
Intelligent Agents for Web-based Tasks: An Advice-Taking Approach

Jude Shavlik and Tina Eliassi-Rad
University of Wisconsin-Madison

1210 W. Dayton Street
Madison, Wisconsin 53706

{shavlik, eliassi}@cs.wisc.edu
http://www.cs.wisc.edu/∼{shavlik, eliassi}

Abstract

We present and evaluate an implemented system
with which to rapidly and easily build intelli-
gent software agents for Web-based tasks. Our
design is centered around two basic functions:
ScoreThisLink and ScoreThisPage. If given
highly accurate such functions, standard heuristic
search would lead to efficient retrieval of useful
information. Our approach allows users to tailor
our system’s behavior by providing approximate
advice about the above functions. This advice
is mapped into neural network implementations
of the two functions. Subsequent reinforcements
from the Web (e.g., dead links) and any ratings
of retrieved pages that the user wishes to provide
are, respectively, used to refine the link- and page-
scoring functions. Hence, our architecture pro-
vides an appealing middle ground between non-
adaptive agent programming languages and sys-
tems that solely learn user preferences from the
user’s ratings of pages. We describe our internal
representation of Web pages, the major predicates
in our advice language, how advice is mapped into
neural networks, and the mechanisms for refining
advice based on subsequent feedback. We also
present a case study where we provide some simple
advice and specialize our general-purpose system
into a “home-page finder”. An empirical study
demonstrates that our approach leads to a more
effective home-page finder than that of a leading
commercial Web search site.

Introduction

We describe and evaluate a design for creating person-
alized intelligent agents for the Web. Our approach
is based on ideas from the theory-refinement commu-
nity (Pazzani & Kibler 1992; Ourston & Mooney 1994;
Towell & Shavlik 1994). Users specify their personal in-
terests and preferences using the language we designed
for discussing aspects of the contents and structure of
Web pages. These instructions are then “compiled” into
“knowledge based” neural networks (Towell & Shavlik
1994), thereby allowing subsequent refinement when-
ever training examples are available. As will be seen,
the Wisconsin Adaptive Web Assistant (Wawa) uses

ideas from reinforcement learning to automatically cre-
ate its own training examples, though Wawa can also
use any user-provided training examples. Thus our
design has the important advantage of producing self-
tuning agents.

At the heart of Wawa are two neural net-
works, implementing the functions ScoreThisLink
and ScoreThisPage. These functions, respectively,
guide the system’s wandering within the Web and judge
the value of the pages encountered. The user mainly
programs these two functions by providing what we
call advice, which is basically, rules-of-thumb for guid-
ing WAWA’s wandering and for specifying how it scores
pages. Following (Maclin & Shavlik 1996), we call our
programming language an advice language, since this
name emphasizes that the underlying system does not
blindly follow the user-provided instructions, but in-
stead refines this advice based on the system’s experi-
ence.

Our networks have very large input vectors (i.e., sets
of features), since that allows us to have an expressive
advice language; each user’s personal advice essentially
focuses attention on only a small subset of the features,
thereby making learning feasible. For example, a cancer
researcher or a stock analyst can express their particu-
lar interests in our advice language, then have Wawa
regularly monitor relevant Web sites for new articles
about their interests (our advice language allows users
to say such things as, if a page was created more than
3 days ago, give it a large negative score).

We envision that there are two types of potential
users of our system: (a) developers who build an in-
telligent agent on top of Wawa and (b) people who use
the resulting system. (When we use the phrase user in
this article, we mean the former case.) Both types of
users can provide advice to the underlying neural net-
works, but we envision that usually the type B users
will indirectly do this through some specialized inter-
face that the type A user creates. A scenario like this
appears in our experimental section.

We next further describe the Wawa system and its
advice language, then demonstrate its utility by show-
ing how it can easily be programmed to create a “home-
page” finder. We empirically study this home-page

From: AAAI Technical Report WS-98-05. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

finder and present results that show our version outper-
forms the home-page finder that the search engine Hot-
Bot provides. Our experiments also demonstrate that
Wawa improves its performance by using the training
examples it automatically generates.

