines it into a
flawless plan is defined to be infinite. We refer to the op-
erational rules of infinite specificity as global. The term

95

local rule refers to an operational rule of zero specificity.
For instance, a rejection rule learned by SNLP+EBL
(Kambhampati, Katukam, & Qu 1996) can be consid-
ered to be a local rule. A DerSNLP-case can be consid-
ered to be a global rule because it evaluates the initial
partial plan PPy, obtained by adding the dummy ac-
tions to the null plan, to see if its effect set E has the
relevant initial conditions and provides the complete
planning trace if it does. Relevant initial conditions are
the conditions that are needed as preconditions for ac-
tions in the final plan. Thus function s, in this case, is
defined to be a function that simply evaluates the rele-
vant initial conditions s = (evaluate (init-conds PPy)).
Presence of these conditions in the new problem specifi-
cation guarantees that the plan created under the guid-
ance of the retrieved case will satisfy the currently ac-
tive goals but not that it will lead to a high quality
plan.

Definition 3 An operational quality rule has as
its antecedent a function s' obtained by adding a
betterness-conditions function b to s. The consequent
specifies that a decision sequence Dy is preferable to the
decisions sequences Dgyq, ..., Dy.

(2)

where s'(PPp) = s(PPy) + b(PPp), b(PPn) is true
when applying decision sequence Dy to the partial plan
PP, leads to a better quality solution than the decision
sequences Dy11,..., Dy and false otherwise.

§'(PPp) = prefer Dy over Dgyy, ..., Dy

We’ll define y — z as the size of an operational quality
rule.

Definition 4 Operational quality knowledge s a
collection of the operational quality rules.

An operational rule is an operational quality rule of
size zero and with its betterness-condition function set
to true. Thus operational knowledge is a special case
of operational quality knowledge.

In the next section, we describe the learning and plan-
ning framework, PIPP, that can acquire operational
quality knowledge from its own planning experiences
or from the plans provided by a user. Given a problem
description and a plan that solves that problem, PIPP
creates a trace of the given plan and by comparing it
with the trace of its own plan it learns operational qual-
ity rules.

PIPP

Knowledge Representation

Most planners support a version of the STRIPS lan-
guage to represent states and actions. In STRIPS,
states are represented by conjunctions of propositional-
attributes (represented by function-free ground literals)
and actions are represented by three components:

o The action description: The parametrized name for
a possible action such as MOV E(O, X,Y) denotes
the action of moving O from X to Y.

o The Preconditions: A conjunction of propositional
attributes that must hold for the action to work.

o The effects: A conjunction of propositional attributes
that describes as to how the world changes by the
application of the action. The effects are described by
add and delete lists of propositional attributes made
true and false (respectively) by the execution of the
action.

Various extensions have been developed by practi-
cal planning researchers (Tate, Drabble, & Kirby 1994;
Wilkins 1988; Williamson 1996) to support metric at-
tributes that are needed to denote numerical quan-
tities of resources. Metric attributes are essentially
treated like propositional attributes in the way they
enter the state description and an action’s precondi-
tions and effects. The main difference is that while
propositional attributes are logical conjunctions, met-
ric attributes also involve numerical expressions. PIPP
uses R-STRIPS, an extension of STRIPS suggested by
(Williamson 1996).

In R-STRIPS, the world states are described in terms
of attributes which may be propositional or metric.
The following description of R-STRIPS is adapted from
(Williamson 1996):

Definition 5 (State): An R-STRIPS state is a 2-
tuple < S,, S, > where S, denotes propositional at-
tributes and S,, denotes metric attributes.

Definition 6 (Propositional Attribute): A propo-
sitional attribute is a 2-tuple < n,v > where n is the
symbol denoting proposition name and v s the proposi-
tion value.

Definition 7 (Metric Attribute): A metric at-
tribute is a formula < B,1 > where B is a symbol de-
noting a resource name and [is a real number denoting
the amount or level of that resource.

Definition 8 (Metric Precondition): The metric
precondition of an action a is a formula < 3, Fop >
where B is a resource and Fup is a metric precondi-
tion function defined over all possible bindings of a'’s
parameters < pi,...,Pn >. Fop is a boolean function.

Definition 9 (Metric Effect): The metric effect of
an action « is a formula < B, Fop > where B is a re-
source and Fop is a metric effect function defined over
all possible bindings of a’s parameters < p1,...,pn >.

Definition 10 (R-STRIPS Action Schema): An
R-STRIPS action schema is a sex-tuple a =<
On,y Qy, Oppy Xmp, Ope; Xme > where

e a, denotes the symbolic name,
e «y 15 a list of variable parameters,

2Williamson’s original formulation of R-STRIPS also al-
lowed for partially satisfiable goals. We’ve simplified R-
STRIPS to reflect the fact PIPP does not reason with par-
tially satisfiable goals. Williamson also defines the outcome
of a plan to include the intermediate states as well as the
final state.

app denotes propositional preconditions.

amp s a set of metric preconditions,

ape denotes propositional effects, and

Ame = < B, Fap > | for each resource § is a set of
metric effects.

Definition 11 (Ground Action): A ground action
is an action-schema in which all variables have been
bound to object symbols in the domain.

