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Abstract

In this paper we investigate the problem of learning
a preference relation i~om a given set of ranked doc-
uments. We show that the Bayes’s optimal decision
function, when applied to learning a preference rela-
tion, may violate transitivity. This is undesirable for
information retrieval, because it is in conflict with a
document ranking based on the user’s preferences. To
overcome this problem we present a vector space based
method that performs a linear mapping from docu-
meats to scalar utility values and thus guarantees tran-
sitivity. The learning of the relation between docu-
meats is formulated as a classification problem on pairs
of documents and is solved using the principle of struc-
tural risk minimization for good generalization. The
approach is extended to polynomial utility functions
by using the potential function method (the so called
"kernel trick"), which allows to incorporate higher or-
der correlations of features into the utility function at
minimal computational costs. The resulting algorithm
is tested on aa example with artificial data. The algo-
rithm successfully learns the utility function underly-
ing the training examples and shows good classification
performance.

Introduction
The task of supervised learning in information retrieval
(IR) is mostly based on the assumption that a given
document is either relevant or non-relevant. This holds
for example for Rocchio’s feedback algorithm (Saiton
1968) and for the binary independence model (Robert-
son 1977) which is based on a Bayesian approach. 
classification approach was adopted and as classifica-
tions were considered to be partitions on a set of objects
this reduces to learning equivalence relations from ex-
amples. But there is also the view that the similarity of
the documents to the query represents the importance
of the documents (Salton 1989, p. 317), which in turn
means that a user need implies some preference relation
on the documents, hi (Bolhnann & Wong 1987) and
(Wong, Yao, & BoUmann 1988) the idea was developed
to learn a preference relation instead of an equivalence
relation. The learning of preference relations reduces
to a standard classification problem if pairs of objects
are considered, because a binary relation can be viewed

as a subset of the Cartesian product. (Wong, Yao, 
Bollmann 1988) successfully applied linear classification
and perceptron learning to this problem.

In this paper we consider the situation that there
are more than two relevance levels and that there exist
several documents with different relevance levels which
all have the same description. We find that an ideal
Bayesian approach leads to inconsistencies, namely to
the violation of transitivity. To overcome this problem,
an algorithm is developed which enforces transitivity by
learning a linear mapping from document descriptions
to scalar utility values based on training examples that
consist of pairs of document descriptions and their pref-
erence relation. The learning procedure is based on the
principle of structural risk minimization (SRM) (Vap-
nik 1995), which is known for its good generalization
properties (for an application of SRM to document clas-
sification see (Joachims 1997)). The linear approach 
generalized to include nonlinear utility functions, which
are able to capture correlations between the features,
by applying the so-called "kernel-trick". The paper is
structured as follows: First, the learning of preference
relations is formulated as a classification problem on
pairs of document descriptions and the inconsistency
of the Bayesian approach is demonstrated. In the fol-
lowing, the linear vector space model is introduced and
structural risk minimization is applied for learning the
weight vector. Then, this approach is generalized to in-
clude nonlinear utility functions by applying the "kernel
trick". Finally, we present some numerical experiments
to demonstrate the validity of the approach.

The Problem of Transitivity

Let us consider a static document space denoted by D
with documents d E D being represented by feature
vectors d = (dl,d2,...,dn)’E :D where n denotes the
number of the features dk. The user determines a pref-
erence relation on the documents used for training, and
generates a training set S consisting of l pairs (d, d’)
of document descriptions together with their relations
d *> d~:
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no. of documents
relevance levels d d’ ] d"

Rl 0 0 4
R2 5 0 0
R3 0 9 0
R4 0 0 5
R5 4 0 0

Table 1: Number of relevance assignments to 27 docu-
inents described by tim feature vectors d, d’,and d"

y(0
{ +1 ifd(0 *>d~(i)= -1 otherwise (1)

Moreover, let us consider a set 7-/of functions hi, which
map pairs of documents to the set {+1,-1}.

We are now in a position to formulate our problem:
Given a training set S and a space of hypotheses ~/,
choose one function h* 6 7-/such that the risk of mis-
classifying further pairs (d, £) of documents is mini-
mized. Moreover, the relation represented by h* has to
be transitive,

h*(d,d’) = h*(d’,d") = ~ h*( d,d") = + 1. (2)

Our task now reduces to a classification problem. The
objects the classifier has to assign to the classes -> and
-~ *> are pairs (d, ~) of d ocument descriptions. F rom
the theory of optimal decisions in classification tasks
(e.g., (Bishop 1995)) it is known, that the function 
with minimal risk is the Bayes’s optimal function:

h*(d,d’) = { +1_1 otherwiseif P(*> I(d,d’)) > ½ 

However, the Bayesian approach for preference learning
is inconsistent, because stochastic transitivity may not
hold (Suppes et al. 1989). We will demonstrate this
fact by the following example.