System Description

Table 1 provides a high-level description of Wawa.
First, its initial neural networks need to be created (or
read from disk should this be a resumption of a previous
session). We will momentarily postpone describing the
details of how advice is converted into neural networks.
One can view this process as analogous to compiling a
traditional program into machine code, but our system
instead compiles instructions into an intermediate lan-
guage expressed using neural networks. This provides
the important advantage that our “machine code” can
automatically be refined based on feedback provided by
either the user or the Web.

The basic operation of Wawa is heuristic search, with
our ScoreLink function providing the score. Rather
than solely finding one goal node, though, we collect the
100 pages that ScorePage rates highest. The user can
choose to seed the queue of pages to fetch in two ways:
either by specifying a set of starting urls or by provid-
ing a simple query that Wawa converts into “query”
urls that are sent to a user-chosen subset of selectable
search engine sites (currently AltaVista, Excite, InfoS-
eek, Lycos, and Yahoo).

Although not mentioned in Table 1, the user may also
specify a depth limit that puts an upper bound on the
distance the system will wander from the initial urls.

Before fetching a page (other than those initially in
the queue), Wawa had predicted the value of fetching
the page, based on the contents of the “referring” page
that linked to it. After fetching and analyzing the text,
the system will have a better estimate of the page’s
value to the user. Any differences between the “before”
and “after” estimates constitute an error that can be
used by backpropagation (BP) (Rumelhart, Hinton, &
Williams 1986) to improve the ScoreLink neural net-
work. We cover the details of this process later.

In addition to the above system-internal method of
automatically creating training examples, the user can
improve the ScorePage and ScoreLink neural net-
works in two ways. One, the user can provide additional
advice. Observing the system’s behavior is likely to in-
voke thoughts of good additional instructions. Wawa
can accept new advice and augment its neural net-
works at any time. It simply adds to a network ad-
ditional hidden units that represent the compiled ad-
vice, a technique whose effectiveness was demonstrated
(Maclin & Shavlik 1996) on several tasks. Providing ad-
ditional hints can rapidly and drastically improve the
performance of Wawa, provided the advice is relevant.
(In this paper’s experiments we do not evaluate incre-
mental provision of advice, though (Maclin & Shavlik
1996) have done so on their testbeds. They also showed

Table 1: The WAWA Algorithm
Unless they have been saved to disk in a
previous session, create the ScoreLink and
ScorePage neural networks by reading the
user’s initial advice (if any).

Either (a) start by adding user-provided urls
to the search queue; or

(b) initialize the search queue with urls
that will query the user’s chosen
set of Web search engine sites.

Execute the following concurrent processes.

Independent Process #1
While the search queue is not empty nor the
maximum number of urls visited,

Let URLtoV isit = pop(search queue).
Fetch URLtoV isit.

Evaluate URLtoV isit using ScorePage network.
If score is high enough, insert URLtoV isit

into the sorted list of best pages found.
Use the score of URLtoV isit to improve

the predictions of the ScoreLink network.

Evaluate the hyperlinks in URLtoV isit
using ScoreLink network (however, only
score those links that have not yet been
followed this session).

Insert these new urls into the (sorted) search
queue if they fit within its max-length bound.

Independent Process #2
Whenever the user provides additional advice,
insert it into the appropriate neural network.

Independent Process #3
Whenever the person rates a fetched page,
use this rating to create a training example
for the ScorePage neural network.

that their algorithm is robust when given “bad” advice,
quickly learning to ignore it.)

Although more tedious, the user can also rate pages
as a mechanism for providing training examples for use
by BP. This can be useful when the user is unable
to articulate why the system is misscoring pages and
links, but is able to provide better scores. This stan-
dard learning-from-labeled-examples methodology has
been previously investigated by other researchers, e.g.,
(Pazzani, Muramatsu, & Billsus 1996), and we will not
further discuss this aspect of Wawa in this article. We
do conjecture, though, that most of the improvement
to Wawa’s neural networks, especially to ScorePage,
will result from users providing advice. In our personal

experience, it is easy to think of simple advice that
would require a large number of labeled examples in
order to learn purely inductively. Empirical support
for these claims is a topic of experiments in progress.

