
Design Patterns for Planning Systems

Qiang Yang and Philip W. L. Fong and Edward Kim
School of Computing Science

Simon Fraser University
Burnaby, BC Canada V5A 1S6

qyang@cs.sfu.ca

Abstract

In this work, we are interested in building a software
engineering discipline for planning system design. Our
objective is to enable planning systems to become more
configurable and modular, with the help of object li-
braries capturing well designed experiences and a com-
mon planner-design pattern catalog. It is hoped that
the planning systems thus constructed will be more
reusable and modifiable. It is also hoped that this effort
will contribute to the movement towards industrially
applicable planning systems, to supply this dynamic
subfield of AI with a rigorous software engineering dis-
cipline than just smart algorithms for plan generation.
To this end, we focus on an object oriented design
methodology to planning. We focus on a collection
of design patterns for modularizing different search-
related parts of a typical planning system. We illus-
trate our concept using the C++ language, although
our experience apply equally well to all object oriented
languages. This work is represents our continuing re-
search in knowledge acquisition and maintenance effort
in planning systems design.

Introduction

This paper summarizes our experience in applying de-
sign patterns to develop intelligent planning systems
based on heuristic search. Over the past few years, we
have built a number of artificial intelligence (AI) plan-
ners, schedulers, and other kinds of problem solvers
in languages including Common Lisp, C, and C++.
As experience cumulates, we intended to design an
object-oriented framework for building intelligent prob-
lem solvers. Our hope is that the framework allows var-
ious reusable AI techniques to be mixed and matched in
a highly flexible manner. The effort resulted in a C++
framework called Plan++. Our recent implementation
of AI planners, as well as our current focus in text-based
planning systems, are all done on top of this framework.

In this paper, we report how the design pattern cat-
alog (GHJV94) has shaped the way we design our plan-
ning system’s framework. As a starting point, we will
concentrate on search aspects of planning algorithms,
leaving the rest of the planning framework as a part of
our future work. Our interest here is twofold. First, we

want to demonstrate how design patterns can be em-
ployed to structure a search-based planner design, so
that the complexity of constructing AI software can be
managed. Second, we want to discuss the role played
by a design pattern catalog during our process of de-
signing and evolving the framework. We want to re-
port how the design pattern catalog allowed us to flex-
ibly configure planning systems for different applica-
tions. Our work follows closely the current trend in AI
Planning in making the systems more modular (BVB96;
BHB97).

We will first introduce the concept of design pat-
terns. We then discuss planning as search (section),
and the need to reuse past planning frameworks (sec-
tion). We will show several design patterns useful for
modular planner design applied to our planner frame-
work. We report the issues involved in each decision,
the solution we adopted, the alternatives we considered,
and in what manner the design pattern catalog helped
us in coming up with the solution. We summarize our
experience in section .

Design Patterns

Design pattern is a recent movement in software engi-
neering. The basic concept is to reuse design knowledge.
Design pattern is a genre by which standard, expert-
tested solution to canonical design problems is rigor-
ously is documented. The term design pattern could
also refer to the solution itself. Such design patterns
usually solve a design problem by imposing new orga-
nization in the software, and layout a particular pro-
tocol in which individual computational entities should
interact. By conforming to such restriction, the target
program would become more maintainable. For exam-
ple, iterators "provide a way to access the element of
an aggregate object sequentially without exposing its
underlying representation." Iterators can be found in
nearly all object-oriented container class library. It de-
fines a protocol by which client subprograms can access
the internal of an aggregate object.

Design patterns can be shown informally as boxes
with connections between them. A popular notation is
an class/object diagram known as the OMT diagram
(Object Modeling Technique). Figure 1 (a) shows

104

From: AAAI Technical Report WS-98-03. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

AbstractClaasNarne

Abstract Operationl0
Type AbstraetOperation20

(a)

Concrete Class Name

Operation0
Type Operation20

instanceVariablel
Type instanceVariable2

(part-of relationship) (a solid circle means more than one)

~ (class Inheritance)

(creation relationship)
(acquaintance relationship, that is,
LineShape keeps a reference to Color)

(b)

Figure 1: Introduction to OMT diagram

OMT notation for abstract and concrete classes. A class
is denoted by a box in the figure. The key operations
of the class appear below the class name. Any instance
variables appear below the operations.