A ground action represents a mapping between world
states. This mapping is defined over those states in
which the action is viable.

Definition 12 (Viability of an action): An action
a s viable in a state S =< Sp, Sm > if app C
Sp

V(< B, Fap >€ amp), Fap(S) is true.

Definition 13 (Action Execution): The ezecution
of a viable action a in a world state S =< Sp, Sm > s
a new world state S’ =< S}, S}, > such that

Sp = apeSp
and
S o={< B+ Fop>|< B> 5}

Definition 14 (Plan): A plan is an ordered sequence
of ground action schemas.

Definition 15 (Plan Viability): A plan p =<
ai,...a > is viable in a state Sy if each action a; 1 <
i < n is viable in the state S; where S; = a;—1(Si-1).

Definition 16 (Plan Outcome): Outcome of a plan
is the final-state achieved by executing the plan in the
initial-state.

Here, we assume that all the decision attributes can
be specified as metric attributes i.e., the quality func-
tion only depends on the metric attributes (i.e., the
resource levels) in the final state.

The PIPP Approach

Unlike conventional analytical learning systems (such
as EBL systems that learn from one successful or un-
successful solution) and like QUALITY (Perez 1996),

PIPP performs intra-solution learning. Given two plans
of possibly differing quality that achieve the same goal,
the intra-solution learning process involves identifying
the conflicting choice points and forming an explana-
tion as to under what conditions in the initial state
the sequence and (subsequence of) the better plan-
ning episode’s refinement choices are better than the
sequence (and subsequences of) the worse planning
episode choices. A conflicting choice point is a decision
point in the trace of the better plan where the refine-
ment used by the better plan differs from the system’s
default choice. Each conflicting choice point indicates
a gap in the system’s control knowledge and hence a
need to learn. The generalized explanation becomes the

betterness conditions because it identifies the most gen-
eral conditions under which the better plan (and hence
the decision sequence that led to it) is better than the
worse plan (and the decisions sequence that led to it).
We prove this assertion in the following theorem.

Theorem 1 Given

o an initial-state I =< I,,In, > where I, = {<

il,lm >, < ik,lok >}

a plan p1 = ay,...an

a plan pa = by,.. .0y

a quality function q

p1’s outcome (when ezecuted in I) =< Gp,Gm >

where G, = {< i1,lg,1 >, ... <k, gk >}

p2’s outcome (when ezecuted in I) =< G,,Gp, >

where G, = {< i1,1lg,1 >, ... < ix,lgx >}

Then

1. py and py are viable in I iff the union of the relevant
initial conditions of p1 and py is a subset of I.

2. p1 is better than ps iff the betterness conditions of p1
over py are satisfied.

3. The betterness conditions can be computed in O(k *
(n + m)) time.
Proof:

1. Assertion 1 follows from the definitions of plan via-
bility and the relevant initial conditions.

2. p1 is better than ps iff p1’s outcome has a higher
quality value than py’s outcome i.e.,

(3)

The value of a metric attribute in the final-state ¢
is equal to the value of that attribute in the state
g — 1 plus the value of the metric effect function for
the final action. We can recursively carry this argu-
ment all the way back to the initial-state to get the
following values of the metric attributes in the final
state.

q(lgll’ .- 'lglk) > Q(zgzlr .- 'lgzk)

lgyi = Fapi+ Fap_yi+ ...+ Fayi +loi (4)

lgi = Foi+ Fy,_yi+ ...+ Fpi+loi (5)

Where F;; is the metric effect function associated
with the attribute j and action 7. Substituting these
values in inequality 3 transforms q into a function ¢’
only of the metric attribute values in the initial-state.
Let’s denote the metric attribute values in the initial
state by the variables X; = lo1,...Xx = lor then
substituting these values in inequality 1 we get

')Xk)>ql(p2yX1a~-';Xn) (6)

The Inequality 6 represents the betterness conditions
of p1 over ps. Clearly, by formulation we can see that
p1 is better than po iff 6 holds.

3. In order to compute the betterness conditions, the
following steps have to be performed.

¢ (p1, X1, ..

97

(a) Assign symbolic values X3, ..., Xi to the the met-
ric attribute levels in the initial-state.

(b) For i =1 to k (i.e., for each of the & attributes)

i. For j =1 to n do (i.e., for each action in p;)
A. 1i(S;) = li(Sj-1) + Fa,i (i.e., compute the value
I; of metric attribute ¢ in state S;)
i. For § =1 to m do (i.e., for each action in p3)
A. 1;(S;) = li(Sj-1) + Fyji (i.e., compute the value [;
of metric attribute ¢ in state S;)
(c) Compute the quality function q by doing a sym-
bolic substitution of the values of metric attribute
values computed in the steps (a) and (b).

We know that the above symbolic computations can
be performed because we can reasonably assume that
the metric effect functions and the quality function can
be encoded as closed formed expressions.
Complexity: The step (b) dominates the whole func-
tion. Hence the algorithm is of O(k * (m+n)) complex-
ity.

