
A Redundant Covering Algorithm Applied to Text Classification

David Hsu and Oren Etzioni
Department of Computer Science

and Engineering, Box 352350
University of Washington
Seattle, WA 98195-2350

{hsud, etzioni}@cs, washington, edu

and

Stephen Soderland
Radiology Department

Mail Stop CH-69
Children’s Hospital and Medical Center

4800 Sand Point Way NE
Seattle, WA 98105-0371

{soderlan)©cs. washington, edu

Abstract

Covering algorithms for learning rule sets tend
toward learning concise rule sets based on the
training data. This bias may not be appropri-
ate in the domain of text classification due to the
large number of informative features these do-
mains typically contain. We present a basic cov-
ering algorithm, DAIRY, that learns unordered
rule sets, and present two extensions that encour-
age the rule learner to milk the training data
to varying degrees, by recycling covered train-
ing data, and by searching for completely redun-
dant but highly accurate rules. We evaluate these
modifications on web page and newsgroup rec-
ommendation problems and show recycling can
improve classification accuracy by over 10%. Re-
dundant rule learning provides smaller increases
in most datasets, but may decrease accuracy in
some.

Introduction
The covering algorithm is one of the most well-studied
methods for learning sets of rules from examples. Cov-
ering algorithms repeatedly iterate through the follow-
ing loop: generate a rule on the training data; remove
the training data covered by the rule. These algorithms
have performed well in many supervised learning tasks,
and two such algorithms, SWAP-1 and RIPPER, have
recently been successfully applied to problems in text
categorization (Apt@, Damerau, & Weiss 1994) (Cohen
& Singer 1996).

This method, however, may not be well-suited to
learning text classifiers. In text domains, documents
are often represented as feature vectors, where every
word in the training set has a corresponding feature.
Therefore, the number of features in a dataset may
number in the thousands, and can greatly outnumber
the number of examples in the training set.

Because covering algorithms remove examples af-
ter they have been covered by a generated rule, the
large feature-to-example ratio presents special prob-
lems. First, as the number of training examples a rule
is generated on dwindles, the actual error rate of the
generated rule tends to increase. This has been termed

the small disjuncts problem (Holte, Acker, & Porter
1989). Pagello and Haussler make a similar observa-
tion on the importance of having a signifigant sample
size for finding attributes to split a decision tree on
(Pagello & Haussler 1990). In text domains, the prob-
lem is pronounced because the feature set is already
large compared to the number of training examples,
and therefore the chance that some noisy feature is
prominent in a small sample is large.

In addition, the behavior of removing correctly clas-
sifted examples from the training set leads covering al-
gorithms to ignore features that don’t appear to im-
prove classification accuracy on the training set. A
study by Joachims demonstrates that a classifier that
only uses words with low information content can still
greatly outperform random guessing (Joachims 1997).
This indicates that a large number of the words in a
document corpus may be relavent to the classifier to
be learned, and including more words in a ruleset may
improve the predictive accuracy of the ruleset.

We hypothesize that the covering algorithm can gen-
erate more accurate rulesets in many text domains
by learning more complex rulesets from the available
training data. We investigate this claim by creating a
simple propositional covering algorithm, DAIRY, that
milks the training data in order to produce more com-
plex hypotheses. DAIRY milks the training data in
two ways. First, in contrast to previous covering al-
gorithms, DAIRY does not remove training examples
once they have been covered. This extension allows
DAIRY to more fully utilize the training data available
since a training example can always affect the growth
of any rule. Second, DAIRY engages in a search for
completely redundant, but highly accurate, rules af-
ter it cannot learn rules that cover uncovered exam-
ples anymore. These two extensions lead DAIRY to
generate more complex rule sets since DAIRY is no
longer only concerned with learning only enough rules
to classify the training examples. We test our exten-
sions on several problems in text classification and find
that DAIRY’s ability to learn more from the dataset
can signiftgantly improve the accuracy of the rulesets
it generates.