Figure 1 (b) shows various relationships between
classes. The OMT notation for class inheritance is a
triangle connecting a subclass (LineShape) to its parent
class (Shape). The rest of the notations are explained
in the figure. In short, OMT is a convenient way of
communicating good design experiences in object ori-
ented design, showing relationships between classes and
objects.

A collection of well-used design patterns forms a de-
sign pattern catalog. Such catalogs are widely available
on the Internet and in various book formats. Work in
design pattern mining from large-scale software code is
also starting to generate important results.

Planning as Search

A significant number of AI and combinatorial opti-
mization problems are instances of heuristic state-space
search (Pea84). A state space is a set of states plus a set
of operators. Planning is no different. In planning one
can differentiate between state-based search (BK95)
and plan-space search (Wel94; Yan97). In both frame-
works, one define a search engine and a processing mod-
ule for generating a set of successor nodes from a given
current node. Both styles of planning are instances of
a state-space search.

In a state-space search framework, an operator is a
transformation that generates one or more states given
the input of a state. A state space, therefore, implicitly
defines a graph in which nodes are states, and edges
are operator applications. A state space search is basi-
cally a graph searching problem such that nodes in the
underlying graphs are generated incrementally as the
search proceeds. The goal of a search is a set of states
with some interesting properties. A search is successful

if it finds one of the goal nodes. A typical search routine
looks like the following:

plan(init-plan, operators, goal-condition):
mark init-plan as "generated";
while (not all generated nodes are expanded) do

select a node n that is generated but not expanded;
if (n satisfies the goM-condition) then return
generate all or some of the successor nodes n~ of n;
mark all nI as "generated";
mark n as "expanded";

end while;
return "failure";

end Search.

Intuitively, a plan node is "generated" the first time
it is visited. A node is "expanded" if all its neighboring
nodes are "generated". The efficiency of a search is
partly determined by the order in which the state space
is traversed, which, in turn, is determined by the order
in which nodes are selected for expansion, the definition
of the operator, and the representation of the states.
The efficiency is also defined by how and in which order
a successor node is generated; in partial order planning,
a node is generated by resolving threats and achieving
open-preconditions. In HTN planning, a node can also
be generated by reducing a non-primitive task by a task
network. In case based planning a variety of repair
operations can be used to generate successor nodes.

Throughout the paper, we will use a sample AI plan-
ning domain to illustrate the effect of applying the de-
sign patterns. An instance of the water-jug planning
problem is often described as follows:

"You have two jugs { A, B}, jug A holds m litres
(L) of water, jug B holds n L of water. You are
allowed to do three things with the jugs: fill up a
jug, empty a jug, or pour the content of a jug to
another (until one of them is either full or empty).
Find a sequence of steps which will result in a jug
holding kL of water."

For example, in a sequel of the movie Die Hard, the
protagonists are given two jugs of capacity 3L and 5L,
and they are asked to measure out exactly 1L from the
two jugs. Here a state can be represented by a vector
(p, q), where p and q are the amount of water in jug
and B respectively. The operators are fillJug0, emp-
tyJug0, and pourContentsOfJugIntoOtherJug0; thus,
the neighbourhood of a node in the state-space is gen-
erated by the execution of all possible operators from
this state; then the goal states are all (p, q) so that one
ofporqis 1.

Reusability in Planner Design

Reuse is a unique challenge in search-based applications
because of several reasons:

1. Frequent shift of representation. The efficiency and
quality of search depends largely on the representa-
tion of state space. Designers building search appli-
cation must experiment with multiple representation

105

before an appropriate one is found. A reusable search
engine should anticipate such frequent shift of repre-
sentation.

2. High demand for flexible composition. Almost no sin-
gle AI technique can be claimed as being omnipotent.
Most of the techniques are heuristic in the sense that
it works well in some domain, but not in other do-
mains. Most of the time, more than one search tech-
nique has to be combined to yield satisfactory per-
formance. Reuse, therefore, means not so much as
the direct recycling of a predetermined set of search
techniques, but instead the ability for future users to
pick and choose various techniques that fits their do-
main, and to compose these techniques together in a
flexible manner.