For each conflicting choice point, a learner can learn
local and/or global operational quality rules and/or
rules of any specificity between the extremes of local
and global. The local rules suggest a preferred alter-
native at a particular decision point, but that decision
may affect other decisions that the planner should make
at other points. Indeed in some situations, making a
choice at some decisions point d; may only be prefer-
able if another choice is made at decision point d;, ¢ # j.
Global knowledge encodes preference for a number of
choices at various decision points in a complete plan.
The local rules, however, are more general than the spe-
cific global rules and are applicable in a broader number
of situations. PIPProcar is a module of PIPP that
learns local rules and PIP Pgj0oBalL learns global rules.

PIPPgropar: The betterness conditions are con-
junctively combined with the union of the relevant ini-
tial conditions of the system’s plan and the external
agent’s plan learned by the derivational analogy mod-
ule to form the antecedents of a global rule. The conse-
quent of the global rule says “prefer the entire sequence
of the better planning episode’s decisions over the entire
sequence of the worse planning episode’s decisions.”

PIPProcar: The betterness conditions for a con-
flicting choice point and the unconsumed relevant ini-
tial conditions form the antecedent of a local rule. Un-
consumed relevant initial conditions are those relevant
initial conditions that have not been consumed by any
causal link added to the partial plan so far. The con-
sequent of a the local rule says “prefer the refinement
applied by the better plan over the the refinement ap-
plied by the worse plan at this decision point.”

The operational rules learned in each learning episode
are stored in the rule-memory and retrieved when a
similar problem is presented to the system. If more
than one rule is applicable to a partial plan, it prefers
the rule that has the largest size and if they are of equal
size the one that is the most specific.

For each conflicting choice point, PIPP needs to com-
pute the complete plan following the system’s default
choice to compare it with the external agent’s plan to
derive the betterness conditions. How much effort does
the system needs to put into learning depends on how
different the external agent’s choices are from the sys-
tem’s choices i.e., how much does the system need to
learn? Initially, the system may need to expend more
in learning but as it acquires more knowledge the num-
ber of conflicting choice points should decrease. At
worst, for a plan-tree that is n-nodes deep and all the
choice points are conflicting, we may end up computing
n plans but in general, that should not be the case.

Architecture

As shown in figure 1, PIPP has three components: a
case-based reasoner, a generative partial-order plan-
ner and an inference engine. The planning compo-
nent generates a trace of the external agent’s plan,
identifies the conflicting choice points and the rele-
vant initial conditions. The inference engine compares
two plans for quality using the complex quality mea-
surement knowledge provided, and generates betterness
conditions from the trace of the comparison. The case-
base stores and retrieves the learned operational quality
rules. The antecedent of an operational quality rule is
used as the indexing scheme to store and retrieve its
consequent.

Figure 1: The PIPP Architecture

PIPP’s Algorithm

e Input: Problem description in terms of the initial
state I and the goal G. External agent’s plan pe.

98

{4
_________ For each conflicting choice point the plan and .
the trace obtained by following system’s choice Plannln g
Inference |lag e
Engine pone
better/worse
;]
Ogﬁ;?it:; nal Decision sew‘uenc
Learning rule Causal-link
Partial-order
Component riakor
|
|
Rule Memory !
|
o,

PIPP(< I,G >, pe)
1. generate-plan(< I, G >, p, tr(p), rc(p))
2. If better-plan(p, pe, bc) then

(a) generate-trace(< I,G >,pe,tr(pe), rc(pe), Plans,

Conf-decs, Tr, RC, URC)

(b) pipp-global(be, re(p), re(pe), tr(p), tr(pe))
(c) pipp-local(be, urc(p), urc(pe), d(p), d(pe))
(d) For each conflicting choice point 7 > 1,

i. If better-plan(p;, pe, bc;) then

A. pipp-global(be;, re(pi), re(pe), tr(pi), tr(pe))

B. pipp-local(be;, ure(pi), urc(pe), d(p;), d(pe;))
Generate-plan(< I,G >,p,tr(p),rc(p)), given a prob-
lem description < I, G > generates a plan p and the
planning trace tr(p) and relevant initial conditions r¢(p)
for this plan.

Generate-trace(< 1,G >, pe,tr(pe),rc(pe), Plans,

Conf-decs, Tr, RC, URC) given a problem description
< I,G > and a plan pe generates

e the planning trace tr(p)
e relevant initial conditions rc(pe) for this pe

e Set of n conflicting decisions Conf-decs = {<
d(pi), d(pe:) > |L < i > n}.

e Set of n plans, Plans, produced by following system’s
default choice at each conflicting choice point Plans
=pi|l <i>n}

e Set of n traces, Tr, for each plan in Plans Tr =
tr(pi)|l <i>n}

e Set of n relevant initial conditions, RC, for each plan
in Plans RC = re(pi)|1 < ¢ > n}

e Set of n unconsumed relevant initial conditions,
URG, for each plan in Plans Tr = urc(p;)|1 < i > n}

The Boolean function better-plan(p, pe,bc) takes two
plans, p and pe, and returns true if p has higher quality
than pe and generates the betterness conditions, bec, of
p over pe.

Pipp-global(be, re(p), re(pe), tr(p),tr(pe)) forms and
stores a global rule

be + re(p) + re(pe) — prefer tr(p) overtr(pe).

Pipp-global(be, urc(p), urc(pe), d(p),d(pe)) forms and
stores a global rule

be + urc(p) + urc(pe) — prefer d(p) overd(pe).

