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Abstract

The availability of vast amounts of information on the
World Wide Web has created a big demand for automatic
tools to organize and index that information. Unfortunately,
the paradigm of supervised machine learning is ill-suited to
this task, as it assumes that the training examples are classi-
fied by a teacher – usually a human. In this paper, we de-
scribe an active learning method based on Query by Com-
mittee (QBC) that reduces the number of labeled training
examples (text documents) required for learning by 1-2 or-
ders of magnitude.

1. Introduction
The amount of textual information that is available in elec-
tronic form has grown exponentially since the advent of
the World Wide Web. The Web contains large amounts of
textual and other information in electronic form, and it is
easy for almost anyone to add even more to this huge,
semi-organized collection of information. Unfortunately,
for most current learning methods based on the paradigm
of supervised learning, this information is of little value
unless it is first classified (labeled). This in turn requires
human resources, which are expensive and often not read-
ily available. An important characteristic of the Web is
that unclassified examples are cheap and abundant, but the
labeling is costly. This is not only true of text, but is also
true of pictures, sound, and video. Ideally, we need a
learning paradigm that can also make effective use of unla-
beled examples. However, fully unsupervised learning is
too unconstrained and ill-understood at this time to yield
useful results in a complex domain. Instead, we have been
working on developing methods that will significantly
reduce the number of labeled examples needed in order to
train the system without incurring unacceptable decreases
in prediction accuracy.

We term our methodactive learning with committees
(ALC), which is a form ofquery by committee(QBC). In
active learning, the learning program exerts some control
over the examples from which it learns [Cohn94], resulting
in fewer examples being used as compared to supervised
learning. Cohn, Atlas, and Ladner developed the theory for
an active learning method calledselective samplingand
applied it to some small to moderate sized problems

Copyright © 1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

[Cohn94]. Lewis and Gale developed a similar method
called uncertainty sampling, which is specifically meant
for use in text categorization. Their method selects for
labeling those examples whose membership is most
unclear by using an approximation based on Bayes’ Rule.
They were able to show one to two orders of magnitude
reduction in the number of examples needed to learn to
categorize titles from the AP newswire [Lewis94].

QBC is a general approach to active learning which uses
the degree of disagreement among all hypotheses consis-
tent with the data (i.e., the version space) to determine the
likely informativeness of an example’s label [Freund92,
Seung92, Freund97]. Freund, et al. analyzed QBC in
detail and showed that the number of examples required in
this learning situation is logarithmic in the number of
examples required in the passive learning setting [Fre-
und92]. Dagan and Engelson proposed a similar method,
termedcommittee-based sampling, for selecting examples
to be labeled [Dagan95]. The informativeness of an exam-
ple (and so the desirability of having it labeled) is indi-
cated by the entropy of the predictions of the various
hypotheses in the committee.

Active learning with committees(ALC) is similar to
QBC, but only maintains a small finite set of hypotheses
which are incrementally updated with training examples.
In addition to reducing the number of training examples
needed by an order of magnitude as in QBC, by taking a
majority vote among the committee members, ALC also
allows us to obtain accuracies that exceed those of any of
the committee members.

The purpose of this paper is to present results of experi-
ments that demonstrate the effectiveness of ALC in text
categorization, using real-world data. We hav e performed
2 sets of experiments. The first, presented in more detail in
[Liere97], looks at 4 different systems which vary in terms
of whether or not they use active learning and whether or
not they use committees for prediction. All systems use
Winnow as the learning algorithm. These experiments
indicate that active learning with committees can, as com-
pared to supervised learning with a single learner, result in
learning methods that use only 2.9% as many labeled
examples but still achieve the same accuracy. The second
set of experiments is currently in progress, and we report
preliminary results in this paper. This set of experiments
compares Winnow and Perceptron learners in both active
committees mode and passive learning mode. Somewhat
surprisingly, the results indicate that active learning with
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committees using the Perceptron provides better perfor-
mance.

2. Active Learning with Committees
Our active learning with committees approach uses a form
of QBC for deciding whether or not to see the label and
Winnow or Perceptron for updating the hypotheses in the
committee. Although it may not be surprising that the
choice of good examples allows one to learn with fewer
examples, it is not easy to knowhow to select good exam-
ples, especially in the presence of noise. Random selection
of examples is no better than passive learning.

2.1 Deciding to See the Label

QBC maintains a committee of hypotheses consistent with
the labeled examples it has seen so far – a representation
of the version space. Each training example is presented
to the algorithm unlabeled. An even number of hypothe-
ses (usually 2) are chosen at random, given the attribute
values, and asked to predict the label. If their predictions
form a tie, then the example is assumed to be maximally
informative, the algorithm requests the actual label from
the teacher and updates the version space [Freund92,
Seung92, Freund97]. QBC offers the benefit of a logarith-
mic reduction in the number of labeled training examples
needed. However, QBC needs to maintain all possible
hypotheses consistent with the training data – the version
space – in some form [Seung92]. This is the committee.
When data is noisy or when the hypothesis space is large
or infinite, as in text categorization, it is impractical to
compactly represent the version space.