Scoring Arbitrarily Long Pages with
Fixed-Sized Neural Networks
Wawa’s use of neural networks means we need a mech-
anism for processing arbitrarily long Web pages with
fixed-sized input vectors. One approach would be to
use recurrent networks, but instead we borrow an idea
from NETtalk (Sejnowski & Rosenberg 1987), though
our basic unit is a word rather than an (alphabetic) let-
ter as in NETtalk. Wawa slides a fixed-sized window
across a page, and most of the features we use to rep-
resent a page are defined with respect to the current
center of this window.

Fig. 1 illustrates how Wawa computes the score of
a page. Basically, we define the score of a page to be
the highest score the ScorePage network produces as
it is slid across the page. The value of a hyperlink is
computed similarly, but Wawa only slides the Score-
Link network over the hypertext associated with that
hyperlink. However, in this case the window starts by
being centered on the first word in the hypertext, which
means the nearby words outside of the hypertext will
sometimes fill some of the window positions. (Note that
we define some HTML constructs, such as 〈HR〉, to be
“window breakers,” which means that the window is
not allowed to span across these; instead the unused
positions are left unfilled.)

Position of Sliding Window

Score of Page

Network
Output

Figure 1: Scoring a Page with a Sliding Window

An Overview of WAWA’s Advice Language
We next turn to how Wawa represents Web pages and
the constructs of its advice language. The input fea-
tures it extracts (from either HTML or plain text) con-
stitute the primitives in our advice language. Follow-
ing our description of the basic features, we discuss the
more complicated language constructs created from the
basic ones. We then show some sample advice used in
our “home-page finder” experiments.

Extracting Features from Web Pages. A stan-
dard representation of text used in information retrieval

is the vector-space model (Salton 1991) (or the bag-of-
words representation). The left side of Fig. 2 illustrates
this representation. Basically, word order is lost and all
that is used is a vector that records the words present
on the page, usually scaled according to the number of
occurrences and other properties (e.g., tfidf (Salton
1991)).

Original Web Page
URL: www.page.com

Title: A Sample Page

This space
for rent.

Stop
Words
Removal
and Stemming

Standard
Approach

Aspects of Our
Representation

Localized
Bags-of-W

ords

space
rent

pa
ge

sample

com

www

page
sample
words in title

words in
window

space
rent

words in
URL

com
page
www

Bag
s-

of
-W

or
ds

URL: www.page.com

Title: Sample Page

space rent

Sliding
Window

Figure 2: Internally Representing Web Pages

Typically, information retrieval systems also discard
common (“stop”) words and “stem” all words to their
root form (e.g., “walked” and “walking” both become
“walk”) (Salton 1991). Doing so greatly reduces the
dimensionality (i.e., number of possible features) of
the problem. Wawa performs these two preprocessing
steps.

Instead of solely using the bag-of-words model, we use
a richer representation that preserves some word-order
information. We also take advantage of the structure of
HTML documents when a fetched page is so formatted.
First, as partially shown by the first two lines of Table 2,
we augment the bag-of-words model, by using several
localized bags, some of which are illustrated on the right

side of Fig. 2. Besides a bag for all the words on the
page, we have word bags for: the title, the page’s url,
the window, the left and right sides of the window, the
current hyperlink should the window be inside hyper-
text, and the current section’s title. (Our parser of Web
pages records the “parent” section title of each word;
parent’s of words are indicated by the standard 〈H1〉
through 〈H6〉 constructs of HTML, as well as other in-
dicators such as table captions and table-column head-
ings. Actually, we also have bags for the words in the
grandparent and great-grandparent sections, should the
current window be nested that deeply. This knowledge
of the “context” of words means our advice is not lim-
ited to describing relations between nearby words.)

Table 2: Sample Extracted Input Features
anywhereOnPage(〈word〉)
anywhereInTitle(〈word〉)
· · ·
isNthWordInTitle(〈N〉, 〈word〉)
· · ·
isNthWordFromENDofTitle(〈N〉, 〈word〉)
· · ·
NthFromENDofURLhostname(〈N〉, 〈word〉)
· · ·
leftNwordInWindow(〈N〉, 〈word〉)
centerWordInWindow(〈word〉)
· · ·
numberOfWordsInTitle()
numberOfAdviceWordsInTitle()
· · ·
insideEmphasizedText()
timePageWasLastModified()

(Before continuing, a word of clarification is in order.
A Web page has its own url, while there are also urls
within the page’s contents. We refer to the former as
url and the later cases as hyperlinks, in an attempt to
reduce confusion.)

