From: AAAI Technical Report WS-98-03. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Acquisition and Maintenance of Text-based Plans

Qiang Yang and Kirsti Racine*and Zhong Zhang!
School of Computing Science
Simon Fraser University
Burnaby, BC V5A 156
http://www.cs.sfu.ca/cbr, (qyang@cs.sfu.ca)

Abstract

Text-based plans are plans whose steps and goals are
described in a textual format. In contrast to logic-
based plans — plans that are represented based on varia-
tions of a first-order logic format — such plans are much
easier for a domain expert to describe, and is getting
much easier to find given the tremendous growth of
the Internet. In this paper we assume that the user is
interested in an interactive plan retrieval system that
is based on a library of text-based plans. We focus
on two important issues on the maintenance of this li-
brary: the updating of the text-based plans themselves
and the maintenance of the indexes with which to re-
trieve these plans. We present techniques that address
the life-time maintenance of such plan libraries with
techniques drawing from information retrieval, neural
network learning and case based reasoning,.

Introduction

Text-based plans are plans whose steps and goals are
described in a textual format. In today’s business and
scientific environment, text-based plans are abound;
with the explosive interest in the Internet, text-based
plans can be easily found ranging from equipment
troubleshooting and software installation procedures to
cook-book recipes. Text-based plans are also found
to be more natural than logic-based plans for non-
computer experts to articulate. In many industrial ap-
plications, domain experts find it easy to describe the
steps in which to accomplish a certain goal and objec-
tive. Such step-by-step instructions on how to accom-
plishing something, in audio form or written form, can
be converted easily to a textual format.

In this paper, we focus on how to acquire and main-
tain a library of text-based plans for achieving user-
specified goals. Planning using the text-based plan li-
brary is inherently interactive in nature, with the user
incrementally specifying the plans to be retrieved and
reused. We will point out that the text-based planning
process builds on existing technologies of case based
reasoning or planning (BHK95; Ham90; Kol93c; Lea96;
Wat97).

Text-based planning is inherently interactive in na-
ture. In a nutshell, a user of the system starts out

113

by entering a goal description in natural language text.
The planning system then extracts out the important
key words for matching with the plans in the library.
The system will then enter a dialog with the user by
querying about index values. These values help iden-
tify a context for the correct plan to be selected. The
system ranks the candidate plans based on a similar-
ity based retrieval algorithm. Once a plan is found,
the system can recursively answer the user’s queries on
the details of any steps, taking these steps as subgoals
much like those in STRIPS or task network planning.
The subgoal matching is performed using search engines
and text-based matching algorithms.

In this paper, we will concentrate on the mainte-
nance issues regarding how to maintain a library of
text-based plans so that the plans are current and up to
date. We contend that maintenance for the text-based
plan library is also interactive in nature. The objective
is to lessen the burden on the human user such that
the resulting maintenance activities can be carried out
throughout the lifetime of a plan library.

We distinguish between three different types of main-
tenance activities in text-based planning. First, plans
may arrive from different data sources. These plans
must be normalized before they are used by the
users. Second, a comprehensive maintenance facility
are needed to decide when new plans added to a plan
library is redundant. Such a facility must have the abil-
ity to highlight the differences between two or more
text-based plans and minimize redundancy. Third, a
learning mechanism for updating indexes for retrieving
text-based plans based on user input must be designed.
Such a mechanism should evolve with the ever-changing
needs and preferences of the user with time.

Text-based Plans

Text-based plans can be in many different formats. For
brevity, we assume that a text-based plan is described
as a pair: { Goal, Solution). The first element of the
pair, the goal, is described in natural language sen-
tences. The second element is a solution in a step-
by-step format, where every step is also described in a
natural language sentence or a collection of key words.
An example is shown in Table 1, representing a text-

Question 1

Is the subscriber in pay status?

Question 2

What type of problem is being experienced?

Goal

Solution

Solve “no reception on low band”

1. Check no splitter on cable, fine tune TV channels.

2. If problem continues, unplug TV for 30 seconds, replug.

3. If problem continues, generate trouble ticket.

Table 1: A text-based plan in a Cable-TV domain

based plan in a Cable-TV troubleshooting domain.

In contrast, a logic based plan must describe more de-
tails in the representation of actions and goals, and such
descriptions must be consistent and clean. In a STRIPS
representation, for example, effects and preconditions
of actions must be explicitly given, and goals must be
explicitly encoded as literals. Such strict requirements
place a high burden on users who are not well versed in
logic or programming languages. It can also be argued
that a logic based representation results in knowledge
bases that are hard to maintain and update.