Domain and Some Examples
Modified Logistics Transportation Domain

In the transportation domain of Veloso (Veloso 1994),
packages must be delivered to different locations in
several cities. Trucks are used to transport packages
within the same city, and planes are used to transport
packages between different cities. We’ve modified the
original transportation domain so that there is more

than one way of going from one city to another and
there are some resources to reason about. The action
MOVE-TRUCK-ACITIES was added as an alterna-
tive means of moving between the cities. States are
described by propositional as well as metric attributes
of money and time. The places (i.e., airports AP
and ports PO) have positions. We modified the ac-
tion descriptions so that metric preconditions of each
action specify the amount of money required for the
action and the metric effects specify how the action
changes the amount of money and the time in the world.
For instance, the time-taken and the cost of (M OV E-
TRUCK OBz Ply Plz) is defined by a function of
the weight of the object OBz to be transported as well
as distance between Ply and Plz. Problems are pro-
duced by generating random initial states and goals.
Package weights and place positions are also assigned
random values. If places are in the SAM E-CITY dis-
tances between them are generated to be less than a
short-distance, where distance between the places Plz
and Ply is calculated as

(distance Plz Ply) = |(position Plz)—(position Ply)|.

The plan quality function is defined on the metric
attributes of time and money,

q(time, money) = 5 x time — money.
The actions schemas are stated as follows:

(action (load-truck 70 7PL 7AP)
preconds ((b-at-object 70 7AP)
(c~at-truck ?PL 7AP) (> money 5))
effects ((b-ainside-truck 70 7PL)
(not (b-at—-object 70 7AP))
(money -5) (time 5)))

(action (unload-truck 70 7PL 7AP)

preconds ((c-at-truck 7PL 7AP)
(b-ainside-truck 70 ?PL))

effects ((b-at-object 70 7AP)
(not (b-ainside-truck 7?0 7PL))
(money -5) (time 5)))

(action (move-truck ?PL 7L 7M)
preconds ((a-same-city 7L 7M)
(c~at-truck ?PL ?7L))
effects ((c-at-truck 7PL 7M)
(not (c-at-truck ?PL ?7L))
(money (* -10 (distance 7L 7M)))
(time (* 10 (distance ?L 7M)))))

(action (load-plane 70 7PL 7AP)

preconds ((b-at-object ?0 ?AP)
(c-at-plane 7PL 7AP))

effects ((b-inside-plane 70 7PL)
(not (b-at-object 70 ?7AP))
(money -5) (time 15)))

(action (unload-plane 70 7PL 7AP)

99

preconds ((c-at-plane 7PL 7AP)
(b-inside-plane 70 ?PL))

effects ((b-at-object 70 7AP)
(not (b-inside-plane 70 7PL))
(money -5) (time 15)))

(action (fly-plane ?PL 7L 7M)
preconds ((a-is-a AIRPORT 7M)
(c-at-plane 7PL ?7L))
effects ((c-at-plane 7PL 7M)
(not (c-at-plane 7PL 7L))
(money (* -15 (distance 7L 7M)))
(time (¥ 5 (distance 7L 7M)))))

(action (move-truck-acities ?PL 7L 7M)
preconds ((c-at-truck ?PL ?7L))
effects ((c-at-truck ?PL 7M)

(not (c-at-truck ?PL 7L))
(money (* -7 (distance 7L 7M)))
(time (* 10 (distance 7L 7M)))))

Examples

Consider an example with the following initial state,
goal and place positions. We show both the local and
global rules that PIPPgropar and PIPProcat learn
for only the first conflicting choice point.

Initial state =

(A-1S-A AIRPORT AP1)
(A-IS—A AIRPORT AP2)

(A—SAME-CITY APl POl)
(A—SAME-CITY POl AP1)
(A—SAME-CITY AP2 PO2)
(A—SAME-CITY PO2 AP2)
(C—-AT-TRUCK TR1 AP1)
(
(
(B
(
(

APlisanairport

TruckTR1lisatAP1
C—-AT-TRUCK TRR AP2)
C—-AT-PLANE PL1 API1)
—AT-OBJECT OBl APl) ObjectOBlisatAP1

position AP1) = 15
position PO1) =13 (position PO2) = 22
(money 200) (time 0)
Goal=(B—AT—-OBJECT OBl PO2)

Suppose the system produces the following plan (we’ll
denote it by P1):

(LOAD-PLANE OBl PL1 AP1)
(FLY-PLANE PL1 AP1 AP2)
(UNLOAD-PLANE OB1 PL1 AP2)
(LOAD-TRUCK OB1 TRR AP2)
(
(

(position AP2) = 21

MOVE-TRUCK-ACITIES TRR AP2 PO2)
UNLOAD-TRUCK OB1 TRR PO2)

and suppose the user inputs the following plan (let’s
call it P2):

(LOAD-TRUCK OB1 TR1 AP1)
(MOVE-TRUCK-ACITIES TR1 AP1 AP2)
(UNLOAD-TRUCK OB1 TR1 AP2)
(LOAD-TRUCK OB1 TRR AP2)
(MOVE-TRUCK TRR AP2 PO2)
(UNLOAD-TRUCK OB1 TRR P02)

In the outcome of plan P1 the metric attributes have
the following values (money 83) (time 56) and the
metric attributes in the outcome of the plan P2 have the
values of (money 123) (time 72). Then evaluating the
quality function we get ¢(P1) = 197 and ¢(P2) = 237.
Since ¢(P2) > ¢q(P1), P2is labelled as a better plan and
P1 as the worse plan. Having identified the better plan,
we can calculate constraints on the range of values of the
variables under which P2 is better than P1. This can
be done by computing the values of metric attributes
(i.e., money and time) in the final state by treating the
variable parameters (i.e. the place positions) as sym-
bols and subsituting thus computed symbolic values of
money and time into the quality function and imposing
the constraint ¢(P2) > ¢(P1).

