
SpamCop: A Spam Classification & Organization Program

Patrick Pantel and Dekang Lin
Department of Computer Science

University of Manitoba
Winnipeg, Manitoba

Canada R3T 2N2

Abstract

We present a simple, yet highly accurate, spam filtering pro-
gram, called SpamCop, which is able to identify about 92%
of the spams while misclassifying only about 1.16% of the
nonspam e-mails. SpamCop treats an e-mail message as a
multiset of words and employs a na’fve Bayes algorithm to
determine whether or not a message is likely to be a spam.
Compared with keyword-spotting rules, the probabilistic ap-
proach taken in SpamCop not only offers high accuracy, but
also overcomes the brittleness suffered by the keyword spot-
ting approach.

Introduction

With the explosive growth of the Internet, so too comes
the proliferation of spams. Spammers collect a plethora
of e-mail addresses without the consent of the owners of
these addresses. Then, unsolicited advertising or even of-
fensive messages are sent to them in mass-mailings. As
a result, many individuals suffer from mailboxes flooded
with spams. Many e-mail packages contain mechanisms
that attempt to filter out spams by comparing the sender ad-
dress of the e-mails to predefined lists of known spammers.
Such programs have had limited success since spammers
often change their address and new spammers continuously
appear. Furthermore, spammers have found ways to send
messages with forged headers. For example, the sender ad-
dress can be made the same as the receiver address. A more
general and effective approach is obviously needed.

In (Cohen 1996a), Cohen presented an approach to 
mail classification in which a learning program, called RIP-
PER (Cohen 1995; 1996b), was used to obtain a set 
keyword-spotting rules. If all the keywords in a rule are
found in a message, the conclusion in the rule is drawn.
For example, RIPPER created the following set of rules to
recognize talk announcements:

A message is a talk announcement if it contains one of
the following:

¯ ’talk’ and ’talk’ in ’Subject:’ field;
¯ ’2d416’ and ’the’;
¯ ’applications’ and ’comma’ in ’Subject:’ field;
¯ ’visual’;
¯ ’design’ and ’transfer’;
¯ ’place’ and ’colon’ and ’comma’ in ’To:’ field;
¯ ’doug’ in ’From:’ field and ’specification’;

¯ ’presentation’

Otherwise, the message is not a talk announcement.

Cohen reported that the rules generated by RIPPER have
similar accuracy as manually generated rules.

Spams form a semantically much broader class than
the categories in Cohen’s experiments. Their subjects
often range from advertising products to "make money
fast" schemes to WEB site for "fun-loving adults". The
keyword-spotting rules appear to be too brittle for this pur-
pose. The inadequacy of this method for spam filtering is
also evidenced by the fact that even experienced computa-
tional linguists are not able to come up with a good set of
keyword combinations for this purpose.

In this paper, we present a spam-filtering program, called
SpamCop, which employs a naive Bayes algorithm to de-
tect spams. The remainder of this paper is organized as
follows. The next section describes the SpamCop program.
We then present some experimental results and a compari-
son with RIPPER.

Description of SpamCop

SpamCop uses a naive Bayes algorithm to classify mes-
sages as regular spam or as nonspam. A message M
is classified as a spam if P(Y;pamlM) is greater than
P(NonSpamlM). In most probabilistic approaches to text
classification, the attributes of a message are defined as the
set or the multiset of words in the message. However, this
is not the only viable alternative. For instance, one can

From: AAAI Technical Report WS-98-05. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



also define all the three consecutive letter sequences (tri-
grams) as the attributes. Once M is represented as a set of
attributes (al,..., an), the classification problem becomes
that of finding the larger one of P(Spamlal, ..., an) and
P( NonSpamlal, ..., an). Since

P(Spamlal,..., an) P(Spam, al,..., an)

P(al,..., an)

P(NonSpam[al,..., an) P(NonSpam, al,..., an
P(al, ...,an)

the problem becomes determining which is the larger one
between
P(Spam, al, ..., an) and P(NonSpam, al,..., an),
which can be rewritten as:

P( Spam, al, ..., an) 
P (al, ..., an I Spam) P(Spam)

P(NonSparn, al, ..., an) 

P(al, ..., anlNonSpam)P(NonSpam)

If we further assume that the attributes in a message are
conditionally independent given the class of the message,
the right hand side of the above equations become:

P(Spam, al, ..., an) 
P(al ISpam) . . . P(anlSpam)P( 

P(NonSpam, al,..., an) 
P(aa [Non@am)... P(an[NonSpam)P( NonSpam)

We now describe how to estimate the
probabilities P(ailSpam), P(ailNonSpam), P(Spam),
P(NonSpam). Once these probabilities become available,
the above formulas will allow us to determine which class
has the higher conditional probability.