With a library of text-based plans, text-based plan-
ning is aimed at achieving the same objectives as
logic-based plans, namely goal attainment. The dif-
ference here is that instead of conducting plan genera-
tion with algorithms based on state-space search, text-
based planning relies on the retrieval from an available
library or libraries of plans. Upon receiving a goal to
be achieved, the main activities are to:

e retrieve candidate plans from text-based plan li-

braries or by invoking search engines;

compare retrieved plans to highlight differences and
relevance to the problem at hand;

if necessary, splice or merge candidate plans to arrive
at useful plans for solving the problem at hand;

¢ perform goal and subgoal analysis to allow planning
queries to be answered hierarchically;

e record action logs and plan execution transcripts to
maintain feedback from the user, and to mine such
logs to obtain useful information;

maintain and update the plan library and its indexing
mechanism in the lifetime of the plan libraries, using
the action logs and other data sources.

In this paper, we will focus on this last issue regarding
the maintenance of a library of text-based plans.

Text-based Planning and Case Based
Reasoning

One way to accomplish text-based planning is to re-
trieve plans that closely match the input goal descrip-
tions by a certain similiarity measurement. The re-
trieval process resembles a case-based reasoning frame-
work of retrieve-reuse-revise cycle. In this section, we
briefly review some elements of this process.

114

In case based reasoning (Lea96; Kol93c; Wat97), the
process of case based reasoning is described as a cy-

cle. The most effective mnemonic used to described
this process is the four Res (AP93):

1. Retrieve : Given the user’s query, retrieve the most
similar case(s) in the case base.

. Reuse : Reuse the appropriate case to try to solve
the problem.

. Revise : Revise the current solution, if it is inade-
quate to solve the current problem.

Retain : Save the revised case as a new case in the
case base, assuming the new case does not cause per-
formance decrease in the future.

Simplified, the process works as follows. The user
formulates a query for the system; many systems use
free form text queries, but the query structure is system
dependent. The system uses the query to retrieve the
appropriate case(s) that exist in the case base. Often,
the system returns a list of cases that are given relative
scores according to their similarity to the query. Either
the system reuses the case with the highest score or
the user is given the chance to select a case for reuse
from a list of similar cases. If the current case will
not appropriately solve the current situation, either the
user or the system revises the case to fit the current
problem. This newly generated case is retained in the
case base, so that it will be accessible to the next user
of the system.

Once the cases are obtained, they have to be prop-
erly indexed to allow for efficient retrieval. To this end,
feature indexing is an important task in authoring and
maintaining the case base. Feature indexing involves
determining which features of a case will be used to fa-
cilitate its retrieval. The features associated with a case
are combinations of its important descriptors, which
distinguish one case from the others.

After the features for all the cases in a case base have
been decided to be used as indexes, the next task in a
CBR system design is to decide on the weighting values
assigned to feature-value-case triples.

It should be noted that features and their values are
sometimes presented to the user in the form of ques-
tions and answers. This is the case in the Cable-TV
case base in Table 1 which we designed in the Cable-
TV troubleshooting domain. In this table, the system
takes an interactive mode of operation, taking answers

directly from the customer service representatives in the
Cable company, or from a database management sys-
tem. Based on the answers to the questions and the
weights attached to the question-answer-case triple, a
ranking score will be produced for the user to assess the
simtlarity of the case to the current situation.

After the similarity to the input query is computed
for each case, a set of highly relevant candidate plans in
a library are scored. Cases with high similarity scores
are presented to the user.

Maintenance Issues

In this section we consider three important issues on
the maintenance of a text-based plans. These issues
are how to normalize text-based plans, how to detect
redundant plans, and how to update the indexes used
for retrieving plans. In addressing this last issue, we will
also briefly describe how to retrieve a text-based plan
using similarity based retrieval similar to that done in
a case based reasoning system.

The Normalization Problem

Formulating a plan into a structured, standard format
may require extensive knowledge engineering. To facil-
itate plan retrieval, each plan in a plan library must
be indexed by a set of common indexes that are pre-
determined. Such an activity is called normalization.
For a given domain, the user has to first determine
the important attributes to use to represent each plan.
Then a decision has to be made regarding the range of
legal values each attribute may have. The process of
authoring knowledge in this attribute value format re-
quires extensive maintenance when a new attribute is
discovered and inserted, or when an existing attribute
becomes irrelevant. In addition, unstructured docu-
ments which are used as the basis of text-based plans
rarely break down into obvious attribute value pairs.
By reducing each plan to this structure, the meaning or
the purpose of the plan can be lost in the translation.
From this observation, we conclude that we must sup-
ply a plan-library maintenance system with more than
the standard relational structures used in case-based
reasoning.

In industrial practice, a majority of the plan library
come directly from either unstructured text documents
or end-users’ verbal description. These plans may have
generic attributes such as problem description and So-
lution, but each of these attributes probably will not
be further partitioned down to a relational level. For
instance, consider the following example of a free form
plan used in a Cable-TV repair domain. This plan actu-
ally exists in a plan library used to diagnose Cable-TV
related failures in a Canadian Cable-TV company:

Problem Description: There is no cable picture,
only black screen. This may be a problem with
your TV or the cable system.