3. Obscurity of module boundary. AI techniques are
very difficult to modularized. There are implicit
interaction and hidden dependency among various
components of the system. It takes a very in depth
understanding of these techniques in order for the
system architect to cleanly isolate the components.

The goal of developing the Plan++ framework is to
provide an architecture in which individual search tech-
niques can be mixed and matched in a flexible manner,
so that search technologies can be readily applied to a
wide range of application domains.

Encapsulating the Variation of State
Representation

Variations in State Representation
The core search facilities is provided by a search engine
object. Users construct a search engine object by sup-
plying their problem description, and subsequent invo-
cation of a member function will return solution search
path to the users.

template <class State>
class Search {
public :

¯ .. ¯

Search(const State~ start_state,)
SearchPath<State> findSolution()

// Get solution. Return search path.

};
Now, within the :findSolution() member function
implement the generic search algorithm in section . It
is clear that the implementation of findSolutton()
needs a way to test if a state object satisfy the goal
(goal verification mechanism), and a way to generate
the neighbouring states (successor generation mecha-
nism). We want to give the users of Plan++ the free-
dom to represent their states in a way that best fits their
application domain. As such, the search engine should
assume minimal knowledge about the implementation
of the state objects. However, both the goal verification
and the successor generation mechanisms are dependent
on the search domain and its representation:

¯ Different domain have different ways of specifying
and verifying a goal. As we move from one domain to
another, or as the representation of states changes, a
goal will be represented differently, and the algorithm
used for checking a goal will be different.

¯ Different domains have different state space topolo-
gies. In particular, the representation of operators
determines how the successors are generated.

In fact, even if we stay in one domain, and fix the rep-
resentation of states, both the goal verification and suc-
cessor generation mechanisms may still vary:

¯ As the application mature, one might want to search
for goals that previous goal specification method fails
to represent.

¯ One might discover that the reformulation of the
search problem by altering the topology of the search
space might speed-up the search procedure. This can
be achieved by providing multiple successor genera-
tion strategies and allowing users of the application
to configure the system with one of the alternative
strategies. A real-life example is the SNLP planner
(MR91) and its variants with various threat removal
strategies (PS93). All SNLP-based planners search in
the same plan space. The implementation of states
and goal verification mechanism are therefore fixed.
However, the successor generation mechanism is dif-
ferent for different threat-removal strategies.

To summarize, we are dealing with the following issues:

¯ The generic search procedure is more or less stan-
dard. Its behavior varies when we have a different
mechanism for verifying goals and generating succes-
sors. We want to provide a way for the users of our
framework to configure the search engine with the
appropriate behavior.

¯ We anticipate that both the goal verification and suc-
cessor generation mechanisms will evolve as the users
attempt to build increasingly sophisticated problem
solvers. We want to provide an architecture that sup-
ports the enhancement and adaptation of the search
engine.

¯ The goal verification and successor generation mech-
anisms access the state objects, which the search en-
gine should assume zero knowledge if flexibility is
to be achieved. We want to completely insulate the
search engine from any access of the state objects.

To resolve the above issues, we adopted a design that
we later recognized to be an incarnation of the Strategy
pattern.

Goal Verifier

The Strategy pattern is applied to encapsulate the goal
verification mechanism. We define a goal verifier class
Goal<State>, which is a parameterized abstract base
class.

template <class State>

105

bool satisfied(State)
I findSolution0; O-

A
DomainSpecifieGoal I ~2 4
boo sat sfied(State)

I bool satisfied(State)

Figure 2: Goal

class Goal {
public :

. ..

virtual bool satisfied(coast State~ state)
= O;

}; /* Goal */

We then introduce into the search engine a pointer
that refers to the above abstract base class.

template <class State>
class Search {
public :

Search(const State~ start_state,
Goal<State>* goal,
....);

SearchPath<State> findSolution()
// Get next solution

private :
Goal<State> *goal_ ;
// Pointer to goal object

}; /* Search */

When the findSolution() function needs to check
if a state statisfies the goal of the search, it delegates
the responsibility to the object referenced by goal_.

template <class State>
SearchPath<Stat e>
Search<State> : : ~indSolution()

° ...

if (goal_->satisfied(state))

... °

} /* findSolution */

With the above design, even if we change the goal
verification mechanism, the search engine does not need
to be changed. All that is required is that the users
configure the search engine with a different concrete
goal verifier object. The design is summarized in figure
2.