From: AAAI Technical Report WS-98-05. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



Figure 1: Standard Covering Algorithm

Theory *--
while # of Positive Examples ¢ 0

Rule .-- FindBestRule(Examples)
Covered *-- Examples covered by Rule
if Rule is not accepted

break
Examples -- Examples - Covered
Theory = Theory [3 Rule

return (Theory)

A Motivating Example
This work is motivated by the authors’ experience in
applying a rule learning algorithm to classify web pages
in a web history privacy manager (Lau 1997). This
application allows a community of users to query other
people’s web histories. The problem was to learn a set
of rules that predicts whether the user would like a
keep a web page private in this shared environment.
The rules were generated from classified pages in the
user’s browsing history where each page is represented
by set valued features (Cohen 1996b) representing the
URL, title, and document body.

In this domain, we noticed an interesting difference
between the error rates induced rule sets would ex-
hibit on test sets drawn from their respective user’s
web histories and error rates on pages that the user
had not visited before. Even though an induced rule
set would make predictions with very low error rates
on test pages from the user’s web history, it would ex-
hibit a much higher error rate on pages the user had
not visited before.

A representative example is the problem of generat-
ing rules to describe the concept of "computer games"
from one user’s web history. This user had browsed
pages featuring a couple of game titles. However, a
large portion of the game pages dealt with one partic-
ular game, "Return to Krondor." The resulting rule
set was very representative of the user’s history. It
contained rules for the title, "Krondor," as well as
rules which referred to other specific games or websites.
However, there were very few rules which actually ex-
ploited common words among these games. Rules spe-
cific to a particular game, such as the rule mentioning
"Krondor," while highly precise, do not make good
predictors for computer game pages in general.

In the next section, we review the standard cover-
ing algorithm and show why it may learn the rule set
described in the previous example.

Covering Algorithm and Improvements

Figure 1 describes a covering algorithm that learns
rules in a two class problem. The algorithm repeatedly
generates a single rule, computes the examples that are

covered by the rule, and removes the covered exam-
ples from the training set before the next rule is gen-
erated. The latter step, removing covered examples, is
the step that characterizes a covering algorithm. This
step causes the algorithm learns just enough rules to
classify the training data, because once the algorithm
learns a rule that classifies an example, it removes the
example from further consideration.

On the set of game pages described in the previ-
ous section, because the pages about "Return to Kro-
ndor" represent a large portion of the dataset, the cov-
ering algorithm learned a rule that mentioned the word
"Krondor." Because of the removal of these pages, the
covering algorithm cannot intentionally generate rules
that exploit common words in both "Krondor" pages
and other game pages. Therefore, the covering algo-
rithm is more likely to learn rules specific to one par-
ticular game or website. In addition, the game pages
about "Krondor," may contain many words that are
strongly correlated with game pages, such as "dragon"
or "puzzles." A classifier that learns rules that contain
these words may provide a more accurate ruleset than
a classifier that doesn’t.

The key point is that the information to create accu-
rate rule sets exists in the game pages from the user’s
web history. However, since the covering algorithm re-
moves training examples once they are covered by a
rule, it does take advantage of this information. In the
introduction, we proposed two general ideas through
which a covering style algorithm may take fuller advan-
tage of the information in the dataset: recycling cov-
ered training examples, and learning redundant rules.
We now describe these two ideas more fully, and how
a covering algorithm that implements both ideas may
learn a more predictive ruleset from the game page
domain.

A rule learner that recycles covered training exam-
ples, as opposed to removing these examples, can still
learn from examples that have been previously covered.
With a recycling approach, covered training data re-
mains in the pool of training data that the learner uses,
but at a discounted weight. Therefore, recycled exam-
ples do not affect rule learning behavior as much as
uncovered examples. Most importantly however, the
information contained in covered examples can still be
used by the covering algorithm to generate new rules.
Therefore the fact that a certain word appears in many
of the "Krondor" pages may improve its chance of be-
ing added to a new rule.

Redundant rule learning refers to the search for high
quality rules regardless of whether the rules uniquely
cover some training instances or not. In the computer
game pages domain, the web pages about "Return to
Krondor" may have many informative words. A re-
dundant rule learner will ferret these words out even if
they only appear in game pages about Krondor.



Figure 2: DAIRY Rule Learning Algorithm

Theory ~ 0
Default *- class with most instances
While rule was accepted in the previous iteration

For each Class that is not the Default
(Covered, Uncov)

Partition(Theory, Examples)
Rule ~ FindRule(Class,Covered,Uncov)
If Rule meets acceptance criterion

Theory e-- Theory U Rule
(Covered, Uncov) ~Partition(Theory, Examples)
Covered +- RetainMisclassified(Covered)
Rule ~ FindRule(Class,Covered,Uncov)
If Rule meets acceptance criterion

Theory ~ Theory U Rule
Search for redundant rules
return Theory

The DAIRY Rule Learner

In this section, we describe a basic covering algorithm,
DAIRY, that we implemented to test our redundant
rule learning approach.