Solution:

115

1. Check all electric connections to see if they are
secure.

2. Once you checked the electrical connections,
tune the TV channel to 333 and disconnect the
cable.

3. If there’s still no reception, the problem is most
likely in the TV set. Call the TV vendor for a
check up.

Text-based planning can be effectively applied to
poorly understood domains provided that some type
of legacy data source exists. Many of these poorly un-
derstood legacy data are in free form text format. We
call plan libraries of this type as consisting of unstruc-
tured plans. To normalize the plans in a plan library
one can apply the information retrieval technology for
extracting key words and phrases. These key words
and phrases can then form the basis for comparing and
analyze the plans.

The Redundant Plan Problem

In a large plan library, redundancy identification re-
quires the ability to detect two equal plans, if one plan
subsumes another, or if two plans can be merged. At
the rapid rate that industry is changing, it is possible
that two previously distinct plan libraries will need to
be merged. When this happens, it is critical to develop
a mechanism that can collapse the redundant plans into
a representative plan for the class of problems that the
plans can solve. This mechanism must have the abil-
ity to explain why the plans were identified as redun-
dant, so that the user can make an informed decision
to resolve the problem. An example of redundancy in
the Cable-TV repairing domain is displayed in Table 2.
It demonstrates the difficulty of identifying redundant
plans when the plans are unstructured. As we will
demonstrate in the next section, our approach relies on
an information retrieval method for detecting redun-
dant plan information.

In case based reasoning, redundancy testing involves
submitting the new plan as a query to the reasoner. If
a high-ranking solution is returned, the plan is not en-
tered. However, in practice, plans are often entered by
a module separate from the problem resolution mod-
ule. Plan authors enter a set of plans at the same time
and then test the system. The iterative type of testing
described above may not be feasible for a large plan
library. A further problem is that redundancy is not
always obvious. Plan authors may not be domain ex-
perts, and thus, not familiar with the domain jargon. In
addition, the range of problems that a planner can solve
may be wide. Manual, iterative testing for redundancy
may be very time consuming. Finally, companies may
already have their data available in a different format,
where redundancy may not be obvious. Some compa-
nies already have their data collated in decision trees,
where there may be great overlap. Redundancy within
free form text is not always obvious. There are differ-
ences in vocabulary, depth of detail, and even punctua-

Plan 1

Planning Problem: There is no cable picture, only black screen. This may be a problem with your TV or the

cable system.
Solution:

Step 1. Check all electric connections to see if they are secure.
Step 2. Once you checked the electrical connections, tune the TV channel to 3.

Step 3. connect and disconnect the cable.
Step 4. Call the TV vendor for a check up.

Plan 2

Planning Problem: No cable picture and screen is black. Faulty TV or faulty the cable system.

Solution:

Step 1: check electric connections to see if they are secure.

Step 2: tune the TV channel to 3.
Step 3: disconnect and then reconnect the cable;

Step 4: If there’s still no reception, the problem is most likely in the TV set. Call the TV vendor for a check up if

problem is with TV set.

Table 2: Redundant plans

tion. Therefore, a mechanism to detect redundancy and
offer an explanation for that identification is critical.
The iterative nature of plan library construction
means that the size of the plan library increases mono-
tonically if no plans are removed. This can cause seri-
ous problems for storage spaces and retrieval efficiency.
Therefore, a plan library management system should
have the ability to detect whether two plans can be
merged. Two plans may be candidates for merging
if they are similar enough to share common attribute
values, but also have a small number of critical differ-
ences. Merging is suggested by the application if two
plans share some percentage of common key words and
a common field, yet have at least one significant dif-
ference. Obviously, if the two plans do not share one
significant difference, the application will suggest that
the two plans are equivalent and one should be deleted.

The Plan Indexing Problem

In this subproblem, the issue we address is how to main-
tain indexes (sometimes called feature/values) and their
weights in a plan library in a multi-user and changing
environment. Furthermore, the environment is com-
plex in the sense that the same solution may serve to
solve different problems under different contexts, and
the same problem may be provided with different, al-
ternative solutions.

We can be more specific about the maintenance prob-
lem. We assume that our desired plan library main-
tenance system is given a set of features where each
feature has a set of potential values. Some subset of
the features and values may be relevant to a particu-
lar problem or solution at hand at any given time, but
there is no prior knowledge on which ones are actu-
ally useful to the planner currently. For any given set
of weights attached to the feature-value-plan combina-
tions, the users of the system can provide feedback on

116

the outcome of the solutions provided through a feed-
back process.
Our tasks are:

1. to acquire the feature-weights after a user has used
the system for a certain period of time;

. to adapt the feature-weights to a user’s preferences
with time, and to allow different users to have differ-
ent weights;

. to continuously track a user’s changing preferences
for the plans in the plan library and to update the
weights correspondingly to reflect the change;

. to allow the influence a feature-value on the selection
of a plan to be dependent on the values of other fea-
tures in the plan library; In other words, the feature
weights are context dependent.