We illustrate the implication of this design using the
water-jug example domain. Suppose the states in this
domain are encapsulated in the class JugState. The
goal of the water-jug problem is to reach a state in
which one of the jugs holds a specific volume of liquid.
To implement such goal verifier, we define a concrete
subclass of Goal<JugState>.

~ata> sucg~so~3cnem~r_

Iexpand(State) ~ ̄

A
1

expand(State)DomainSpecificSuccc,ssor I 1[¢xpsnd(State) [DomatnSpeclficSuccess~r2

Search<State>

[findSolutlonO; (3- - -

I succcssorOcncrater_->cxpand(statc)

Figure 3: Successor

class JugGoal : Goal<JugState> {
public :

JugGoal(int target_volume) : t_(target_volume)
bool satisfied(const JugState is)

// Check if any of the jug in state js
// holds target_ litre of liquid.

} /* satisfied */
private :

int t_ ;
}; /* JugGoal */

Now, suppose we decide to use another goal condition
for our planner, and want to search for states so that
the volume of both jugs are specified. For example, we
want jug A to hold 1L and jug B to hold 2L. To allow
such goal to be specified, we define a second goal verifier
class for the jug domain.

class JugGoal2 : Goal<JugState> {
public :

JugGoal2(int tl, int t2)
tl_(tl), t2_(t2)

bool satisfied(const JugState is)
// Determine if both jugs in js
//satisfy the goal condition.

} /* satisfied */
private :

int ti_, t2_;
}; /* JugGoal2 */

Notice that the change of the definition of a goal in
the water-jug domain does not require any modification
of the search engine.

We can also easily modify the goal condition for it
to serve a partial-order planner. In this case the class
JugState encodes all necessary elements of a partial
order plan, including steps, variables, initial and goal
steps, causal links, threats and open preconditions.

class JugGoal3 : Goal<JugState> {
public :

JugGoal3() : {
bool satisfied(JugState partial_order_plan)

// return True when
// (1) no open preconditions exist and
// (2) no (negative) threats exist
// for all causal links

} /* satisfied */

}; /* JugGoal3 */

Successor Generator

The Strategy pattern can be applied to isolate the vari-
ation of the successor generation mechanism in a simi-

107

lar way (see figure 3). We define successor generator
class Successor<State>, which, again, is a parameter-
ized abstract base class.

template <class State>
class Successor {
public:

...,

virtual List<SearchStep<State> >
expand(const State~ state) =

....

}; /* Successor */

Again, we introduce an abstract re~rence ~om the
search engine to the abstract Successor<State> class,
and delegate successor generation responsibility to the
re,fenced object.

template <class State>
class Search {
public:

Search(const State~ start_state,
Goal<State>* goal,
Successor<State>* successor,

....);
SearchPath<State> findSolution();
// Get next solution
.°°°

private:
Goal<State> *goal_;

// Pointer to goal object
Successor<State> *successor_;

// Pointer to successor generator

}; /* Search */

template <class State>
SearchPath<State>
Search<State>::findSolution()

°...

successor_->expand(state)
°°..

} /* findSolution */

State-based Search Let us examine how the above
design streamline the evolution of the water~ug plan-

ner To implement the water~ug planner, a concrete
successor generator class is derived ~om the abstract
base class Successor<Jug> The expand() method

overridden

class JugSuccessor :
public Successor<JugState> {

..°.

List<SearchStep<JugState> >
expand(const JugState js)
// apply all possible operators to this jugState
// ie. fillJugA(), emptyJugB(),
// pourContentsOfJugBlntoJugA(), etc.