In addition to these word bags, we also represent
several fixed positions. Besides the obvious case of
the positions in the sliding window, we represent the
first and last N words (for some fixed N) in the ti-
tle, the url, the section titles, etc. Due to its im-
portant role in the Web, we also specially represent
the last N fields (i.e., delimited by dots) in the server
portion of urls and hyperlinks, e.g. www aaai org in
http://www.aaai.org/Workshops/1998/ws98.html.

Thus, we use many Boolean-valued features to
represent a Web page, ranging from anywhereOn-
Page(aardvark) to anywhereOnPage(zebra) to right-
NwordInWindow(3, AAAI) to NthFromENDofURL-
hostname(1, edu). (The current version of Wawa does
not use any tfidf methods, due to the manner we com-
pile advice into networks.)

Our design leads to a larger number of input features,
assuming a typical vocabulary of tens of thousands of
words, on the order of a million! However, we sparsely

represent these input vectors by only recording those
features whose value is “true,” taking advantage of an
important aspect of neural networks. Specifically, if we
represent absent words by zero (and we do), then these
zero-valued input features play no role in the forward-
propagation phase, since weighted sums are used, nor
on the BP step, due to the partial derivatives involved.

Beside the input features related to words and their
positions on the page, Wawa’s input vector also in-
cludes various other features, such as the length of the
page, the date the page was created/modified (should
the page’s server provide that info), whether the win-
dow is inside emphasized HTML text, the sizes of the
various word bags, how many words mentioned in ad-
vice are present in the various bags, etc.

One might ask how a learning system can hope to do
well in such a large space of input features. Dealing with
this many input features would indeed be infeasible if
Wawa solely learned from labeled examples (Valiant
1984). Fortunately, as we shall see, our use of advice
means that users indirectly select a subset feature space
from this huge implicit input vector. Namely, they in-
directly select those features that involve the words ap-
pearing in the their advice. (The full input space is
still there, but the weights out of input features used
in advice have high values, while all other weights have
values near zero. Thus, there is the potential for words
not mentioned in advice to impact the networks’ out-
put, following much BP training.)

WAWA’s Complex Predicates. Phrases (Croft,
Turtle, & Lewis 1991), which specify desired proper-
ties of consecutive words, play a central role in creat-
ing more complex constructs out of the basic features
we extract from Web pages. Table 3 contains some of
the more complicated predicates that Wawa defines in
terms of the basic input features. Some of the advice
used in our home-page finder experiment appears in
this table. (The anyof() construct used in the table is
satisfied when any of the listed words is present.)

Table 3: Sample Advice
(1) WHEN consecutiveInTitle(

anyOf(Joseph Joe J.)
Smith’s home page)

STRONGLY SUGGEST SHOWING PAGE
[also see Fig. 3]

(2) WHEN hyperlinkEndsWith(
anyOf(Joseph Joe Smith jsmith) /
anyOf(Joseph Joe Smith jsmith

index home homepage my me)
anyOf(htm html /))

STRONGLY SUGGEST FOLLOWING LINK
(3) WHEN (titleStartsWith(Joseph Joe J.)

and titleEndsWith(Smith))
SUGGEST SHOWING PAGE

(4) WHEN NOT(anywhereOnPage(Smith))
STRONGLY SUGGEST AVOID SHOWING PAGE

Our basic command says that under some conditions,
either increase or decrease the output of one or both of
Wawa’s neural networks. We will use the first entry in
Table 3 to also illustrate how advice is mapped into a
network. Assume we are seeking Joseph Smith’s home
page. The intent of rule 1 is as follows. When the
system is sliding the window across the page’s title, it
should look for any of the plausible variants of this per-
son’s first name, followed by his last name, followed by
apostrophe s, and then the phrase “home page.” When
these conditions are met, then a large weighted sum
should be sent to the output unit of the ScorePage
network.

This is accomplished using a variant of the Kbann al-
gorithm (Towell & Shavlik 1994), as sketched in Fig. 3.
During advice compilation, Wawa maps the consecu-
tiveInX construct by centering it over the sliding win-
dow, with the additional constraint that the window
is sliding over portion X of the page (e.g., the title,
hypertext, etc.).