The above tasks are directly motivated by our fielded
application in a Cable-TV troubleshooting application,
in which we have over-seen the entire process of plan
library creation, the application of a CBR-style system
for real-time plan retrieval, and the critical problem
of plan library maintenance. In this domain, the plan
library creators are chosen customer service represen-
tatives from the Cable-TV company. To assign feature
weights to the plan library, the users have to manually
change the weights through a plan editor. The main-
tenance process is very long and tedious, such that it
can potentially prohibit the end user from adopting the
technology entirely. To make the problem more com-
plex, the weights assigned to the initial plan library is
changing with time. For example, with improvement in
technology, the VCR-recording problem features may
become secondary in importance. This feature weight
should decrease correspondingly. Similarly, a feature’s
weight may be different depending on the difference
in geographical regions; a remote area may experience
more in one type of problem than a urban area.

Solving the Three Problems
Solving the Normalization Problem

We apply information retrieval to the problem of nor-
malizing text-based plans. The steps in the information
retrieval algorithm used are as follows:

1. Remove the stop words.

2. Collapse words using a domain thesaurus.

3. Remove the suffixes and prefixes from each
string,.

4. Build an inverted index.

5. Build a key word index.

6. Build a key phrase index.

The output of this algorithm is an internal, normal-
ized array of plans. If the redundancy and inconsistency
detection modules have not been activated by the user,
the application builds a plan library from this array.
As well, three flat files representing the inverted index,
the key word index, and the key phrase index are gen-
erated. These files are represented in binary form to
reduce the storage space required.

Removing the Stop Words The first step in the
information retrieval algorithm is to remove the stop
words. Stop words are those words proven to be poor
indexers, such as “the” and “of”. These words do not
add any meaning to the plan. Stop words typically
comprise between 40% - 60% of the words within a doc-
ument (SM83). The application uses a general list of
stop words generated for the English language used by
the SMART system designed by Salton (SM83). This
list of stop words can be edited by the user in order to
specialize it for a particular domain.

Domain Thesaurus This function collapses words
using a domain thesaurus. In this application, the the-
saurus is used to standardize terms. The thesaurus can
be edited iteratively as users become more familiar with
the domain specific language. The user may choose not
to use a thesaurus at all.

The Stemming Algorithm The stemming algo-
rithm removes the suffixes and prefixes from each word
in the plan library. Stemming is used to reduce the
number of distinct terms and to improve retrieval.
There are a number of available stemming algorithms
varying from removing almost all possible prefixes and
suffixes, to removing only those suffixes that pluralize
a word.

The advantage of using a stemming algorithm is to
further reduce the number of distinct words for consid-
eration. A stemming algorithm will reduce the words
“hook”, “hooked” and “hooking” to the word “hook”.
This should increase the number of key words and
phrases identified by the algorithm.

117

The Inverted Index After the preprocessing steps
have been completed, the application generates an in-
verted index for the entire plan library. The index is
simply a listing of all terms that still remain in the set
of plans, their weight within each document and the
document number in which they appear. The weight
of a term within a document is simply a measure of
the frequency that the term appears within that plan.
This measure provides information regarding the statis-
tical importance of a term. Inverted indices may also
contain information reflecting the position of the term
within the plan.

The Key Word Index After the inverted index is
created, the next step in the algorithm is to build the
key word index. Using the inverted index, this func-
tion identifies significant terms through statistical mea-
sures. Key words are those words which appear fre-
quently within a small set of plans and infrequently
across all other plans (FBY92; SM83). This applica-
tion uses the inverse document frequency measure to
identify key words (SM83).

The Key Phrase Index The application also iden-
tifies key phrases using the inverted index. Phrases are
groups of more than one word which have high inter-
plan cohesion (SM83); if one word appears in a plan,
then the other words have a very high probability of also
appearing. The phrases and their corresponding weight
are retained. Identified phrases must appear in > T
plans, where T is a standard, or user specified thresh-
old. Phrases can be more powerful than key words as
they add some context to the statistical approach to
information retrieval. To reduce the number of phrases
identified by the algorithm and to increase their rela-
tive importance, there is an additional constraint that
at least one word in the phrase must be a key word.

Normalization After the foregoing steps, a text-
based plan is now converted to a set of three distinct
fields. The solution field S consists of a set of steps
where each step is represented by a set of important
key phrases. The qualification field @) consists of a set
of feature-value pairs which results from the assigned
indexes for this plan, and for any additional require-
ments that are extracted by the information retrieval
process to result in the form of key words and phrases.
Finally, the goal or problem description field P consists
of key words and phrases that represent the goals to be
achieved by this plan. In all, a plan can be represented

as a triple ((P), (@), (S)).
Detecting Redundant Text-based Plans

Plans can be redundant because they are subsumed by
other plans. In this situition, the subsumed plans can
be removed from the plan base without affecting the
overall competence of the plan retrieval system.