// return list of all possible successor states;
} /* expand */

};

After examining the solution of a number of instances
of the water-jug problem, we notice that the macro
operator "emptyJugB, pourContentsOfJugBIntoJugA"
are often used in a solution. We then conjecture that
introducing this subsequence as a new operator to the
problem might speed-up the search significantly. We
build a new successor class for the problem.

class JugSuccessor :
public Successor<JugState> {

List<SearchStep<JugState> >
expand(const JugState is)
// A variation of JugSuccessor
// that has an extra operator.

} /* expand */

};

After testing the new successor generator, we notice
that the introduction of the new operator increases the
branching factor of the search, and actually degrades
the performance of the search engine. We then decide
to switch back to the original successor generator. No-
tice that none of the other classes has to be changed
during the above evolution of the program. (The tech-
nique of building new operators by combining the old
ones are called macro-operator learning. It is known
that such learning does not guarantee speedup for the
resulting problem solver. Such anomaly is called the
utility problem. The scenario discussed here is only
a mock-up example. Real macro-operator learning is
more complex.)

Likewise, we can also easily choose to use a partial-
order planning algorithm to implement successor gen-
eration. Here is an example:

class JugSuccessor :
public Successor<JugState> {
// A partial order planning example...

List<SearchStep<JugState> >
expand(const JugState is)
// Jug state js is now a partial order plan.
// Consider the plan is:
// If there are threats to a causal link
// resolve the threats,
// producing successor states;
// Else if there is an open precondition ?pre
// Find all operators that can achieve ?pre
// Find all existing steps that can achieve ?pre
// Produce successor plans by inserting
// new causal links
// for achieving ?pre
// Endif
// return the list of all successor states;

} /* expand */

};

108

Encapsulating Variation in Search

Control Strategy

Variations in Search Control Strategy

Search control strategy is the policy by which the search
engine is employed to select a node for expansion. In al-
most all cases, a search control strategy is implemented
with the help of a node store; generated nodes are stored
in the node store. Every time the search routine ex-
pands a node, it requests a node from the node store. A
search control strategy therefore regulates which node
in the node store should be returned to the search rou-
tine. For example, breadth-first search (BFS) is realized
by making the node store a queue, thereby imposing
a first-in-first-out (FIFO) ordering in node expansion.
As such, the node store together with the ordering of
nodes imposed by the search control strategy forms the
instantaneous state of the search process.

Over the years, the AI community has devel-
oped many different search strategies. The simplest
ones are strategies like breadth-first search or depth-
first search (DFS). Others like depth-first iterative-
deepening (DFID) (Kor85) or A* utilizes computational
resources more efficiently and intelligently. No single
search strategy is the best in all cases. Users must
analyze the context of the application, and figure out,
either empirically or heuristically, the search strategy
that best fits their needs. In other words, the imple-
mentation of the search engine must be reconfigurable
so that users can select the right search control strategy
to use, either at compile-time or at run-time.

On the other hand, the search routine could be used
in many different ways. Some users want to find one so-
lution, some want to find all, while others might want
to examine solutions one by one, picking the one that
they are satisfied with. A search routine should there-
fore be resumable; that is, after finding a solution, the
users should be allowed to restart it again. Multiple
solution can then be obtained by successively resuming
the search.

To summarize, we are dealing with the following is-
sues:

* We want to avoid a permanent binding between the
search engine and its implementation of its node
store, so that reconfiguration can occur at both
compile-time and run-time.

¯ We anticipate that, as the search application devel-
oped by our users get more and more sophisticated,
they will want to experiment with newer and more
special purpose search strategy. Standard search
strategies provided by our library is going to be be-
come limited. We need an arrangement which allows
them to create new search control strategy without
recompiling the rest of the application.

¯ To allow users to resume a search process, the instan-
taneous state of the search has to persist the life-time
of the search process. We need a design in which the
instantaneous state of the search can be retained so

that the search process can be resumed and the next
solution is sought.