DAIRY, shown in Figure 2, is a propositional rule
learner that learns an unordered list of rules, with a
default classification appended at the end. The skele-
ton of the algorithm is very similar to the covering
algorithm in Figure 1. However, we have adapted it
slightly to work on multiclass problems.

Prior to entering the main loop, the algorithm
chooses the default class by picking the class with the
most examples. The algorithm, then, repeatedly it-
erates through the main loop. In each iteration, the
algorithm attempts to learn a rule for each class that
is not the default class. Instead of removing covered
examples, the algorithm separates covered examples
from uncovered examples before learning a rule for a
classification. In DAIRY’s recycling approach, the sta-
tus of whether an example is covered or uncovered does
not matter for negative examples, but does matter for
positive examples.

DAIRY handles rules for the default class specially.
Since the default rule automatically matches examples
from the default class, we did not see the need to learn
many rules for the default class. The only rules with
the default classification that DAIRY learns are rules
that differentiate the members of the default class that
have been previously misclassified. Therefore, the un-
covered positive examples for the default class are ex-
amples that have been misclassified by a non-default
rule, but not yet classified by a rule predicting the de-
fault class. In domains where the majority class rep-
resents a large portion of the training set, this special
treatment can prevent rules of the majority class from
overwhelming the rules of the minority class.

In order to find the best rule to add to the rule-
set, DAIRY performs a greedy search which repeat-
edly adds words to an initially empty rule. Possi-
ble word expansions are evaluated via a scoring func-
tion. DAIRY currently uses the correlation heuristic
as its scoring metric(Fiirnkranz 1994). DAIRY ends
rule growth once no new conjunct improves the m-level
accuracy of the rule. M-level accuracy is a generaliza-
tion of laplace accuracy in which the M value controls
the influence of an a-priori probability on the accuracy
measure of a rule.

p+M* PP+N (1)accuracy= M + p + n

P and N refer to the total number of positive and
negative documents in the dataset. The p and n values
refer to the positive and negative numbers covered by
the rule.

The generated ruleset classifies unlabelled examples
via a voting metric. Each rule contribute’s a vote with
the value of the rule’s m-level accuracy for the class
predicted by the rule. The rule set assigns the unla-
belled example the classification with the highest vote
total. If no rule matches an example, the example is
assigned the default class. In addition to an unordered
rule list representation, we have experimented with de-
cision list hypotheses, but classification accuracy con-
sistently suffers from these representations. Also the
benefits of recycling and redundant rules are not ap-
parent with decision list representations. This makes
intuitive sense because, in a decision list, only one rule
can contribute to the classification of a single example.
Even though our algorithm may learn several rules,
many of the rules may not have a chance of contribut-
ing to the classification of examples.

We now describe the implementation of recycling
and redundant rule learning within the DAIRY algo-
rithm.

Recycling Covered Training Examples

DAIRY recycles covered training examples in an effort
to learn rules that cover more examples. Basically,
DAIRY assigns a discounted weight, the recycling fac-
tor, to covered positive examples when growing new
rules. This discount factor provides a tradeoff between
learning rules that cover new examples, and rules that
have a high coverage.

The recycling factor directly affects the scoring func-
tion used to evaluate candidate words to add to a rule.
These scoring functions rely on some measure of the
counts of positive and negative examples that contain
the word, and positive and negative examples that do
not contain the word. Negative examples always have
the same weight in the example counts regardless of
whether they have been previously covered or not. The
recycling factor comes into play in the count of posi-
tive documents. Covered positive documents have a



relative strength given by the recycling factor in com-
parison to uncovered documents.

For example, suppose the scoring function is Laplace
accuracy, shown in the following equation.

1 + pos
(2)~classes + pos + neg

DAIRY transforms Equation 2 into a recycling for-
mula by splitting the positive examples into previously
covered positives and previously uncovered positives
and multiplying the previously covered ones by the re-
cycling factor. The result is Equation 3.