5-wage x (6 x (distance PO1 AP1)—20) < —10 x
(distance POl AP1),

where (distance PO1 AP1)
(abs (— (position PO1) (position sAP1))).

By solving the above inequality PIPP determines
that if (distance PO1 AP1) < 32 = 2.5 then P2 is
better than P1. This is the betterness condition of P2
over P1. Reversing the above inequality we get the
betterness condition of P1 over P2. Under DerSNLP’s
scheme the external agent’s plan will be stored with the
relevant initial conditions

(C-AT-TRUCK TR1 AP1)
(B-AT-OBJECT OB1 AP?)
(C-AT-TRUCK TR1 AP1)
(SAM E-CITY AP2 PO?2)

and the goal condition (B-AT-OBJECT OBl PO2)
whereas the system’s solution will be stored with the
relevant initial conditions

(C-AT-PLANE PL1 AP1)
(C-AT-TRUCK TR1 AP1)
(B-AT-OBJECT OB1 AP2)

and the goal condition (B-AT-OBJECT OB1 PO2).
Clearly, for a problem that has the union of the essen-
tial conditions of both these cases, the retrieving mod-
ule will need to be able to decide as to which case to
retrieve. In such cases, PIPPgropar €valuates the
betterness condition to discriminate between the cases.

PIPProcar needs the un-consumed relevant con-
ditions at the conflicting choice points to form the
local rule. The first (and the only) point of con-
flict between the two plan-traces is the choice of
(UNLOAD-TRUCK OBl TRl AP2) by the sys-
tem’s trace and (UNLOAD-PLANE OB1 PL1 AP2)
by the external agent’s trace to reduce the open-
condition (B-AT-OBJECT OBl AP2). The rele-
vant initial conditions (C-AT-TRUCK TRR AP2) and
(SAME-CITY AP2 PO2) are consumed by the action
(MOVE-TRUCK TRR AP2 PO2) and hence do not
need to be stored as antecedents for the local rule. This
leaves

(C-AT-TRUCK TR1 AP1)
(B-AT-OBJECT OB1 AP2)

100

(C-AT-PLANE PL1 AP1))

as the un-consumed relevant conditions at this choice
point. These conditions plus the betterness conditions
of the planning
choice of (UNLOAD-PLANE OB1 AP1), namely,
(distance AP1 AP2) < 2.5, form the antecedent of the
local rule (let’s call it LR1).

if open-cond is (B-AT-OBJECT OBz POy))
and ((C-AT-TRUCK TRz APxzx)
(B-AT-OBJECT OBz APy)
(C-AT-PLANEPIz APxz))
and (distance Plz Ply) < 2.5)) then
prefer (UNLOAD-TRUCK OBz TRx PLy)
over (UNLOAD-PLANE OBz Pz PLy)))

Suppose that at this point PIPPgrLoBAL is given the
following problem to solve,

Initial state = (B-AT-OBJ OB10 AP10)
(C-AT-TRUCK TR10 AP10)
(C-AT-PLANE PL10 AP10)

(A-1S-A AIRPORT AP10)

(A-1S-A AIRPORT AP11)
(SAME-CITY AP10 PO10)

(SAM E-CITY PO10 AP10)
(SAME-CITY AP11 PO11)
(SAME-CITY POl11 AP11)
(C-AT-PLANE PL11 AP11)
(C-AT-TRUCK TR12 PO11)
(C-AT-TRUCK TRI11 AP11)

(position AP10) =10 (position AP11)
(position PO10) =1 (position POL11)
(money200) (time0)

Goal = (B-AT-OBJ OB10 POI11)

PIPPgropal evaluates the antecedent of the only
global rule it has learned. Since the new problem de-
scription has the union of the relevant initial conditions
of both P1 and P2 and (distance AP10 AP11) < 2.5
PIPP, it retrieves the P1-’s trace (i.e., decision sequence
that led to the truck-plan) and produce the following
plan (let’s call it P3).

(LOAD-TRUCK OB10 TR10 AP10)

(MOVE-TRUCK-ACITIES TR10 AP10 AP11)
(UNLOAD-TRUCK OB10 TR10 AP11)
(
(

=2
=3

LOAD-TRUCK OB10 TR11 AP11)
MOVE-TRUCK TR11 AP11 PO11)
(UNLOAD-TRUCK OB10 TR11 PO11)

Suppose the user inputs the following plan (let’s call
it P4).