Search Controller

The Bridge pattern is applied to resolve the above is-
sues. In particular, we introduce a search controller
class to encapsulate the implementation of the node
store.

template <class State>
class SearchControl
public:

....

virtual SearchNode<State> remove() =
virtual void

insert(const SearchNode<State>~ node) = O;

}; /* SearchControl */

The search engine maintains an abstract coupling with
the search controller, thereby accessing its functionali-
ties via a well-defined interface.

template <class State>
class Search <
public:

Search(const State~ start_state,
Goal<State> * goal,
Successor<State> * successor,
SearchControl<State> * control);

SearchPath<State> findSolution();
// Get next solution

private:
Goal<State> *goal_;

// Pointer to goal verifier
Successor<State> *successor_;
// Pointer to successor generator
SearchControl<State> *control_;

// Pointer to search controller
....

}; /* Search */

template <class State>
SearchPath<State>

Search<State>::findSolution()

control_->remove()

control_->insert(node)
.°°,

} /* findSolution */

To build a new search controller, one simply develop a
concrete subclass of the SearchControl<State> class.
This design, as depicted in figure 4, resolves the issues
in the following way:

¯ Users can configure the search engine with any search
control strategy by passing the appropriate concrete
search controller into the constructor of the search
engine.

109

ISeatchController<Smtc>]
inserlO
remove()

controller

ConcmteContmller I <State>
lnscrtO
removeO

A
ConcretcControlier2<State>
insertO
remove..()

T

I I
controller_->remove (node)

I controller->Insert (node)

Figure 4: Controller

¯ There is a generic architecture for incorporate new
search control strategies that are not found in our
library.

¯ Since the search controller captures the instantaneous
state of a search process, and since it has a life-time
independent of the search process itself, it can be
used to resume the search process when necessary.

Again, we illustrate the implication of the above de-
sign by looking at some examples. Our water-jug plan-
ner uses a breadth-first search strategy to conduct the
search. The BFS<State> controller uses a queue as the
node store to impose a FIFO ordering in node expan-
sion.

template <class State>
class BFS : public SearchControl<State> {
public :

.. ¯ .

void insert (const
SearchNode<State>~ node)

queue_, enqueue (node)
// Put node into queue.

} /* insert */

SearchNode<State> remove()
SearchNode<State> node ;
if (!queue_.empty())

// Proceed if queue isn’t empty.
node = queue_, front ()

// Fetch the first node in the queue.
queue_, dequeue ()

// Remove the first node from queue.

} /* if */
return node ;

// Return node.
} /* remove */

protected:
Queue<SearchNode<State> > queue ;

// Queue as the node store.

};

Examining the search performance, we notice that
the same nodes in the search spaces are expanded more

than once. This is due to the fact that the same state
can he generated by two parent nodes, and both in-
stances are introduced into the queue. It means that
the above BFS controller should only be used with a
problem in which the search space is a tree. We design

a second BFS controller which checks if a node is al-

ready in the queue before inserting it. Let us call this
controller BFS2.

template <class State>
class BFS2 : public SearchControl<State> {

public:

void insert(const SearchNode<State>~ node)

if (! set_.member(node))
// Proceed if node hasn’t been generated.

queue_.enqueue(node);
// Put node into queue.

set.insert(node);
// Record that node is generated.

} /* if */
} /* insert */
// remove() remains the same.

protected:
Queue<SearchNode<State> > queue_;

// Queue as the node store.
Set<SearchNode<State> > set_;

// Set to carry generated nodes.

Notice that no other part of the search ~amework has
to be changed when we switch to the BFS2 controller.

Search Controller Decorator

An alert reader will notice that most of the code for
BFS<State> and BFS2<State> are the same. The com-
monality of code is in fact not an accident. Consider the
implementation of a DFS controller and its variation for
searching a graph.

template <class State>
class DFS : public SearchControl<State> {
public:

void insert(const
SearchNode<State>~ node)

stack_.push(node);
// Push node into stack.