7.5

5

5

5

5

5 Score
This
Page

bias
 =

27.5

5

...

Right2inWindow
=

“page ”

Right1inWindow
=

“home”

CenterInWindow
=

‘s

Left1inWindow
=

“Smith ”

Left2inWindow
=

“Joe ”

...

insideTitle

Figure 3: Mapping Advice into a Network Fragment

Rule 1 in Table 3 compiles to five positions (’s is
treated as a separate word) in the sliding window, along
with the constraint that the insideT itle predicate be
true (i.e., have an activation value of 1). Wawa then
connects the referenced input units to a newly created
hidden unit, using weights of value 5. Next, Wawa
sets the bias (i.e., threshold) of the new hidden unit,
which has a sigmoidal activation function, such that
all the required predicates must be true in order for
the weighted sum of its inputs to exceed the bias and
produce an activation of the hidden unit near 1. (Some
additional zero-weighted links are also added to this
new hidden unit, to further allow subsequent learning,

as is standard in Kbann.)
Finally, Wawa links the hidden unit into the output

unit with a weight determined by the strength given
in the rule’s consequent. Wawa interprets the phrase
“suggest showing page” as “increase the page’s score.”

Unshown variants of rule 1 used in our case study al-
low for the possibility of Smith having a middle name or
initial on his home page, by using Wawa’s (single-word)
“wildcard” symbol, and the possibility his home-page’s
title is of the form “home page of” Rule 2 shows
another useful piece of advice for home-page finding.
This one gets compiled into the NthFromENDofHyper-
link() input features, which are true when the specified
word is the Nth one from the end of the current hy-
perlink. When there is a match, the weighted sum into
the ScoreLink is increased substantially. (Note that
Wawa treats the ’/’ in urls as a separate word.) Rule 3
shows that advice can also specify when not to follow a
link or show a page; negations and avoid instructions
become negative weights in the neural networks.

Deriving Training Examples for ScoreLink
We use temporal difference methods (Sutton 1988) to
automatically train ScoreLink; Wawa employs a form
of Q-learning (Watkins 1989)—a type of reinforce-
ment learning (RL). Recall that the difference between
Wawa’s prediction of the link’s value before fetching
the url and its new estimate serves as an error that
BP tries to reduce. Whenever Wawa has collected all
the necessary information to re-estimate a link’s value,
it invokes BP. In addition, it periodically reuses these
training examples several times. Notice that Wawa au-
tomatically constructs these training examples without
direct user intervention, as is typical in RL.

As is also typical in RL, the value of an action (fol-
lowing a link in our case) is not solely determined by
the immediate result of the action (the value of the
page retrieved for us, minus any retrieval-time penalty).
Rather, we wish to also reward links that lead to pages
with additional good links on them. We attempt to
capture this goal as shown in Fig. 4 and Eq. 1.

Eq. 1: if ScoreLink(B → C) > 0 then

new estimate of ScoreLink(A → B)
= fetchPenalty(B) + ScorePage(B)

+ γ(fetchPenalty(C) + ScorePage(C))
+ γ2MAX(0, ScoreLink(B → D),

ScoreLink(C → E))
else new estimate of ScoreLink(A → B)

= fetchPenalty(B) + ScorePage(B)

We define the task of the ScoreLink function to be
estimating the (discounted, e.g., γ=0.95) sum of the
scores of the pages fetched assuming that the system
started its best-first search at the page referred to by the
hyperlink (plus the cost of fetching pages). In other
words, if Fig 4’s Page B were the root of a best-first

Page A

Link score from
A to B

Best scoring
link from B

Second best scoring
link from B

Best scoring
link from C

Page D

Page E

Page C

Page B

Figure 4: Reestimating the Value of a Link

search, Wawa would next visit C and then either D
or E, depending on which referring hyperlink looked
better. Hence, the first few terms of the sum would be
the value of root page B, plus the value of C discounted
by one time step. We then recursively estimate the
remainder of this sum by using the better score of the
two urls that would be at the front of the search queue
(discounted their predicted value for being two time
steps in the future).