(LOAD-TRUCK OB10 TR10 AP10)
(MOV E-TRUCK-ACITIES TR10 AP10 PO11)
(UNLOAD-TRUCK OB10 TR10 PO11)

PIPP determines the quality both plans and deter-
mines that P4 is better than P3. The betterness con-
ditions for the betterness of P4 over P3 are

30 x (distance AP10 PO11)+ 10x
(distance AP10 AP11) — 43x
(distance AP11 PO11) < 140 (2)
Next, suppose that the following problem is presented
to PIPP.

Initial-state = (B-AT-OBJ OB1 AP1)
(C-AT-PLANE PL1 AP1)
(C-AT-TRUCK TR1 AP1)

(SAME-CITY AP2 PO2)

(position AP1) =0 (position AP2) =10
(position PO1) =2 (position PO2) =11.5
Goal = (B-AT-OBJ OB1 AP2)

Since LRl is applicable in this situation (because
(distance AP1 AP2) > 2.5), it guides PIPP to pre-
fer the action (UNLOAD-PLANE OBl PL1 AP2)
and to produce the plan:

(LOAD-PLANE OB1 PL1 AP1)
(FLY-PLANE PL1 AP1 AP2)
(UNLOAD-PLANE OB1 PL1 AP2).

Evaluation

We have implemented the mechanism for learning
global rules from the first conflicting choice point.
We integrated this technique with DerSNLP+EBL and
compared the performance of the new system (we call
it PIPPg;) with that of DerSNLP+EBL.

We randomly generated 100 problems from the mod-
ified logistics transportation domain described earlier.
Each problem contained two trucks and one plane,
which were distributed between two cities.

Training sets of 10, 20, 30 and 40 were randomly
selected from the 100-problem corpus, and for each
training set, the remaining problems served as the cor-
responding testing set. DerSNLP+EBL and PIPPg
were trained and tested on each of these four train-test
problem sets. The metric of interest was the percentage
of test problems in which PIP Pg; produced a better-
quality solution than did DerSNLP+EBL. For each of
the test problems, the quality of the plan generated
by PIPP was compared to the quality of the plan gen-
erated by DerSNLP+EBL. The quality was evaluated
using the quality function described in the Domain sec-
tion. We simply counted each case in which PIPP’s
plan had a higher quality value than DerSNLP+EBL’s
plan. The percentage of test problems on which this
occurred is given in the first row of Table 1.

As the number of training problems increases, the
percentage of higher-quality solutions generated by
PIPPg; relative to DerSNLP+EBL increases. This
is not too surprising, since DerSNLP+EBL is not de-
signed to produced better-quality plans per se. At least,
it was not designed to exploit metrics of the kind that
PIPPg; has been designed to exploit. Note, however,
that rows 2 and 3 in Table 1 provide running time
data, and there is no significant cost disadvantage to
PIPPcgy’s consideration of metric information.

PIPPg, does not produce worse quality solutions on
any test example. However, the training and test prob-

101

[number of training problems |
10 20 30 40

number of
PIPP¢ plans
better than 13/90 | 18/80 | 25/70 | 22/60
DerSNLP+EBL | 14% | 23% | 36% | 37%
plans
PIPPg 61.5 | 57 50.6 | 47.8
time (secs)
DerSNLP+EBL | 60.2 [55.6 | 48.9 | 44.1
time (secs)

Table 1: Number of test problems for which PIPPg;
generated a better quality plan than did Der-
SNLP+EBL, and running time for each system.

lems had a low level of goal-interaction, i.e., there was
only one package to move between cities. With the
potential for more goal-interactions, we might expect
PIPPg; to perform less well than DerSNLP+EBL on
some problems. The reason is that the betterness con-
ditions only guarantee that the better solution is bet-
ter than the worse solution for solving the one goal in-
dependently. In solving that goal in conjunction with
others, the worse plan may actually turn out to be bet-
ter. The solution may be to use a strategy employed
by DerSNLP+EBL and store all single goal planning
episodes and only those multiple goal episodes for which
the goals interact negatively. These are matters for fur-
ther empirical investigation.

Related Research

Most of the early work on EBL (Mitchell, Keller, &
Keddar-Cabelli 1986; Minton 1989; Etzioni 1990; Laird,
Newell, & Rosenbloom 1987; Bhatnagar & Mostow
1994) can be considered as learning operational rules
to make state-space problem solvers more efficient.
Minton’s (Minton 1989) PRODIGY /EBL learned con-
trol rules using explanation based learning. Bhatna-
gar and Mostow (Bhatnagar & Mostow 1994) designed
FAILSAFE to learn control rules using EBL when the
underlying domain theory was recursive. The objective
of case-based reasoning system such as CHEF (Ham-
mond 1990) and PRODIGY/ANALOGY (Veloso 1994)
is also to speed up the problem solving process by re-
membering previous problem solving experiences and
replaying them in a similar context. Most of these speed
up learning systems are limited to learning from state-
space planning systems and have difficulty analyzing
the space of partial-order planners. However, recently
both EBL (Kambhampati, Katukam, & Qu 1996) and
derivational analogy techniques (Ihrig 1996) have been
extended to learn from partial-order planners.
Kambhampati et al. (Kambhampati, Katukam, &
Qu 1996) propose a technique based on EBL to learn
control rules for partial-order planners and apply it to
SNLP and UCPOP to learn rejection-rules. Rejection-

type rules are learned by generalizing the explanation
of the planning failures. DerSNLP+EBL (Ihrig 1996)
extends SNLP+EBL by learning from successes as well
as failures. Using derivational analogy techniques, it
remembers a past planning episode and replays its valid
decisions when a similar problem arises again.