} /* insert */

SearchNode<State> remove()
SearchNode<State> node;
if (!stack_.empty())

// Proceed if stack isn’t empty.
node = stack_.top();

// Fetch the top node in the stack.
stack_.pop();

// Delete the top node from stack.
} /* if */
return node;

// Return node.
} /* remove */

protected:
Stack<SearchNode<State> > stack_;

}; /* DFS */

110

template <class State>
class DFS2 : public SearchControl<State> <

public :
.. °

void insert (const
SearchNode<State>~ node)

if (! set_.member(node))
// Proceed if node hasn’t been generated.

st ack_. push (node)
// Push node into stack.

set_. insert (node)
// Record that node is generated.

} I* if *I
} I* insert *I
// remove() remains the same.

protected :
Queue<SearchNode<State> > queue_;

// Queue as the node store.
Set<SearchNode<State> > set_;

// Set to carry generated nodes.

};

The repetition of code simply suggests that the no-
tion of "graph version of a search control strategy" is an
individual unit of reuse. In general, there are many vari-
ations to a given search control strategy. For example,
a bounded search version of a search control strategy
restricts search depth to a specific level, and a graph
version of a search control strategy checks if a node is
visited already before it is inserted to the node store.
There is a depth-first iterative-deepening version of A*.
In fact, depth-first iterative-deepening itself could be
considered a variation of DFS. Coding such variations
for each search control strategy could be a very tedious,
monotonic task. It will be very desirable if one can de-
fine the same variation once and then apply it to all
search controllers. How do we capture behavioral vari-
ations of search controllers as reusable objects that can
be flexibly combined with existing search controllers?

Examining the actual variations, we realize that they
are nothing more than message transformations, that
is, they perform additional regulation before the actual
node insertion or removal occur. Decorator seems to be
a natural choice to resolve the above issues. In partic-
ular, we define a ControllDecorator<State> class.

template <class State>
class ControlDecorator :
public SearchControl<State> {
public :

ControlDecorator (
SearchControl<State> * controller)

// Constructor
virtual SearchNode<State>

remove() =
// Remove a node

virtual void insert(const
SearchNode<State>~ node) = 0;

// Insert a node

SearchColltrollcr<State> ,i
in.riO

I
i.~.O I I J.~.O o---I t
...... 0 / rem°veO O" ""]1.,.~.o [[contron.r_-

~no~e,;l

Figure 5: Control]er Decorator

°...

private:
SearchControl<State> *controller_;

// Controller being decorated
}; /* ControlDecorator */

Here the insert and remove operations will be im-
plemented by classes such as BFS and DFS. These
classes only record the differences in data structures
that are used for implementing BFS and DFS and so
on. Reusable variations of behavior can now be en-
capsulated into the subclasses of the controller decora-
tor class. They perform message transformation, and
delegate the transformed message to the controller ob-
ject referenced by the member variable controller_ in
ControlDecorator<State>. For example, a statement
as follows can be used to instantiate the ControIDecc~
rator by an implementation of breadth-first search con-
trol:

ControlDecorator<JugState> (bfs)

With this design, as depicted in figure 5, a decorator
for graph searching can be coded as follows.

template <class State>
class GraphControl :
public ControlDecorator<State> <

public :
GraphControl(SearchControl<State> * control)

: ControlDecorator<State>(control)< }

void insert(const SearchNode<State>~ node)
if (! set_.member(node))

// first perform data-structure specific operations:

ControlDecorator<State>::insert(node);
// then perform a data-structure independent operatioi

set_.insert(node);
} /* if */

} /* insert */
SearchNode<State> remove()
return ControlDecorator<State>::remove();
} /* remove */

protected:
Set<SearchNode<State> > set_;

}; /* GraphControl */

In the above, ControIDecoratoriStat%::insert(node)
implements a data-structure dependent insertion func-

111

tion. The statement common to all graph control rou-
tines, set_insert(node), is now abstracted out. Now
composing a graph version of BFS or DFS for the water-
jug domain becomes a simple task:

S earchControl<JugSt at e>
*bfs = new BFS<JugState>();

SearchControl<JugSt at e>
*ctrll = new GraphControl<JugState>(bfs)

SearchControl< SugSt at e>
*dfs = new DFS<JugState>();

SearchControl< JugSt at e>
*ctrl2 = new GraphControl<JugState>(dfs)

As we have seen, the application of Decorator pattern
allows reusable variations of search control strategies
to be isolated as independent components that can be
flexibly composed with other search controllers.