Our approach is to use a committee with a small number
of hypotheses. Once presented with an unlabeled exam-
ple, we do the following: two randomly chosen members
of the committee are given the unlabeled example and
asked to predict the label. If their predictions disagree,
then we ask to see the actual label.

2.2 Updating the Hypotheses

After the label is seen, the learners adjust the hypotheses
in the committee. Typically, each member of the commit-
tee learns individually. We use committees whose mem-
bers are either all Winnow learners [Littlestone88] or all
Perceptron learners [Weiss90]. Both Perceptron and Win-
now maintain a hypothesis as a set of weights. Each docu-
ment class is learned separately. A document is classified
positive if the dot product of the weight vector and the fea-
ture vector that represents the document is greater than a
threshold value. Both Perceptron and Winnow update the
weight vector only when a document is misclassified. The
main difference between Perceptron and Winnow lies in
the way the weights are updated. The Perceptron learner
adds (subtracts) a small constant to the weight of each
active feature if a positive (negative) example is classified
incorrectly. While the Perceptron learner uses additive
updating of weights, the Winnow learner uses multiplica-
tive updating.

Actually, "Winnow" refers to a quite large family of
algorithms [Littlestone89]. We used a standard version of
Winnow – WINNOW2in [Littlestone88], with some modifi-
cations from [Littlestone91]. This algorithm assigns an
initial weight to each attribute and then adjusts those
weights during learning, at a rate determined by two
parametersα (for promotion) andβ (for demotion). The
initial weights must be greater than 0 and will remain
greater than 0 (due to the updating being multiplicative).
This therefore limits the patterns that can be represented to
those that can be learned using a separating hyperplane
defined by all weights being positive. That is, the learning
is based on those attributes thatare in the document. This
seems intuitively how a human classifies documents – by
the words that are in the document (versus by those that
are not). Our second set of experiments bears this out.

Once the learning process has been completed, the com-
mittee needs to make predictions for previously unseen
test examples. We experimented with both using a single
member of the committee and the majority vote and found
that majority voting gives better test set accuracy.

3. Experimental Setup

3.1 Test Bed

All of our experiments were conducted using the titles of
newspaper articles from the Reuters-22173 corpus
[Reuters]. The Reuters corpus is a collection of 22,173
Reuters newswire articles ("documents") from 1987. Each
article has been assigned to any number of categories,
including none. There are 21,334 unique tokens in titles,
and there are 679 categories. The Reuters-22173 corpus
contains formatting errors, misspellings, and garbled/
missing/ reordered sections. This is good, in that it is typi-
cal of most real-world data.

3.2 Repeated Trials

A variety of approaches have been utilized in previous
research using the Reuters corpus [Hayes90, Lewis91,
Apte94]. Normally researchers use one of 3 standard cor-
pus setups, and so it is predetermined which articles will
be used for training, which will be used for testing, and
which will not be used at all. We are mainly interested at
this point in comparisons among various versions of our
learning systems. Therefore, we compared their perfor-
mance for categories most likely to have ample training
data. We used the 10 most frequently occurring topic cate-
gories, as listed in [Lewis91], for our experiments. We
performed repeated trials for each category, using ran-
domly chosen training-test splits. We used the entire cor-
pus, and split it into 21,000 training examples and 1,173
test examples. We used titles only for our tests.

3.3 Experiment #1 and Results

In this experiment, we examined the performance of 4 dif-
ferent learning systems which vary in terms of whether or
not they use active learning and whether or not they use



committees for prediction. All systems use Winnow as the
learning algorithm. Please see [Liere97] for further details.

Of the systems tested, active learning with committees
is the best approach when one has a limited supply of
labeled examples. This approach achieves accuracies that
are the same as those obtained by the other systems, but
uses only 2.9% as many training examples as the super-
vised learners. And while all 4 systems reached essen-
tially the same accuracy lev el, the path that each took to
get there was different. Because it has the best average
accuracy as learning progresses, the active-majority sys-
tem is also the best one for applications in which learning
is halted (and prediction commences) after a certain period
of elapsed time, such as when interactive processing is
occurring with a human being.

3.4 Experiment #2 and Results

This set of experiments is currently in progress, and we
report preliminary results in this paper. This set of experi-
ments compares Winnow and Perceptron learners, for
active learning with committees, and for single learner
supervised learning.

The 4 comparison systems are:
– active-majority-winnow: the learner is a committee of

Winnows, prediction is made by that same committee,
using majority rule.

– active-majority-perceptron: same as immediately above,
but the learner is a committee of Perceptrons.