1 + recycle factor ¯ covpos + uncovpos
#classes + recycle factor ¯ covpos + uncovpos + neg

(3)
Even if previously covered examples have a dis-

counted weight, a candidate word may cover so many
previously covered positives that it is chosen even
though it covers no new positives. Therefore, words
that do not cover any new positive documents are not
considered in the rule expansion phase until the redun-
dant rule learning phase.

Another straightforward approach to recycling
would be to multiply an example’s weight by the recy-
cling factor each time a new rule covers it. Consider
the case, however, where an article contains many in-
formative words. Discounting the weight of the article
in this way may decrease the chance that rules con-
taining these new words are learned. However, further
study needs to be done to analyze the effectiveness of
different recycling policies.

Learning Redundant Rules
As a post processing step, DAIRY conducts a large
scale search for redundant rules, rules that do not cover
any uncovered examples, but are still of high quality as
defined by some accuracy, coverage, and depth bounds.
The post procesing step resembles the preceding por-
tion of the DAIRY algorithm. However, for each non-
default class, DAIRY tries to approximate a massive
search for all good rules as opposed to a search for the
single best rule.

The beam search that DAIRY conducts is similar to
the beam search procedure used in CN2 with a few
minor adjustments (Clark & Niblett 1989). Candidate
rules are evaluated via the m-level accuracy measure
and rules that specialize or are equivalent to existing
rules are not generated. The beam width, maximum
depth, minimum accuracy requirements, and minimum
coverage requirements for candidate rules are all user
defined parameters.

DAIRY uses a beam search because a purely greedy
search for the single best rule may result in a rule that
does not meet the predetermined accuracy or cover-
age criterion. Therefore the beam search is necessary
to prevent the redundant rule phase from ending too
early. This beam search continues for each class until

Table 1: Datasets used in the tests

Name #classes #doc’s
newsgroups 2O 20000
e-mail 2 750
game web pages 4 4000
movie/music/cs/games/tv 5 8000

DAIRY can no longer find redundant rules that meet
the depth, accuracy, and coverage criteria.

For the default class, DAIRY follows the same pro-
cedure as in the main DAIRY body, only learning rules
that cover at least one uncovered positive instance. An
uncovered positive instance corresponds to instances
that have been misclassified by a generated rule, but
are not yet covered under a rule that predicts the de-
fault class.

Instead of learning redundant rules in a post pro-
cessing phase, we could have integrated redundant rule
learning in DAIRY’s normal rule learning phase. How-
ever, there is a potential for the redundant rules to
starve out rules that cover uncovered examples. This
can happen when redundant rules all qualify with a
higher m-level accuracy than rules covering new exam-
ples. If none of the rules meets the acceptance crite-
rion for redundant rules, then the algorithm terminates
without learning rules that cover positive instances.

Extensions for Text

In regard to text domains, DAIRY attempts to learn
keyword spotting rules, rules that test whether certain
words appear in the document or not. Since feature
vectors make very inefficient use of space, DAIRY uses
set valued features (Cohen 1996b), and in the experi-
ments below, represents each document as a single set
valued feature. Therefore each rule is a conjunction of
several tests, each test being whether the word is in
the document set or not.

Experimental Evaluation
In the following section, we report results on experi-
ments that test the effect of recycling and redundant
rule learning on the accuracy of rulesets that DAIRY
learns in datasets drawn from domains on the web,
e-mail, and newsgroups.

Methodology

For our experiments, we draw some text datasets
from a variety of real world domains. We use a 20
newsgroups datasets drawn from the CMU text learn-
ing archive. The talks dataset attempts to identify
talk announcement e-mail messages from other mes-
sages. This dataset had been previously used in (Co-
hen 1996a). Finally, we construct two datasets from
categories or subcategories in the Yahoo hierarchy.

7_1



Figure 3: With recycling, DAIRY performs better with
360 examples than with over 5000 examples in the Mu-
sic/Movie/TV/CS/Games domain.

Figure 4: Recycling and redundant rule learning im-
prove DAIRY’s accuracy by over 10% on the 20 news-
groups dataset.