For example, we can define a bounded search decora-
tor, which introduces a bound to the search depth of
any search controller. To do that, it delegates inser-
tion messages to the underlying controller only when
the search depth is not exceeded. A removal message is
always delegated to the underlying search controller as
is. Such bounded search decorator can be coupled with
any search controller. This saves the need to define a
separate bounded version of every search controller.

Moreover, new search controllers can be built on top
of existing search controller. For example, a depth-first
iterative-deepening strategy repeatedly invoke depth-
first search with increasing search bound until a solu-
tion is found. It has a linear space usage (as in depth-
first search), but it guarantees optimality of solution (as
in breadth-first search). Because its asymptotic time
complexity is the same as both depth-first search and
breadth-first search, it is a very appealing search strat-
egy. Such a search controller can be defined as a dec-
orator object coupled with a search bound decorator,
which in turn is coupled with a depth-first search.

Summary

Frequent shift of representation, high demand for flex-
ible composition, and obscurity in module boundary
make reusing AI planning techniques extremely non-
trivial. In this paper, we summarized our experience
of applying design patterns to the design of a reusable
framework for search-based applications. We learned
several lessons in this process:

¯ The complexity of building AI planning applications
can be managed by good object-oriented design prac-
tices. Design pattern catalogs make such knowledge
accessible to AI system builders.

¯ The terminologies offered by the design pattern cata-
log greatly improved our communication. At first, we
had difficulty communicating the proper use of con-
troller decorator to our users. But then we use the
design pattern catalog to introduce the pattern be-
hind the code, then thereafter, they grasp it quickly.

¯ The way design patterns catalogs assist a software
designer can be very indirect. Although sometimes
we directly discern the applicability of a pattern (as in
the case of designing the controller decorator), most
of the times, it is the understanding of the principles
behind the design patterns that inspire our design
practices. Usually, it is only after finishing design
that we recognize that our design turn out to be an
instance of a known pattern.

¯ The above phenomenon reinforces the notion that
the explanation and elaboration of how issues are re-
solved in many pattern genre is the most valuable
part of a pattern. Most of the times, the actual so-
lution form is not recalled, but the technique being
used to resolve issues are quickly remembered and
applied.

Acknowledgment
The work is supported by grants from Natural Sci-
ences and Engineering Research Council of Canada
(NSERC), BC Advanced Systems Institute, ISM-BC
and Canadian Cable Labs Fund.

References
L. Nunes de Barros, J. Hendler, and V.R. Benjamins.
Par-kap: A knowledge acquisition tool for building
practical planning systems. In Proceedings of the 15th
IJCAL pages 1246-1251. Morgan Kauffman Publish-
ers, 1997.
Fahiem Bacchus and Froduald Kabanza. Using tempo-
ral logic to control search in a forward-chaining plan-
ner. Technical report, University of Waterloo, Water-
loo, Ontario, Canada, 1995. Available via the UI%L
ftp://logos.uwaterloo.ca:/pub/tlplan/tlplan.ps.Z.

L. Nunes de Barros, A. Valente, and V.R. Benjamins.
Modeling planning tasks. In Third International Con-
ference on Artificial Intelligence Planning Systems,
AIPS-96, pages 11-18, 1996.

E. Gamma, R.. Helm, 1%. Johnson, and 3. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

R. E. Korf. Depth-first iterative-deepening: an op-
timal admissible tree search. Artificial Intelligence,
27(2):97-109, 1985.
D. McAllester and D. Rosenblitt. Systematic nonlinear
planner. In AAAI ’91, pages 634-639, 1991.

J. Pearl. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley, 1984.
M. Peot and D. Smith. Threat-removal strategies for
partial-order planning. In AAAI ’93, pages 492-499,
1993.

Daniel Weld. An introduction to least-commitment
planning. AI Magazine, Winter, 1994:27-61, 1994.

Qiang Yang. Intelligent Planning -- A Decomposition
and Abstraction Based Approach. Springer-Verlag,
1997. ISBN 3-540-61901-1.

112