– passive-single-winnow: the learner is a single Winnow
which passively accepts all labels from the teacher; pre-
diction is by that same Winnow.

– passive-single-perceptron: same as immediately above,
but the learner is a Perceptron.
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Figure 1: Average Accuracy by System

We examined elapsed processor time as a function of the
number of training examples used for each of the 4 sys-
tems and also found in this second set of experiments that
differences among the systems in terms of both the num-
ber of labeled examples used and the elapsed processor

time are quite large and that the variation in the behavior
within each system, for both the number of training exam-
ples used and the elapsed processor time, is quite small.

Figure 1 shows the average accuracy for each of the 4
systems as a function of the number of training examples
used. This is a learning trace, showing how accuracy
varies for each system as it learns. (Note the use of a log
scale). As in our earlier experiments, we see that systems
employing active learning use many fewer examples than
those using supervised learning. Figure 1 also shows that
the 4 systems end up with very similar final accuracies – in
the 95-96% range. One can also see that active-majority-
perceptron is the best system, since during the learning
process, it is more accurate than the other systems, and
since it uses far fewer examples than the other systems. In
fact, it uses less than 1% of the total number of examples
used by the supervised learners.

It is encouraging that we were able to confirm our ear-
lier results on the effectiveness of active learning in both
Perceptron and Winnow. Howev er, we were surprised by
the fact that the Perceptron performed better than Winnow
in both active and passive modes. We had expected Win-
now to be the better performer. We inv estigated several
possible explanations for our results. One thought was
that the limitation (see earlier) on weight values that Win-
now can assume had put it at a disadvantage when
matched against the Perceptron, which can learn any lin-
early separable pattern. We performed two additional
experiments. In one, we allowed Perceptron learners to
learn until they reached 100% accuracy (or the maximum
accuracy possible), using multiple epochs andα adjust-
ments. Very few weights (typically less than 3%) were in
fact negative, and most of them were only slightly negative
([-0.05,0.0] in a range of [-0.05,+0.80]). In another exper-
iment, we coded and tested two different versions of so-
called "balanced Winnow" algorithms – Winnows that can
also learn any linearly separable pattern. These experi-
ments have so far been inconclusive, in that it has been
very difficult to initialize these committees so that they do
not quickly degrade into always saying "yes" or always
saying "no". We feel that this is at least in part due to the
very high dimensionality (both methods effectively double
the dimensionality of the input data).

But perhaps the real reason why the Perceptron does
better than Winnow has to do with the sparseness of the
instance space and the sparseness of the target rules. The
instance space that we are dealing with is very sparse
(most titles contain 2-10 tokens out of 16,600), and the tar-
get rules are also sparse (most weights are close to 0.0).
Winnow works best if the target rules are sparse but the
instance space is not. Perceptron works best if the target
rules are not sparse, but the instance space is. Our experi-
ment #2 has both sparse instance space and sparse
weights, and so could have gone either way. We plan to
investigate this further by using the full text and also by
artificially making the instances less sparse by adding
noise.



3.5 Results of Other Performance Measures

While accuracy is the generally accepted performance
metric in categorization or classification systems, addi-
tional performance measures exist that are specific to cer-
tain domains. The choice of the right performance mea-
sure is often problematic. The actual results of a series of
categorization tests is a 2-by-2 table, indexed by actual
label value and by predicted label value. There is a strong
urge to express these tabular results as a single number, so
various performance measures based on the 4 table values
have been developed over time – accuracy, precision,
recall, fallout, overlap, utility, E, F, . . .

Besides measuring accuracy, we hav e also been moni-
toring precision and recall. Both sets of experiments
showed the following results for both precision and recall:
precision and recall start out quite low for all 4 systems
and then rise as learning progresses. Active learners reach
values of precision and recall of 35-40%. Supervised
learners do a bit better – they reach about 55% for both
precision and recall.

The fact that both precision and recall are still rising at
the end of the learning traces indicates, we feel, that there
are modifications that we can make to these systems to get
better precision and/or recall. In other words, we have not
yet reached the point where the system is having to trade
off precision and recall – we still have more of one or the
other or both that can be obtained. We will be doing more
experimentation in this area.

4. Conclusions
The ease with which documents can be added to the World
Wide Web presents many challenges, including automati-
cally categorizing and indexing them. The current
approaches of supervised machine learning are not suitable
to this task because they are unable to exploit unclassified
examples. Active Learning with Committees promises to
reduce the number of labeled training examples needed by
an order of magnitude or more without any significant loss
in accuracy. The Query by Committee approach has some
nice theoretical properties. Active Learning with Commit-
tees adapts QBC to noisy situations and large hypothesis
spaces. Some of the future problems include scaling it to
full-text categorization and making it less sequential so
that documents which are deemed informative may be
classified off-line. We also foresee its application to multi-
media, including pictures, sound, and video on the Web.
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