0.9

~05

°IY I0.55

0.5 r , ,
0 2000 4000 6000

number of examples

i°i’si!
¯ .*-Dairy

1
0.7

-*-Dairy with ’ , S-~’~"~~*
Recycling t /y
Dairy with [[
Redundant Rules[t

2000 4000
number of examples

¯ .*- Dairy

÷ Dairy with
Recycling

-a-Dairy with
Redundant Rules

-*-Ripper

÷ Naive Bayes

One dataset contains four subcategories of the com-
puter games category, each subcategory containing a
genre of computer games. The second dataset is a top
level dataset that contains music, movie, TV, game,
and computer science web pages. The datasets are
summarized in table 1.

We also gather results on two well-known algorithms
that have been applied to text categorization. The
naive Bayesian classifier learns the posterior probabil-
ities for class membership given a set of words. Al-
though naive Bayes relies on an unrealistic assumption
that words occurrences are independent of one another,
it performs well in several text domains. We use a vari-
ant of the naive Bayesian classifier that is described in
(Mitchell 1997). In our experiments we did not per-
form feature selection since we have found that it re-
duced performance in at least one domain, the news-
groups domain.

The second classifier used was RIPPER, a proposi-
tional rule learner that uses a combination of pruning
techniques, heuristic evaluations, and an optimization
phase in order to generate a compact decision list rule
set(Cohen 1995).

In our tests, we employ a 10-fold incremental cross
validation scheme. We first split the dataset into 10
folds, and use 9 for training and the 10th for test-
ing. Instead of training on the entire training set, we
train on a succession of subsets of each training group,
each subset containing a larger portion of the train-
ing set. Each subset is created by randomly selecting
training examples with a certain percentage. We run
each learner on the same subsets of training data, and

average the results for each training set size.
Figure 3, Figure 4, Figure 5, and Figure 6 show a

sample of the results that we have gathered on the
four datasets. We illustrate three variations of DAIRY.
The first variant does not recycle and does not learn
redundant rules. The second variant uses a 75% re-
cycling factor when weighing covered examples. The
third variant uses the 75% recycling factor and learns
redundant rules of at most length 2 and with a min-
imum accuracy threshhold of 60%. In the newsgroup
domain, the minimum coverage for redundant rules is
set to 3, and in all other domains, it is set to 5. Since
the number of articles per newsgroup is especially small
on small amounts of data, the smaller coverage thresh-
hold for newsgroup facilitated the learning of more re-
dundant rules. We set the maximum rule depth to 2
since almost all generated rules that we have observed
in the non-redundant learning phase took 3 or fewer
conjuncts.

Results and Discussion

We immediately see that recycling consistently im-
proves the accuracy of the resulting rule set. This im-
provement holds across domains and across variations
in training set size. In fact, in each individual run in
the cross validation, using a recycling factor greater
than 0 outperforms running DAIRY without recycling
on each dataset except for the talks dataset. Experi-
ments in which we vary the scoring function, stopping
criterion, and recycling level all show an increase in
accuracy due to recycling in the domains tested.

DAIRY itself is competitive turning in consistently

7_2-



Figure 5: On the computer game genres domain, recy-
cling and redundant rule learning noticeably improve
DAIRY’s accuracy.

0.8

0.75

0.7

~0.65
-,- Dairy

0.6 .*- Dairy with

0.55 I Recycling
/’*" Dairy with

0.5 / Redun

0.450.4 l ~ Ripper0 °:=o,.:o;,. 000

Redundant Rule

-*- Naive Bayes

more accurate rulesets than RIPPER, but not perform-
ing as well as naive Bayes on these domains. The poor
performance of RIPPER seems surprising especially in
light of its performance on standard text collections
such as the reuters dataset. The difference in perfor-
mance lies in the type of classifier RIPPER learned.
In measurements on the reuters datasets, RIPPER
learned a separate classifier for each class, while in
these tests, RIPPER learned one classifier for the en-
tire dataset.

The effect of including redundant rules in the train-
ing data also leads to general increases in the accuracy
of the resulting rule set. Again, this increase seems to
hold across several dataset sizes. However, the benefits
are much more muted. The benefit of finding redun-
dant rules containing informative words may be tem-
pered by the amount of overfitting that redundant rule
learning invariably causes. Still, redundant rule learn-
ing does produces useful improvements in accuracy in
two of the domains.