However, UCPOP+EBL, SNLP+EBL and Der-
SNLP+EBL do not aim at learning to improve the qual-
ity of their solutions and it is not clear how their ex-
planation construction technique can be extended to
provide explanation for the system’s failure to pro-
duce better quality plans. Unlike UCPOP+EBL’s and
SNLP+EBL’s failed partial plans, a lower quality plan
does not contain any inconsistencies that can be re-
gressed to compute the essential conditions that predict
that taking the sequence of decisions of the failed case
will lead to the failure.

The problem is that the autonomous speed up learn-
ing systems cannot learn operational quality rules be-
cause they are unable to recognize the learning oppor-
tunities (i.e., the better plans) when they arise. The
plan quality measurement knowledge is required to (a)
recognize a learning opportunity when it arises and (b)
to analytically learn from this episode. Empirical learn-
ing, however, can be used by an apprenticeship system
to learn operational rules by assuming that an exter-
nal agent is always able to provide a better solutions.
For instance, SCOPE (Estlin & Mooeny 1997) assumes
that an omniscient expert is available to always pro-
vide the system with better solutions. For each of the
planning-decisions points, it collects all the positive de-
cisions (i.e., the user’s decisions) and the negative deci-
sions (i.e., the system’s decisions). These positive and
negative decisions are then passed to FOIL (Pazzani &
Kibler 1992), an inductive/EBL concept learner, to in-
duce the features of the partial plan whose presence is
predictive of a positive decision. These concepts serve
as operational quality rules that can be used during
planning. Induction is certainly a good technique when
no plan quality measurement knowledge is available but
a sub-optimal strategy when such knowledge is avail-
able. In addition, because SCOPE does not incorporate
any explicit representation of the quality goal into the
search control rules, its rules can provide wrong guid-
ance if the system’s quality goals change.

Systems that possess quality knowledge

One reason that the problem of improving plan quality
has been overlooked is the (often implicit) assumption
that two separate phases of planning and scheduling
have to be followed to solve most complex real world
problems. The planner supplies a sequence of actions to
achieve the desired goals and the scheduler assigns the
resources and times to these actions optimizing some
quality function of the resources. However, as attempts
to automate the management of complex systems are
made, it is becoming increasingly clear that the sharp
division between planning and scheduling is neither al-
ways possible nor desirable (Wilkins & Desimone 1994;

102

Tate, Drabble, & Kirby 1994; Muscettola 1994). Re-
cently, some attempts have been made to integrate
the two phases (Muscettola 1994) and/or to extend
the classical planning framework to enable planners
to reason about the resources and to optimize the
resource consumption (Tate, Drabble, & Kirby 1994;
Wilkins & Desimone 1994). Decision theoretic plan-
ners (such as PYRRHUS (Williamson 1996)) attempt
to construct plans that optimize a decision value quality
function. However, little work has been done to learn
planning knowledge for such systems.

Perez (Perez 1996) describes QUALITY, a learn-
ing system, implemented on top of PRODIGY, that
attempts to improve PRODIGY’s control rules so that
it can generate better quality plans. Given a problem
and simple quality measurement knowledge, the system
generates a plan and asks an expert to criticize it. If the
expert’s criticized solution is better than QUALITY’s
solution, according to the given metric, then QUALITY
generates a trace of the user’s plan and compares it with
its own trace to identify the decision points where user’s
choice differs from the system’s choice. It assigns a cost
value to each node in user’s and the system’s planning
traces using the given quality metric. QUALITY learns
operational rules from those goal-nodes which have a
zero cost in the user’s trace and non-zero cost in the
system’s trace. A goal-node’s cost can be zero because
(a) it was true in the initial state (b) or because it was
added as a side-effect of an operator chosen to achieve
some other goal. The reason for the difference in the
cost values of the two nodes is identified by examining
both trees and the explanation thus constructed forms
the antecedent of the control rule learned by QUAL-
ITY. Perez also suggests control knowledge trees to en-
code global knowledge.

Another learning method to improve plan qual-
ity, which also runs on PRODIGY, was proposed by
Iwamoto (Iwamoto 1994). This technique also uses
intra-solution learning to acquire control rules for near-
optimal solutions in LSI design. It builds an explana-
tion by backpropagating the weakest conditions, but
excluding the conditions expressed in terms of predi-
cates related to quality. Iwamoto’s system only learns
operator preference rules and does not learn binding
and goal preference rules.

Both these systems are based on a state-space plan-
ner and only translate simple quality metrics. The ap-
proach taken in PIPP offers an improvement, because
it can learn planning quality for partial-order planners,
by operationalizing complex quality metrics.