We adopt a uniform notation for representing a plan.
Let Plan = ((P), (@), (S)) be a plan. In the defini-
tion, P represents a set of normalized key words or key
phrases denoting a goal to be achieved for the plan.
Each element p; of P represents a distinct problem fea-
ture such as “screen black” in a Cable-TV troubleshoot-
ing plan. @ represents a set of key word or attributes
used for qualifying the solution S in the plan. In the
cable-TV plan, @ might be a key word “Sony” denoting
the brand of TV experiencing the problem. In the same
example, S, the solution for the plan, might be “Call
Sony at 1-800-...”. In general, a solution S for a plan
is a sequence of steps such that upon complete execu-
tion of S, the problems described in P can be solved.
A precondition for the success in the execution of S is
that every condition stated in ¢} must be satisfied.

This plan notation has an equivalent logical represen-
tation. Let Plan = ((P), (Q), (S)) be a plan, where P
is a set of problem description key words (or phrases),
Q is the set of key words qualifying a solution, and S are
steps in a solution. Its equivalent logical representation
is

Plan : QAdo(S) = solved(P)

That is, if @ is satisfied and the steps in S are followed,
P will be successfully solved.

We can now state our plan-subsumption rule in-
formally as follows: given two plans Plan;
((P1), (Q1), (S1)) and Plany = ((Py), (Q2), (52)),
Plan; subsumes Plan, if Plan; solves more problems
than Plany (P; is a superset of P;), the solution of
Plan; requires fewer qualifications than Plan, (Q; is
a subset of Q2), and the solution of Plan; is requires
fewer steps than that of Plany. In this situation S is
a subset of Spl.

More formally, Plan; subsumes Plang if

1. P2 Py,

2. Ql _C_ Qz, and
3. 51 CS,.

If Plan; subsumes Plans then removing Plan, will
not affect the coverage of the plan base. In this case,
we say that Planj is redundant.

In the formalization above we have divided the key-
words in a plan into two classes, those that govern the
qualification of a solution, and those that describe the
problem statements. In practice, the subsumption rules
can be simplified when only one type of keyword is
present, giving rise to specializations of the subsump-
tion rules.

Consider a situation where two plans in a plan base
consist of identical solutions and problems. The only

TWe have assumed that solution length is a measure of
solution quality in this section. In some domains there are
other measures of solution quality such as the cost of solu-
tion etc. Also it may be the plan that a solution is longer
because it contains more explanatory data. Extensions of
our subsumption rules in these areas can be done; however
we will only focus on solution length here for simplicity.

118

difference between the two plans are their keywords and
phrases used to qualify the solutions. In this plan, we
describe the plans as Plan; = (@), Si) and Plan; =
(@2, S2) where @ and Q2 are qualifying key words and
phrases for the solution S; = S,.

Specialization Rule 1:
Plan; subsumes Plan, if @) C @2 and S; = Ss.

It is a direct corollary that removing Plan, when Rule
1 is satisfied will not affect the coverage of the plan base.

Similarly, consider a situation where the key word
and phrase portion of the two plans are identical. In
that plan there is a strong indication that the two plans
are solving the same problems and that the qualifica-
tions for the solutions are identical too. This situation
calls for Specialization Rule 2:

Specialization Rule 2: Let Plan; be (K;, Si) and
Plany be (K32, S2) where K; and K, are sets of
key words and phrases.

Plan; subsumes Plan, if K; = Ky and S; C 55.

Similar to Rule 1, Rule 2 can be applied to raise alarms
for redundant plans. In fact, Rule 2 can be explained
informally as follows. For an incoming problem both
Plan; and Plany will be returned by the text-based plan
retrieval system because their problem descriptions are
identical. However, Plan, offers more solution steps
than Plan; does. These extra steps are not necessary,
since having P1an, in the plan base simply certifies that
the problem can be solved successfully using just Sj.
Thus, the extra solution steps offered by Plan, are re-
dundant.

When deciding to delete subsumed plans, the plan-
library maintenance system should allow the user to
view both plans and highlights the unnecessary condi-
tions. As it is possible that Plan; is an incorrect or
outdated plan, the fact that it subsumes Plan; does
not mean that Plan; should be summarily deleted from
the plan base. Rather than simply deleting the plans
identified as subsumed, the application presents these
plans to the user together with reasons why they are
believed subsumed. This is because a typical user of
the application may not be familiar enough with the
domain to delete the plan that offers more information.
Perhaps the extra premise offers valuable information
to the novice user that the plan that subsumes it does
not.

A redundancy identification module should also be
able to detect plans that are candidates for merging.
For example, if two plans offer the same solution but
slightly different problem descriptions, it is likely that
the plans can be collapsed into one. Please note that
if the differences within the problem description field
are not considered significant by the application, then
the system suggestion will state that the plans are es-
sentially equivalent and the user may choose to keep
either or both plans.