Of course, since we are using best-first search, rather
than visiting C after moving from A to B, Wawa may
have a more promising url in its queue. In order to
keep our calculation of the re-estimated ScoreLink
function localized, we largely ignore this aspect of the
system’s behavior. We only partially capture it by ad-
justing the calculation described above by assuming
that links that have negative predicted value are not
followed. (A technical note is in order — the output
units in Wawa are linear units that simply output their
weighted sum of inputs, so output values can be nega-
tive.)

Finally, the above case does not apply when an url
cannot be fetched (i.e., a “dead link”). When this hap-
pens, ScoreLink receives a large penalty.

The definition of our “Q function” is different than
the traditional definition, which essentially assumes
hill-climbing rather than our best-first, beam search.

The former makes sense for physical robots, but less
so for software agents. We are unable to further dis-
cuss this function and its relationship to traditional RL
here, though the experiments in our case study provide
empirical support for the value of our formalization.

Experiments
This section presents a case study that illustrates the ef-
fectiveness and ease of specializing the general-purpose
Wawa system for a Web-based task. We chose a task
already in the literature: creating a home-page finder
(Shakes, Langheinrich, & Etzioni 1997). Their Ahoy!
system uses a technique called Dynamic Reference Sift-
ing, which filters the output of several Web indices and
generates new guesses for urls’ when no promising can-
didates are found.

We wrote a simple interface layered on top of Wawa
that asks for whatever relevant information is known
about the person whose home page is being sought:
first name, possible nicknames, middle name or initial,
last name, miscellaneous phrases, and a partial url
(e.g., edu or ibm.com). We then wrote a short pro-
gram that reads these fields and creates advice that is
sent to Wawa. We also wrote 76 general advice rules
related to home-page finding, many of which are slight
variants of others (e.g., with and without middle names
or initials). Specializing Wawa for this task and cre-
ating the initial general advice took only one day, plus
we spent parts of another 2-3 days tinkering with the
advice using the “training set” we describe below.

Some technical comments are needed to fully under-
stand the details of the following experiments. First,
users can retract advice from Wawa’s neural networks.
Thus, new advice is added and the old erased for each
request to find a home page. However, one would
also like to learn something in general about home-
page finding. This is accomplished via a crude vari-
able binding mechanism. Wawa accepts instructions
that certain words should be bound to SpecialWordN ,
and its input vectors contain the Boolean-valued fields
specialWordNisInWindowPositionM . We thus as-
sign the query person’s first name to SpecialWord1,
alternate first names (if any) to SpecialWord2 and
SpecialWord3 , etc. Then we can write general-purpose
advice about home-page finding that uses these new
Boolean-valued features (hence, rule 1 in Table 3 is ac-
tually written using the SpecialWordN markers and
not the names of specific people).

Wawa is currently limited, though, in that these spe-
cial markers only refer to words in the sliding window.
Advice that refers to other aspects of a Web page needs
to be specially created for each request to find a home
page; the number of these specific-person rules that our
specialized Wawa creates depends on how much infor-
mation is provided about the person whose home page
is being sought. For the experiments below, we only
provide information about people’s names; this leads
to the generation of one to two dozen rules, depending
if middle names or initials are provided.

Motivation and Methodology
We randomly selected 100 people from Aha’s list of
machine learning and case-based reasoning researchers
(www.aic.nrl.navy.mil/∼aha/people.html) to run
experiments that evaluate Wawa; to reduce the com-
putational load of our experiments, we limited this to
people in the United States. Out of the 100 people se-
lected, we randomly picked 50 of them to train Wawa
and used the remaining 50 as our test set. By “train-
ing” we mean here that we manually ran the system
on these train-set people, tinkering our advice before
“freezing” the advice and evaluating on the testset. We
did not do any BP-based training with the training set.

To judge Wawa’s performance in the task of finding
home-pages, we provide it with the advice discussed
above. It is important to note that we intentionally did
not provide any advice that is specific to ML, CBR,
AI research, etc. Wawa has several options which ef-
fect its performance, both in the amount of execution
time and the accuracy of its results. We chose small
numbers for our parameters, using 106 for the maxi-
mum number of pages fetched (which includes the five
queries initially sent off to search engines), and 3 as the
maximum distance to travel away from the pages re-
turned by the search engines. (Experiments currently
underway involve varying these parameters.)