Let us consider a document space with 27 documents.
The documents are described by three distinct feature
vectors 79 = {d, d’, d"}, which separate the document
space into three sets of nine documents each, one set
for each feature vector. Each document is assigned one
out of five relevance levels as listed in Table 1, where
d6 R~ is preferred over £ 6 Rj iffi < j. Hence the
choice probabilities are P( *> I(d, dl)) = 45s_~ > ~,l

P(*> ](d’,d’’)) =814--55 = 5_9 > ½, and P(*> l(d",d)) 
56>1
s-~ ~. This is equivalent (using (3)) 

h*(d,d’) = h*(d’, d") = h*(d", d) = +1, 

which contradicts transitivity (2).

The Utility Function Approach
One way to enforce transitivity is to map each docu-
ment description to a real value: U : l) ~ ~. Such
a value can be seen as au ordinal utility a document

provides to the user (Roberts 1979). The transitivity
of the relation is assured by the rule

d-> d’ ¢:~ U(d) > U(d’), (5)

which maps the classification problem to the problem
of learning the function U(d). Let us start by making 
linear model of the function U(d) parameterized by 
n-dimensioual vector w = (wl,..., w?%) (Wong, Yao, 
Bolhnann 1988):

?%

U(d) = ZWkdk + b = w" d + b (6)
k=l

Now we can express (5) using (6) to 

do>d~ ¢, w.d+b>w.d’+b

¢~ w. (d-d’) > (7)

Note that the relation d*> d~ is expressed in terms
of the difference between feature vectors d - d’, which
can be thought of as the combined feature vector of the
pair of documents. If we assume that the "true" utility
function is indeed linear, the weight vector w has to
satisfy inequality (7) for each pair of documents in the
training set. Assuming a finite margin between the n-
dimensional feature vectors d(0 - d’(0 with y(i) +1

and y(i) = -1, we make the constraint (7) stronger and
multiply each inequality by y(0,

y(0[w.(d (0-d’(0)] _> 1 i=l,...,i. (8)

The weight vector w* with optimal generalization is
now determined via the principle of structural risk min-
imization (Vapnik 1995), which - for the present case
- leads to the problem of mhfimizing the squared norm
I[w[I 2 of the weight vector under the constraints (8).

According to the Support Vector training algorithm
(Cortes & Vapnik 1995), we arrive at the problem 
maximizing

t, t
1

i----I i,j=l

x [(d(~) - d’(0)̄  (d(j) - d’(J))], 

w.r.t, the ai. This constitutes a standard quadratic
programming problem. Also note that due to the ex-
pansion of the last term in (9), the solution c~* to this
problem can be calculated solely in terms of the inner
products between document descriptions without refer-
ence to the descriptions themselves. This fact will be
exploited in the following section for the generalization
of the method to nonlinear utility functions. Moreover,
the optimal weight vector w* can be written as a linear
combination of differences of document vectors from the
training set:

t

w* = ~(~y(1)(d(i) - (10)
i:l

All those pairs of documents with a* # 0 "support" the
construction of the optimal hyperplane in the space of



docu,nent pairs, and are therefore referred to as "sup-
port vectors" (Cortes ~ Vapnik 1995). Usually, the
number of support vectors esv << 6, and it is this sparse-
hess that makes the representation (10) so appealing.

After learniug, the utility function is represented by
the vector a* together with the training set S. A new
pair of documents (d, d’) is then classified - using (7)
aud (I0) - according to

d.> d’<=> Ec~*y(i)[(d(0 -d’(0) ¯ (d- d’)] > O. (11)
i= 1

However, combining (6) and (10) it is also possible 
reconstruct the utility fuuction of a document d as

t

U(d) = E c~;Y(1) (d(i) - d’(~)) " d. (12)
i=l

Both these calculations- equations (11) and (12) -ben-
efit from the sparseness of the expansion (10), which
significautly reduces their computational costs.

Extension to the Nonlinear Case
Equation (9) as a direct derivation of (5) assumes a 
ear model of the utility function U(d). In order to ex-
tend the model to iuclude utility functions U(d), which
are nonlinear in the features dk, we define a mapping
¢ :/) ~-+ ~- from the space/) to an m-dimensional space
~’, where the dimensionality of ~" may be much greater
than that of/), m >> n. If we now adopt our linear
model in the space ~, we obtain

U(d) = ~¢. ¢(d). (13)

Note, that ~, 6 ~’, which means that m noulinear fea-
tures can now be takeu into account. Using the short-
hand notatiou (¢(d (i)) -¢(d’(~))) = A~(,) and 
equation (9) becomes

1
n((~) = E~i-~ E ~i~jy(i)y(J)A¢(,).A¢o ) (14)

i----I i,j..=l

which has to maximized w.r.t, to the a~.
Our derivation again results in a functional, which

only depends on the inner products between document
vectors, this time calculated in 5K According to the
Hilbert-Schmidt theory, for a given space ~" there exists
a function K : D x 7) ~-+ ~ - the "kernel function" 
that corresponds to an inner product in ~’. Conversely,
we can fix the kernel function K(d, d’),

g(d,d’) = ¢(d). ¢(d’), (15)

which corresponds to taking the inner product in some
space ~" under conditions given by Mercer’s theorem
(Aizerman, Braverman, & Rozonoer 1964).