Conclusion

To bridge the gap between theory and practice, Al
planners need to be able to improve the quality of the
plans they produce. Value-theoretic functions provide a
well-developed framework for representing and reason-
ing with complex tradeoffs between various competing
quality factors. This work reports a testbed system,
PIPP, that we are developing to test the effectiveness

of using value-theoretic representation of plan quality to
automatically acquire search control heuristics to gen-
erate better quality plans. The preliminary results are
encouraging, particularly because this approach can be
grounded in techniques used by real world planning re-
searchers and operations research experts for represent-
ing and eliciting preference knowledge. Further empiri-
cal studies are in the works to evaluate its performance
under a wider range of problem types.

References

Bhatnagar, N., and Mostow, J. 1994. On-line learning
from search failures. Machine Learning 15:69-117.

Cohon, J. 1978. Multiobjective programming and plan-
ning. New York: Academic Press.

de Soete, G., and Hubert, F. 1990. New developments
in psychological choice modeling. New York: North-
Holland.

Drabble, B.; Gil, Y.; and Tate, A. 1995. Acquiring
criteria for plan quality contro. In proceedings of the
1995 AAAI Stanford Spring Symposium Workshop on
Integrated Planning Applications.

Ephrati, E.; Pollack, M.; and Milshtein, M. 1996. A
cost-directed planner: Preliminary report. In Proceed-
ings of the Thirteenth National Conference on Artifi-
cial Intelligence, 1223-1228. Cambridge, MA: AAAI
Press/MIT Press.

Estlin, T., and Mooeny, R. 1997. Learning to improve
both efficiency and quality of planning. In Proceedings
of IJCAI Morgan Kaufmann.

Etzioni, O. 1990. A structural theory of explana-
tion based learning. Technical Report CMU-CS-90-
185, PhD Thesis, Carnegie Mellon University.

Fishburn, P. 1970. Utility theory for decision making.
New York: Wiley.

Haddawy, P., and Hanks, S. 1998. Utility models
for goal-directed, decision-theoretic planners. omputa-
tional Intelligence 14(3).

Hammond, K. 1990. Case-based planning: A frame-
work for planning from experience. Cognitive Science
14(3).

Hensher, D. 1981. Applied discrete-choice modelling.
New York: Wiley.

Thrig, L., and Kambhampati, S. 1997. Storing and
indexing plan derivations through explanation-based
analysis of retrieval failures. Journal of Artificial In-
telligence Research 7:161-198.

Thrig, L. 1996. The design and implementation of a
case-based planning framework within a partial order
planner. Technical Report ASU-CSE-96-007, PhD the-
sis, Department of Computer Science, Arizona State
University.

Iwamoto, M. 1994. A planner with quality goal and
its speed up learning for optimization problems. In
Proceedings of Second International Conference on Al
Planning Systems, Chicago, IL, 281-286.

103

Kambhampati, S.; Katukam, S.; and Qu, Y. 1996.
Failure driven dynamic search control for partial order
planners. Artificial Intelligence 88:253-316.

Keeney, R., and Raiffa, H. 1993. Decisions with mul-
tiple objectives : preferences and value tradeoffs. New
York: Cambridge University Press, 2nd edition.

Laird, J.; Newell, A.; and Rosenbloom, P. 1987. Soar:
An architecture for general intelligence. Artificial In-
telligence 33(3).

Louviere, J. 1988. Analyzing decision making : metric
conjoint analysis. Newbury Park: Sage Publications.

Minton, S. 1989. Expalantion-based learning. Artifi-
cial Intelligence 40:63-118.

Mitchell, T.; Keller, R.; and Keddar-Cabelli, S. 1986.
Explanation based learning: A unifying view. Machine
Learning 1:47-80.

Muscettola, N. 1994. HSTS: Integrating planning and
scheduling. In Zweben, M., and Fox, M., eds., Intel-
ligent Scheduling. San Francisco: Morgan Kaufmann.
169-212.

Pazzani, M., and Kibler, D. 1992. The utility of
background knowledge in inductive learning. Machine
Learning 9:57-94.

Perez, A. 1996. Representing and learning quality-
improving search control knowledge. In Saitta, L.,
ed., Proceedings of the Thirteenth International Con-
ference on Machine Learning. Los Altos, CA: Morgan
Kaufmann.

Ruby, D., and Kibler, D. 1993. Learning step-
pingstones for problem solving. International Jour-
nal of Pattern Recognition and Artificial Intelligence
7(3):527-540.

Tate, A.; Drabble, B.; and Kirby, R. 1994. O-Plan2:
An open architecture for command, planning and con-
trol. In Zweben, M., and Fox, M., eds., Intelligent
Scheduling. San Francisco: Morgan Kaufmann. 213~
240.

Veloso, M. 1994. Learning by Analogical Reasoning.
Berlin: Springer Verlag.

Wilkins, D., and Desimone, R. 1994. Applying an Al
planner to military operations planning. In Zweben,
M., and Fox, M., eds., Intelligent Scheduling. San
Francisco: Morgan Kaufmann. 685-710.

Wilkins, D. C. 1988. Knowledge base refinment us-
ing apprenticeship learning technques. In Proceedings
of the National Conference on Artificial Intelligence,
646-651. Menlo Park, CA: AAAI Press.

Williamson, M. 1996. A value-directed approach to
planning. Technical Report TR-96-06-03, PhD thesis,
University of Washington.

Yu, P. 1985. Multiple-criteria decision making : con-
cepts, techniques, and extensions. New York: Plenum
Press.