One way to measure the effectiveness of recycling
and redundant rule learning is to measure how many
training examples these techinques are worth. That is,
how many more training examples does DAIRY need
to see to match the performance of recycling and re-
dundant rule learning.* In the 20 newsgroups domain,
DAIRY with a 75% recycling factor, and learning re-
dundant rules with a minimum 60% accuracy achieves
about 60% accuracy around 900 examples. In contrast,
naive bayes achieves the same accuracy after about
1000 more examples, and DAIRY with a 0% recycling
factor achieves that accuracy at around 5000 exam-

ples. In the Music/Tv/Movie/Games/CS domain, the
benefit of recycling and redundancy is even more pro-
nounced with DAIRY providing better performance
with recycling and redundancy on 360 examples, then
DAIRY without recycling on over 5000 examples.

Finally, we turn our attention to the potential for
overfitting. Since recycling and redundant rule learn-
ing lead DAIRY to generate more complex hypotheses,
overfitting becomes a very real possibility.

The results on the talks dataset may shed some light
on how much recycling and redundant rule learning
contribute to this phenomenon. The talks dataset is
an example of a domain where the underlying concept
is quite simple and therefore the recycling and redun-
dant rule learning approaches employed in DAIRY may
overfit the training data. RIPPER, for example can
learn an 8 rule hypothesis that classifies the test data
with 96% accuracy.

The results from the talks dataset show that recy-
cling did not lead to a decrease in ruleset accuracy,
but redundant rule learning did. We hypothesize that
since DAIRY learns redundant rules with an accu-
racy threshhold lower than the DAIRY can provide
already, this hurts performance considerably. In addi-
tion, the number of low accuracy rules for the "talk-
announcement" class far outweighed the number for
the default class, so the voting metric is skewed to-
wards the minority class. On tests, where we set the
accuracy threshhold to 100%, DAIRY learns far fewer
redundant rules and achieves accuracies around 95%,
which still indicates a slight amount of overfitting tak-
ing place.

Examination of rulesets that were generated with re-
dundant rule learning, and recycling to a lesser extent,
do show signs of overfitting. For example, the rule
learner may learn several rules which only differ in the
last conjunct and that last conjunct may not be an
important word. In fact, at least in the web domains,
the improvement given by redundant rule learning in-
creases when redundant rules are restricted to length
1. Also, with the parameter settings reported in this
section, many of the rules returned in the redundant
learning phase seem noisy. More careful evaluation of
the parameter settings need to be done to gauge how
effective redundant rule learning is.

In this light, the relative lack of decline in predictive
accuracy from overfitting on these datasets is some-
what surprising. One reason for this phenomenon may
be the interpretation of hypotheses as a list of voting
rules. Rules that have small coverage are more likely
to overfit the training data. With the m-level accuracy
formula, these rules will naturally have smaller weight
than rules that cover more examples. Therefore, larger
coverage rules will tend to overshadow low coverage
rules in the vote. If only low coverage rules match a
training instance, that instance may not have a very
clear classification. As we mentioned before, decision
lists learned with recycling and redundant rule learn-



Figure 6: In recognizing talk announcement e-mails,
recycling does not degrade DAIRY’s performance, but
redundant rules do.

0.95

0.9

0.85

0.8

0.75

0.7
0 500

number of examples

-.*- Dairy

-,- Dairy with
Recycling
Dairy with
Redundant Rules

÷ Ripper

Nai’ve Bayes

ing perform worse than decision lists learned without
these techniques.

Related Work
A few rule learners have already been applied to the
field of text classification. Two of them, SWAP-l,
and RIPPER fall under the category of covering algo-
rithms. The CHARADE algorithm performs a breadth
first search to find good rules (Moulinier, Raskinis, 
Ganascia 1996). Like DAIRY, CHARADE naturally
incorporates redundancy and will continue to search
for rules until no good rule can be found or each ex-
ample is covered by some user-defined number of rules.
However, CHARADE’s search strategy leads to the
need for automatic feature selection before running the
algorithm, whereas DAIRY can run on the full text
dataset.

Other approaches to rule learning may make more
use of the training data than covering algorithms.
For example, RISE combines the strength of instance
based learning with rule learning and generates rules
in a bottom-up strategy (Domingos 1996). Other rule
learners such as Brute perform a massive search to
generate a good set of rules (Riddle, Segal, & Etzioni
1994). Since these techniques are polynomial in the
number of attributes, they are ill-suited in text do-
mains without some form of feature selection.