We start Wawa by providing it the person’s name
as given on Aha’s Web page, though we partially stan-
dardized our examples by using all common variants of
first names. (e.g., “Joseph” and “Joe”). Wawa then
converts the name into an initial query (see the next
paragraph) which is sent to the five search engines men-
tioned earlier.

We compare the performance of Wawa with the per-
formances of Ahoy! and HotBot, a search engine
not used by Wawa and the one that performed best in
the home-page experiments of (Shakes, Langheinrich,
& Etzioni 1997). We provided the names in our test-
set to Ahoy! via its Web interface. We ran HotBot
under two different conditions. The first setting per-
forms a specialized HotBot search for people; we use
the name given on Aha’s page for these queries. In
the second variant we provide HotBot with a general-
purpose disjunctive query, which contains the person’s
last name as a required word, all the likely variants of
the person’s first name, and the words “home page”,
homepage, and home-page. The latter is the same query
that Wawa initially sends to its five search engines. For
our experiments, we only look at the first 100 pages
HotBot returns, under the assumption that few peo-
ple would look further into the results returned by a
search engine.

Since people often have different links to their home
pages, rather than comparing urls to those provided on
Aha’s page, we instead do an exact comparison on the
contents of fetched pages to the contents of the page
linked to Aha’s page. Also, when running Wawa we
never fetched any urls whose server matched that of
Aha’s page, thereby preventing visiting Aha’s page.

The only BP learning Wawa performs in these exper-
iments is that of refining the ScoreLinks function, by
automatically creating training examples via temporal-
difference learning, as discussed above. We also ran an
experimental control where we completely disabled BP.

Results and Discussion
Table 4 lists our results. Besides reporting the percent-
age of the 50 testset home-pages found, we report the
average ordinal position (rank) given a page is found,
since Wawa, Ahoy!, and HotBot all return sorted
lists. These results provide strong evidence that the
version of Wawa, specialized into a home-page finder
by adding simple advice, produces a better home-page
finder than does the proprietary people-finder created
by HotBot; with 95% probability, we can say that
Wawa’s accuracy on this testset is between 69% and
91% (e.g., using the formula on p. 131 of (Mitchell
1997)). Thus it is fair to claim that the difference be-
tween Wawa and HotBot in this experiment is statis-
tically significant. The differences between the first and
third rows also suggests that BP-refinement of Score-
Links is effective. Our results also suggest that Wawa
performs better than Ahoy!, but this difference is not
significant at the 95% confidence level.

One cost of using our approach is that we fetch and
analyze many Web pages, which takes longer. We have
not focused on speed in this study, ignoring such ques-
tions as how well we can do fetching only the first N
characters of Web pages, only using the capsule sum-
maries search engines return, etc. One relevant statistic
we do have is that, given Wawa finds a home page, on
average it is the ninth page fetched.

Table 4: Empirical Results
System % Found Mean Rank

Wawa with BP 80% 1.2

Ahoy! 74% 1.5

Wawa without BP 70% 1.3

H’Bot person search 66% 12.0

HotBot general 44% 15.4

Related Work
Like Wawa, Syskill and Webert (Pazzani, Muramatsu,
& Billsus 1996), and WebWatcher (Joachims, Freitag,
& Mitchell 1997) are Web-based systems that use ma-
chine learning techniques. They, respectively, use a
Bayesian classifier and a reinforcement learning–tfidf
hybrid to learn about interesting Web pages and hyper-
links.

Drummond et al. (Drummond, Ionescu, & Holte
1995) have created a system which assists users brows-
ing software libraries; it learns unobtrusively by observ-
ing users’ actions. Letizia (Lieberman 1995) is a system

similar to Drummond et al.’s that uses lookahead search
from the current location in the user’s Web browser.

Unlike Wawa, the above systems are unable to accept
(and refine) advice, which usually is simple to provide
and can lead to better learning than rating or manually
visiting many Web pages.

Current and Future Work

We are currently scaling-up the experiments described
above, including varying parameters, using more exam-
ples, judging the contribution of individual advice rules,
and evaluating the impact of having the user manually
rate some retrieved pages. For example, when we set
the maximum number of pages fetched to 206, Wawa
found 84% of the homepages in our testset. This re-
sult is 4% higher than the number of homepages found
when the maximum number of pages fetched was set
to 106. We also plan to further validate our claim of
having appealing Web-based agents by creating addi-
tional testbeds, such as a personalized (and adaptive)
electronic newspaper, an email filter, or a paper finder
which returns links to papers of interest. This last agent
is of particular interest to researchers who want to find
published papers.