We first tokenize the message. A token is either a consec-
utive sequence of letters or digits, or a consecutive sequence
of non-space, non-letter and non-digit characters (we limit
the length of the second kind of token to be at most three
characters long). The spaces are ignored. We then remove
the suffixes from the tokens using an implementation of the
Porter stemmer (Porter 1980) by Frakes and Cox. The fre-
quency counts of the suffix-removed tokens are then accu-
mulated in a frequency count table. For each word W in the
training messages, the frequency table contains the count
N(W, Spare), and N(W, NonSpam), which is the num-
ber of times the word W occurred in the documents that
belong to class C. The frequency table also records the total
number of words (not necessarily unique) in the spam and
nonspam messages: N(Spam) and N(NonSpam). Table
1 illustrates a subset of the frequency table.

Once the frequency table is created, we use the m-
estimate method (Mitchell 1997) to estimate the conditional

Table 1: Sample entries from the frequency table

non- non-
word spam spam word spam spam

2183 703 report 215 64

III 60 0 mail 358 167
$ 716 295 ship 36 0
adult 52 0 : 36 0
000 178 26 you 1165 1210
million 69 2 /// 251 103
order 253 60 email 212 77
### 44 0 address 239 99
bulk your 581 458
monei

43 0
127 19 busi 122 30

and prior probabilities of the words. M-estimate can be
viewed as mixing the sample population in the frequency
table with m uniformly distributed virtual examples. In our
experiments, we used m=l and the probability of a word in
the virtual example is ~ where K is the number of unique
words in the training messages. In other words,

N (W, C) + -k
P(WIC) = N(C) 

where C is Spam or NonSpam and W ranges over the set
words in the training messages.

Some words are not good indicators of the classification
of the message in which they occur. We employed a fea-
ture selection algorithm to remove such words from the fre-
quency table so that the classification of a message will not
be affected by the accumulation of noise. A word W is
removed from the frequency table if one of the following
conditions are met:

¯ N(W, Spare) + N(W, NonSpam) < 4; or

P(W[Spam)¯ P(WlSpam)+P(WlNonSpam) [0.45,0.55].

Experimental Results
Setup

Our training data consists of 160 spams that were sent to
one of the authors (DL) and 466 nonspam messages in DL’s
mailbox. The testing messages consist of 277 spares ob-
tained from the Internet1 and 346 NonSpam e-mails in DL’s
mailbox from a different (but adjacent) time period. The
header information is removed from the messages. The
classification is completely based on the body of the mes-
sages.

There are a total of 230449 words in the training mes-
sages with 60434 in spams and 170015 in nonspams. There

i http://pantheon.cis.yale.edu/j gfoot/j unk.html



are 12228 entries in the frequency table. Applying the fea-
ture selection rules from the previous section reduces the
number of entries to 3848.

Evaluation Measures

Let

¯ TrueCount(Spam) and TrueCount(NonSpam) de-
note the number of spam and nonspam messages in the
testing data.

¯ CorCount(Spam) and CorCount(NonSpam) denote
the number of messages that are correctly classified as
Spam and NonSpam by SpamCop.

We use three measures to evaluate the performance of
SpamCop: false positive rate Rfp, false negative rate Ryn,
and error rate Re :

Ryp = 1 - CorCount(NonSpam)
TrueC ount( N onSpam 

Re:l--

CorCount(Spam)
Rfn = 1 - TrueCount(Spam)

CorCount(Spam) + CorCount(NonSpam)
TrueCount(Spam) + TrueCount(NonSpam)

The false positive rate is the percentage of nonspam mes-
sages that are incorrectly classified as spam. It measures
how safe the filter is. The false negative rate is the percent-
age of spare messages that pass through the filter as non-
spams. It measures how effective the filter is. The error rate
measures the overall performance.

Results

Table 2 summarizes our results. It can be seen that although
naive Bayes algorithm is extremely simple, it achieved very
high accuracy, especially with respect to the nonspam mes-
sages. Feature selection reduced the frequency table to 1/3
of its original size and resulted in a slightly higher false
positive rate, a much lower false negative rate and a lower
overall error rate.

spam/nonspam ratio as the whole set. The results are pre-
sented in Table 3. The first column is the data size in terms
of the number of partitions. For each data size we randomly
selected 5 configurations. The average rates of the 5 con-
figurations are shown in last three columns in Table 3. The
second column indicates whether the feature selection al-
gorithm was used or not.