Relating to the work by Smyth and Keane (SK95)
on competence-preserving methods for managing a case

base in case based reasoning, the subsumption rules de-
fined above provide a significant operational advantage.
In that work, all definitions of auxiliary, spanning and
support cases are defined in terms of problem coverage
and reachability. These definitions have the problem of
computational inefficiency, since to compute the cover-
age and reachability of a case in terms of incoming prob-
lem queries is very expensive. Our subsumption rules,
on the other hand, provides a problem-independent ap-
proach to finding redundant cases; instead of computing
coverage and reachability for each case using all user
problems, we compare the contents of the two cases
directly. This direct comparison enables us to deduce
whether one case makes another case redundant.

Solving the Plan Indexing Problem

We now model the plan library as a three-layer struc-
ture (see Figure 1). In the plan layer, we extract the
solutions from each plan, and put them onto a third
layer. This makes it possible for different goals to share
a solution, and for a goal to have access to alternative
solutions. An important motivation for this separation
of a structure of a plan is to reduce the redundancy in
the plan library. Given N problems and M solutions, a
plan library of size N x M is now reduced to one with
size N 4+ M. This approach eases the scale-up problem
and helps make the plan library maintenance problem
easier, since when the need arises, each problem and
solution need be revised only once.

In order to make this change possible, we introduce
a second set of weights, which will be attached to the
connections between goals and their possible solutions.
This second set of weights represents how important
a solution is to a particular plan if this solution is a
potential candidate for this plan. In addition, it distin-
guishes a solution within several plans if the solution
belongs to several plans at the same time. Initially,
there is a weighted connection from every feature-value
pair to every problem in the problem layer, and from
every problem to every solution in the third layer. In
the end, if the weight at a particular connection is zero,
it is equivalent to disconnecting the two nodes at the
two different layers.

With this architecture, a user select plans by enter-
ing values for the indexes and by specifying a verbal de-
scription of a goal. The plan retrieval system responds
by providing a set of candidate goals and solutions
to the user, and ranked by their relevance which are
computed from the current weights. The system then
prompts the user for feedback regarding the accuracy of
the returned solutions and plans. From this feedback,
the weight-learning system propagates the weights back
through the network using a back-propagation algo-
rithm. The weight learning continues throughout the
lifetime of the plan library.

We introduce notations for different entities in Fig-
ure 1. There are two sets of weights, similar to the
weights in a three-layer back-propagation neural net-
work. Suppose that there are N features. For each

119

feature Fj, there are m; values, where i = 1,2,---, N.
The plan library contains J problems and K solutions.
For the structure shown in Figure 1, there is a total
of I = Ef\;l m; feature-value pairs, or nodes in the
feature-value pair layer. We label these feature-value
pairs as F'V;, where ¢ = 1,2,3,---,I. In the prob-
lem layer, we use P; to represent each problem, where
Jj=123,---,J. In the solution layer, we use S; to
represent each solution, where k =1,2,3,---, K.

The first set of weights V; ; is attached to the connec-
tion between problem P; and a feature-value pair F'V;
if there is an association between them. The second set
of weights Wy, ; is attached to the connection between
a solution Sy and a problem P; if S is a solution to P;.

We now show how the weights attached to the
problem-to-solution layer is adjusted based on user in-
put. The weights attached to the feature-to-problem
layer is similarly adjusted and we omit the description
here.

Given the input feature-value pairs, the correspond-
ing first layer nodes are turned on (set to one). A prob-
lem’s score is computed first based on those feature-
value pairs as follows. For each problem P;, its score is
computed using the following formula:

2
SPJ 1+ C_A*Elf:l(v,-,;*x.-) 1
where j =1,2,3,---,J, Sp; is the score of the problem
P;, and X; is 1, if there is connection between problem
P; and feature-value pair F'V; and FV; is selected.
Otherwise X; is 0.

After the problem scores are computed, the problems
and their associated scores will be presented to a user
for selection and confirmation. For the confirmed prob-
lem, the user may next select their corresponding so-
lutions which are associated with the current selected
and confirmed problem. The computation of a solu-
tion’s score is again similar to the computation of an
output in a back-propagation neural network.

2
= -)
1+ e—A*z;=l(Wk,j*Spj *ar)

where Ss, is the score of solution S, and Sp; is the
score of problem P;. If there is no connection between
solution Sy and problem P;, then we do not include it
in Z;:l (Wk,j * Sp; * @) In the formula « is the bias
factor.

As soon as the score of a solution is computed, it
will be presented to a user for his judgment. If the
user thinks that this solution is the right one and it has
an appropriate score, he can confirm this by claiming
success. Otherwise, a failure can be registered by the
system. In both situations, a user can have the option
to specify what the desired score of the solution is. This
information will be captured by the learning algorithm,
and will be used in the computation of the errors. After
computing the learning delta values for weight adjust-
ments, next we need to adjust the weights from the

(1)

Ss,

~<————— The Solution Layer, S

The Second Set of Weights, W

<<—— The Problem Layer, P

The First Set of Weights, V

<— The Feature-Value Pair Layer,
FV

Figure 1: Layered structure of a plan library

solution layer to the problem layer, and then from the
problem layer to the feature-value pair layer. We will
adjust the weights attached to the solutions which are
associated with the current selected and confirmed
problem. The weights attached to the connections be-
tween the problems and the solutions will be adjusted
first using the learning delta values computed above,
and the problem scores computed in Formula 1. The
formula for this adjustment is:

Wise = Wil ®
where W3 is the new weight to be computed, and
W,;’,de is the old weight attached to the connection be-
tween solution Sy and problem P;. In this formula, 5
is the learning rate.