Moreover, we have set out to expand our advice lan-
guage and to build into Wawa the ability to use in-
formation about synonyms (e.g., WordNet (Miller
1995)) and other knowledge about text. We would
also like to add the capability of automatically creating
plausible training examples by unobtrusively observing
the actions made by users during their ordinary use of
Wawa. Towards this last goal, we plan to integrate
Wawa into the recently released code for Netscape’s
browser.

Finally, we have been beta-testing Wawa with
members of the Wisconsin Internet Scout project
(scout.cs.wisc.edu) and are developing interactions with
campus librarians and several research groups in the
Medical School. We hope that this triad of specialists
in machine learning, manual information retrieval, and
particular scientific domains will produce an insightful
large-scale test of our approach for creating personal-
ized and easily customized intelligent agents.

Conclusion

We present and evaluate the Wawa system, which pro-
vides an appealing approach for creating personalized
information finding agents for the Web. A central as-
pect of our design is that a machine learner is at the
core. Users create specialized agents by articulating
their interests in our advice language. Wawa compiles
these instructions into neural networks, thereby allow-
ing for subsequent refinement. The system both cre-
ates its own training examples (via reinforcement learn-
ing) and allows for supervised training should the user
wish to rate the information Wawa finds. This pro-
cess of continuous learning makes the agents built on
top of Wawa (self) adaptive. Our “proof of concept,”

case study demonstrated the efficacy of using system-
generated training examples to improve the evaluation
of potential hyperlinks to traverse.

Acknowledgements
This research was partially supported by ONR Grant
N00014-93-1-0998 and NSF Grant IRI-9502990.

References
Croft, W.; Turtle, H.; and Lewis, D. 1991. The use
of phrases and structured queries in information re-
trieval. In 14th International ACM SIGIR Conference
on R & D in Information Retrieval, 32–45.
Drummond, C.; Ionescu, D.; and Holte, R. 1995. A
learning agent that assists the browsing of software
libraries. Technical report, University of Ottawa.
Joachims, T.; Freitag, D.; and Mitchell, T. 1997. Web-
watcher: A tour guide for the World Wide Web. In
Proc. IJCAI-97.
Lieberman, H. 1995. Letzia: An agent that assists
web browsing. In Proc. IJCAI-95.
Maclin, R., and Shavlik, J. 1996. Creating advice-
taking reinforcement learners. Machine Learning
22:251–281.
Miller, G. 1995. WordNet: A lexical database for
English. Communications of the ACM 38:39–41.
Mitchell, T. 1997. Machine Learning. McGraw-Hill.
Ourston, D., and Mooney, R. 1994. Theory refinement:
Combining analytical and empirical methods. Artif.
Intel. 66:273–309.
Pazzani, M., and Kibler, D. 1992. The utility of knowl-
edge in inductive learning. Machine Learning 9:57–94.
Pazzani, M.; Muramatsu, J.; and Billsus, D. 1996.
Identifying interesting web sites. In Proc. AAAI-96.
Rumelhart, D.; Hinton, G.; and Williams, R. 1986.
Learning representations by back-propagating errors.
Nature 323:533–536.
Salton, G. 1991. Developments in automatic text re-
trieval. Science 253:974–979.
Sejnowski, T., and Rosenberg, C. 1987. Parallel net-
works that learn to pronounce English text. Complex
Systems 1:145–168.
Shakes, J.; Langheinrich, M.; and Etzioni, O. 1997.
Dynamic reference sifting: A case study in the home-
page domain. In Proc. of the Sixth International World
Wide Web Conference, 189–200.
Sutton, R. 1988. Learning to predict by the methods
of temporal differences. Machine Learning 3:9–44.
Towell, G., and Shavlik, J. 1994. Knowledge-based
artificial neural networks. Artif. Intel. 70:119–165.
Valiant, L. 1984. A theory of the learnable. Commu-
nications of the ACM 27:1134–1142.
Watkins, C. 1989. Learning from Delayed Rewards.
Ph.D. Dissertation, King’s College.