We can apply this "kernel trick" to expression (14)
which makes it possible to efficiently calculate the dot
products in 9r for equation (14) by simply evaluating

the corresponding keruel function in /). Similiar ar-
guments apply to the evaluation of the equations for
classification (11) and the computation of the utility
function (12) in the nonlinear case.

As an example for an admissible kernel function con-
sider

K(d,d’) = (d. d’ + 1)p, (16)

which corresponds to the space 5r of all mouomials of
the n input features up to degree p (Vapuik 1995). For
docu,nent descriptions this correspouds to taking into
account higher order correlations of word occurrances.
In particular for biuary docu,neut descriptions indicat-
ing the occurrance of particular keywords, a poly,mmial
utility function can be interpreted as a weighted logical
expression in the sense of a query. The most impor-
tant advantage of the kernel technique is the enormous
reductiou iu computatioual costs as opposed to explic-
itly performing the mapping ¢ and then taking the dot
product in ~-. For p = 2 and n _> 10 000 (not uncom-
mon in IR) in (16) the dimensionality m of the corre-
sponding feature space ~" is m _> 50 015 000 (Burges
1997). If we did not use the "kernel trick", we would
have to transform the documents to a ~ 50 million di-
mensional space in order to compute the inner products.

Experimental Results
100 data points d were generated from a uniform distri-
bution over the unit square [0, 1] x [0, 1]. 10 points were
used to generate the training set, 90 were set aside for
the test set. A utility value U(d) was assigned to each
data point with (a) a linear function U(d) = dl + 2d2
and (b) a quadratic function U(d) = dl+ 2d~ - 4dlds.
All document pairs of the training set were labeled ac-
cording to (1) and (5). We used the kernel given iu (16),
which should be capable of modeling polynomial utility
functions. The algorithm was trained usiug a modifi-
cation of Steve Gunu’s Support Vector implementation
in MATLAB. Training was done for values p = 1... 5,
and we determined the degree p of the optimal kernel
by minimizing an upper bound on tile generalization
error given by (Cortes 1995)

A¢C~) t
2]

max -- ~ a¢,) II~*II2, (17)
]=l,...,t

i=I

which can be evaluated conveniently using tlle "kernel
trick". The results are depicted in Figure I, (a) and
(b), for the linear and quadratic utility function, respec-
tively. From the iso-utility lines it can be seen that in
both cases the utility function found by the algorithm is
very similar to the one used to generate the data. Indi-
cated by diamonds are document vectors that were part
of "support vector pairs", whose numbers are given in
the plot. Note how "support vector pairs" are close in
the sense that their utilities are similar. Since only for
these pairs c~* # 0, they uniquely determine the utility
function. To obtain a test error we calculated the per-
centage of misclassified document pairs from the test



set. This error was 0.30% for the linear case and 2.2%
for the quadratic utility functiou.
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Figure 1: Contour plot representation of the original
aud the reconstructed utility fuuctions. Solid lines in-
dicate iso-utility for the true utility function, dashed
lines show the iso-utility for the utility function recov-
ered by the algorithm for (a) a linear utihty function
U(d) = dl + 2d2 and (b) a quadratic utility function
U(d) = dt + 2d2 4did2. The degree automatically
choseu by the algorithm was p -- 1 in the linear and
p = 3 in the quadratic case.

Discussion

Iu this paper, we iuvestigate the problem of learning a
prefereuce relation from a given set of document pairs
(d,d’), au approach which is based on ordiual utili-
ties, by learniug a mapping from documents to utilities.
This approach is also related to Robertson’s "probabil-
ity ranking principle" (Robertson 1977):

d o> d’ <=> P(RId) > P(RId’) (18)

where P(RId) is interpreted as probability of useful-
ness of d. If we assign utility values U(d) to documents
via the strictly monotonically increasing transformation

P(RId)U(d) = In l-P(Rld)’ a linear utility function is obtained
if the individual features are independent w.r.t. R and

its co,nplement. Transforming back to P(R[d) we ob-
taiu

1
P(RId) -- l+exp(-V(d)) (19)

In analogy to this we cau iuterpret 1/(1 + exp(-U(d)))
as probability of usefulness of d for a noulinear utility
function U(d) without ,naking the assu,nptiou of prob-
abilistic indepeudence of features.
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