+ 1 x deltag, * Spj

Evaluation

In this section we present some preliminary test results
to validate our techniques. We aim to show two prop-
erties of our maintenance systems, namely, speed and
quality in the result. Below, we discuss the tests of our
maintenance system called CaseAdvisor, implemented
in Visual C++4 on PC/NT and Unix, in each of the
three problems we presented.

Testing the Information Retrieval Module

Testing was completed on large test files to illustrate
how the information retrieval module scales up. Fig-
ure 2 demonstrates that even the one time cost of nor-
malizing a text library is not that expensive, The time
displayed is the CPU time required to remove the stop
words from all of the texts, stem all of the terms, ap-
ply the user defined thesaurus, to extract key words
and phrases from the texts and to build the inverted
file structure. The information retrieval module was
applied to a number of different text libraries contain-
ing different types of data. Each text was on average
0.3 kilobytes in size. The Sheffield LISA collection is a

120

Time

(seconds)ﬁ
120

90
60

30

l||

500 1000 2000 8000

Sheffield LISA Collection Census Data

Number of Cases
(Case Size Uniform)

Figure 2: CPU Time To Apply Information Retrieval
Techniques

database of abstracts and titles extracted from The Li-
brary and Information Science Abstracts database from
Sheffield University.

We also tested the quality of the keywords generated
by the maintenance system. Our test was done in a
Cable-TV troubleshooting domain. Without tweaking,
the key words generated by our system matched 87%
of the key words generated by experts familiar with the
cable-TV domain. The only list that the system did
not match at least 80% of terms with was a whopping
116 words provided by a subject with limited domain
expertise and computer experience.

Testing the Redundancy Detection Module

The redundancy module is responsible for testing an
incoming text-based plan for possible redundancy. If

%

100
%0
80
70

50
40
30
20
10

Roger’s

1
1
!
'
I
1
1
!
'
'
1
[}
[}
1
1
|
i
I
i
i
|
!

Subjects
(* domain experts)

Figure 3: Percentage of Key Words Matching Those
Found by our System

there is no possible redundancy, the plan is simply
added to the existing plan library. If there is, the plan
is presented to the user along with the plan causing
the possible conflict. The user then determines which,
if any, of the plans should be deleted from the plan
library.

In our test of the redundancy detection module, 94%
of the redundant plans were correctly identified by the
application. Another encouraging statistic is that 83%
of all plans identified as redundant were in fact redun-
dant. Out of the 210 plans entered, 97 were correctly
identified as redundant, 20 were falsely identified as re-
dundant, 6 were falsely identified as not redundant and
the remaining 87 plans were correctly classified as not
redundant. This means that 88% of the plans were cor-
rectly classified. Using fuzzy string matching to deter-
mine redundancy allows for false positives. The thresh-
old for identifying redundancy can be modified. How-
ever, this modification must be made at the expense
of increasing the number of redundant plans that are
not identified by the module. An additional area of
improvement is that all of the plans involved in this ex-
periment were derived from the same source. As part of
the future work, it would be interesting to see how the
above results generalize to plans authored by different
plan authors at different times.

Testing the Plan Index Learning Module

In our next test, we used the plan library used in a lo-
cal Cable-TV Company for troubleshooting equipment
failures. This plan library is used by the technical repre-
sentatives of the company to solve the customers’ prob-
lems on the help desk. Up to now, this plan library
contains 28 text-based plans and five features or ques-
tions. Within the five questions, there is a total of 30
question-answer pairs. We label each question-answer
pair as QA.i, where ¢ = 1,2,..-,30. The weights as-
signed initially to the individual question-answer pairs
by the domain experts from the company.

In order to do our experiment, we set up two copies
of the plan retrieval system using CaseAdvisor system

121

with different sets of weights. The first copy of the plan
library uses the weights specified by the domain experts
from the company. The second copy has the weights
initialized to 0.5. If we think the weights in the first
copy represent a user’s preference in the company, then
we will learn these weights in the second copy using our
dynamic learning method.

In our experiment, the whole learning process took
four rounds, each of which is composed of query 1 to
query 7. All the scores of the chosen plans produced by
the second copy of the system converge to their desired
scores produced by the first copy. We define the error
of a plan produced by a valid set of question-answer
pairs in the learning process as the absolute difference
between its computed score and its desired score. In
our test, the desired score of a plan is produced by the
first copy of the plan library while the computed score
is produced by the second copy. The error convergence
chart for selected plans is graphed in Figure 4. In the
figure, the X-axis represents the time line of the training
process as the queries are entered. The Y-axis repre-
sents the errors in plan score. In the experiment, we
can find that all the errors converge to 0, which means
that all the plan scores converge to their desired scores.
It can also be seen that the scores converge to zero at
a fairly fast rate.