Table 3: Effects of the number of training examples

Size
Feature

Selection Rfp Rfn Re

1/5 yes 1.68% 12.35% 6.42%
1/5 no 1.33% 14.08% 7.00%
2/5 yes 1.68% 10.97% 5.81%
2/5 no 1.10% 12.64% 6.23%
3/5 yes 1.21% 8.66% 4.53%
3/5 no 0.92% 11.84% 5.78%
4/5 yes 1.01% 8.94% 4.53%
4/5 no 0.79% 11.64% 5.62%

SpamCop achieves good performance with as few as 32
spam messages and 91 nonspam messages as training ex-
amples. Applying feature selection consistently produced
the same effect: slight increase of false positives, a decrease
of false negatives, and a moderate decrease of the error rate.

We also experimented with varying the ratios between
the number of spam and nonspam messages. The first two
columns in Table 4 represent the number of spams and non-
spams used in training. Compared with the results in Table
2, it appears that a higher ratio of training examples in a
category increases the performance in that category. How-
ever, it significantly decreases the performance of the other
category.

Table 4: Effects of varying ratios of spam and nonspams

spams nonspams Rip Rfn Re
32 466 0.06% 53.07% 23.63%

160 91 12.60% 1.44% 7.64%

Table 2: Testing results with 277 spams and 346 nonspams

Feature
Selection Rfp Rfn Re

yes 1.16% 8.30% 4.33%
no 0.58% 13.36% 6.26%

We also investigated the effects of the size of the training
data on the performance of SpamCop. We divided the train-
ing data into 5 even partitions. Each partition has the same

Using trigrams
Instead of suffix-stripped words, we also used trigrams ex-
tracted from words as features. A trigram in a word is a
consecutive sequence of three letters in the word. Table 5
illustrates the results of the use of trigram in spam-filtering,
using the same training and testing data as the experiment
described in Table 2. Considering the amount information
that gets lost when using trigrams over words, the values in
Table 5 are remarkably close to the values in Table 2. This
might be attributed to the fact that since there are much



fewer unique trigrams than unique words, the probability
estimations for trigrams are more accurate.

Table 5: SpamCop performance using trigrams

Feature
Selection

Rfp Rfn Re

yes 4.91% 6.50% 5.62%
no 2.89% 9.03% 5.61%

Comparison with RIPPER

RIPPER is a rare symbolic learning program that is able
to deal with texts. We ran RIPPER with the same train-
ing and testing data as used in testing SpamCop. We used
the Porter stemmer and treated all the suffix-stripped roots
as the features. RIPPER generated 9 rules with 24 condi-
tions and achieved an error rate of 8.67% on the 623 testing
messages. The use of the stemmer significantly influenced
the performance. Without the stemmer, RIPPER generated
19 rules with 50 conditions and achieved an error rate of
13.64% on the 623 testing messages.

The top ranked rule in RIPPER is that "if a message con-
tains both the dollar sign and the exclaimation mark then
it is classified as spam." This rule correctly classified 54
spams and misclassified 5 out of 466 nonspams in the train-
ing messages. Although this rule performed very well, it
will misclassify long nonspams which happen to contain
these two words. In contrast, our probabilistic algorithm is
much more robust.

Another example that demonstrates the advantage of a
probabilistic classification over a rule-based classification
is the word "you". The word "you" has one of the highest
ratio between its conditional probability in spam and non-
spam messages. In an extreme case, one of the spams in
the training example contained 99 occurrences of "you" or
"your" in 112 lines of text. Therefore, a high frequency
of "you" is a definitely good indicator of spams. However,
"you" is also a common word in nonspams. A keyword-
spotting rule will not be able to use this in classification.

Conclusion
We presented a simple, yet highly accurate, spam-filtering
program, called SpamCop. It treats an e-mail message as a
multiset of words and employs a naive Bayes algorithm to
determine whether or not a message is likely to be a spam.
Our experiments show that SpamCop is able to identify
about 92% of the spams while misclassifying only about
1.16% of the nonspam e-mails. Our experiments also show
that high classification accuracy can be achieved with as
few as 32 spam examples. Compared with symbolic learn-
ing programs such as RIPPER, SpamCop produced higher

accuracy and does not suffer from the brittleness associated
with keyword-spotting rules.

References
Cohen, W. W. 1995. Fast effective rule induction. In Ma-
chine Learing: Proceedings of the Twelfth International
Conference. Lake Taho, California: Morgan Kaufmann.

Cohen, W. W. 1996a. Learning rules that classify e-mails.
In AAAI Spring Symposium on Machine Learning for In-
formation Access. AAAI.

Cohen, W. W. 1996b. Learning with set-valued features.
In Proceedings of AAAI-96.

Mitchell, T. M. 1997. Machine Learning. McGraw-Hill.

Porter, M. E 1980. An algorithm for suffix stripping.
Program 14(3):130-137.