Boosting is another method by which a learner can
milk the training data. The Adaboost algorithm gen-
erates a set of classifiers by repeatedly training a base
learning algorithm on" different distributions of exam-
ples from a training set. Examples are reweighted af-

ter each classifier is learned so that harder to classify
examples become more prominent in the training set
(Freund & Schapire 1996). This philosophy is different
from recycling in that easy to classify examples will
soon have little impact in the training set without re-
gard to the number of informative features the example
contains.

Conclusion
This paper demonstrates that in text classification do-
mains, allowing a covering algorithm to milk the train-
ing data may lead to improved accuracy in the final
ruleset. In DAIRY, the accuracy of the covering algo-
rithm can be greatly improved by allowing it to recy-
cle previously covered training data. Redundant rule
learning may also be beneficial but the jury is still out.
Although these techniques were developed in a simple
covering algorithm, we expect them to transfer well
to more complex covering methods that can learn un-
ordered rulesets. In turn, covering algorithms that can
create more predictive rulesets from smaller amounts
of data may be more attractive for use in information
filtering tasks or active learning applications of text
classification where the ability to generalize well from
small amounts of data is important (Lewis & Catlett
1994) (Pazzani & Billus 1997).

Acknowledgements
We wish to thank Corin Anderson, Anhai Doan, Erik
Selberg, Jared Saia, and the reviewers from the work-
shop for helpful comments. This research is funded in
part by Office of Naval Research grant 92-J-1946, by
ARPA / Rome Labs grant F30602-95-1-0024, by a gift
from Rockwell International Palo Alto Research, and
by National Science Foundation grant IRI-9357772.

References
Aptd, C.; Damerau, F.; and Weiss, S. M. 1994. Au-
tomated learning of decision rules for text categoriza-
tion. A CM Transactions on Office Information Sys-
tems 12(3).
Clark, P., and Niblett, T. 1989. The CN2 induction
algorithm. Machine Learning 3(4).
Cohen, W., and Singer, Y. 1996. Context sensitive
learning methods for text categorization. In Proceed-
ings of the Nineteenth Annual International ACM SI-
GIR Conference on Research and Development in In-
formation Retrieval.

Cohen, W. 1995. Fast effective rule induction. In
Proceedings of the Twelth International Conference
on Machine Learning.
Cohen, W. 1996a. Learning rules to classify e-mail.
In Proceedings of the 1996 AAAI Spring Symposium
on Machine Learning for Information Access.

Cohen, W. 1996b. Learning trees and rules with
set valued features. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence.



Domingos, P. 1996. Unifying instance-based and rule-
based induction. Machine Learning 24.

Freund, Y., and Schapire, R. E. 1996. Experiments
with a new boosting algorithm. In Proceedings of
the Eleventh International Conference on Machine
Learning.

Ffirnkranz, J. 1994. Fossil: a robust relational
learner. In Proceedings of the Seventh European Con-
]erence on Machine Learning (ECML-9~).

Holte, R. C.; Acker, L. E.; and Porter, B. W. 1989.
Concept learning and the problem of small disjuncts.
In Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence (IJCAI-89).

Joachims, T. 1997. Text categorization with sup-
port vector machines: learning with many relavent
features. Technical Report LS8-Report, University of
Dortmund.
Lau, T. 1997. Privacy in a collaborative web browsing
environment. Master’s thesis, University of Washing-
ton.

Lewis, D., and Catlett, J. 1994. Heterogeneous uncer-
tainty sampling for supervised learning. In Proceeding
of the Eleventh International Conference on Machine
Learning.
Mitchell, T. 1997. Machine Learning. McGraw Hill.

Moulinier, I.; Raskinis, G.; and Ganascia, J.-G. 1996.
Text categorization: a symbolic approach. In Sym-
posium on Document Analysis and Information Re-
trieval.
Pagello, G., and Haussler, D. 1990. Boolean feature
discovery in empirical learning. Machine Learning 5.

Pazzani, M., and Billus, D. 1997. Learning and revis-
ing user profiles: the identification of interesting web
sites. Machine Learning 27.

Riddle, P.; Segal, R.; and Etzioni, O. 1994. Repre-
sentation design and brute-force induction in a boeing
manufacturing domain. Applied Artificial Intelligence
8.