Conclusions

We maintain that text-based planning is an important
form of planning. In the past, it has been more or
less overshadowed by logic-based planning. One of the
biggest advantages of text-based planning is its ability
to convert text-based documents into plans which are
useful for providing human users with expert advice.
Because such documents are easily available through a
number of data sources, particularly due to the rapid
growth of the Internet, text-based planning will become
more and more important in the future.

We also maintain that although text-based planning
addresses the plan acquisition and maintenance prob-
lems to a certain extent, these problems do not sim-
ply disappear. Instead the problem of maintaining a
library of plans with high quality becomes more appar-
ent. To conduct knowledge maintenance and acquisi-
tion, we adapted techniques from information retrieval,
machine learning using neural networks and case based
reasoning. We have shown how to apply these tech-
niques to normalize plans, to compare plans in order to
find redundant ones, and to learn index weights in or-
der to feedback the usage patterns into indexing mech-
anisms,

Acknowledgment

The work is supported by grants from Natural Sci-
ences and Engineering Research Council of Canada
(NSERC), BC Advanced Systems Institute, ISM-BC
and Canadian Cable Labs Fund.

Error Convergence Chart for 7 Highest

S 45 Cases in 7 Queries
g - Q —e—C1
“ 40
—a— C2
35 —a&— C3
30 S—
95 —x—Ch
20
- —t 7
15 1
10 +
Training Process
54
04
‘O'FN(")'G'“!D"“NC')‘!“AD"-"Nﬁ"&lﬁw"-"ﬂlﬂvlﬂm"'
E e prpryeprpprpryrprprp
w ¥ 5 8 § £ 8§ ¢ § 5 5 8 & 5§ 8 2 5 5 5 & 5 8 & 5 5 5 % v g
T®S33336336C3568656803588366688658862468 6
-

Figure 4: Error convergence chart for the seven highest ranked plans in the Cable-TV domain

References

A. Aamodt and E. Plaza. Foundational issues,
methodological variations and system approaches. Ar-
tificial Intelligence Communications, 7(1), 1993.

R. Burke, K.J. Hammond, and J. Kozlovsky.
Knowledge-based information retrieval from semi-
structured text. In in Working Notes from AAAI Fall
Symposium on AI Applications in Knowledge Naviga-
tion and Retrieval. American Association for Artificial
Intelligence, 1995.

William B. Frakes and R. Baeza-Yates. Information
Retrieval: Data Structures and Algorithms. Prentice-
HALL, North Virginia, 1992.

Kristian Hammond. Explaining and repairing plans
that fail. Artificial Intelligence, 45(1):173~228, 1990.

J. L. Kolodner. Case-Based Reasoning. Morgan Kauf-
mann Publisers, Inc., 1993.

Janet Kolodner. Case-based Reasoning. Morgan Kauf-
mann Publishers, Inc., San Mateo, CA, 1993.

Janet Kolodner. Case-based Reasoning. Morgan Kauf-
mann Publishers, Inc., San Mateo, CA, 1993.

P Koton. Reasoning about evidence in causal expla-
nation. In Proceedings of the seventh National Confer-
ence on Artificial Intelligence, pages 256-261, Menlo
Park, CA.

122

David Leake. Case-based Reasoning — Expriences,
Lessons and Future Directions. AAAI Press/ The MIT
Press, 1996.

Kirsti Racine and Qiang Yang. Maintaining unstruc-
tured case bases. In David B. Leake and Enric Plaza,
editors, Case-Based Reasoning Research and Develop-
ment, volume 1266 of Lecture Notes in Artificial In-
telligence, pages 553-564. Springer, Providence, RI,
USA, July 1997. Second International Conference on
Case-based Reasoning, ICCBR-97.

B. Smyth and M. Keane. Remembering to forget : A
competence-preserving case deletion policy for case-
based reasoning systems. International Joint Confer-
ence on Artificial Intelligence, 1:377-382, 1995,

G. Salton and M.J. McGill. Introduction to Modern
Information Retrieval. Computer Science Series Mec-
Graw Hill Publishing Company, New York, 1983.

D. Wettschereck and D.V. Aha. Weighting features.
In Proceedings of the First International Conference
on Case-Based Reasoning, ICCBR-95, pages 347-358,
Lisbon, Portugal, 1995. Springer-Verlag.

I. Watson. Case-based reasoning tools: An overview.
In Proceedings of the Second UK Workshop on Case
Based Reasoning, pages 71-88, 1996.

Tan Watson. Applying Case-Based Reasoning: Tech-

niques for Enterprise Systems. Morgan Kaufmann
Publishers Inc., 1997.

