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"There is nothing more basic than categorization to
our thought, perception, action, and speech" (Lakoff
1984). Moreover, categories of sensory experience pro-
vide the semantic glue between the world and the mean-
ingless symbols often used to represent those experi-
ences. As such, the focus of this work is an unsupervised
learning mechanism for extracting categories from time
series. We have in mind the situation where a sensori-
motor agent, such as an infant or mobile robot, records
streams of sensor readings while interacting with a com-
plex environment. To make the leap from percepts to
symbolic thought and language, the agent requires a
way of transforming uninterpreted sensor information
into meaningful categories. That is, the agent must
solve the bottom-up version of the symbol grounding
problem (Harnad 1990). The solution outlined be-
low was inspired by the method of delays, a nonlinear
dynamics tool for producing spatial representations of
time-based data.

One general technique for discovering categories is to
form clusters of points in a suitable space. This was the
basis of Elman’s work on learning lexical classes from
word co-occurrence statistics (Elman 1990). Elman first
trained a recurrent neural network to predict successive
words in a long input string. This then set the stage
for hierarchical clustering of the hidden-unit activation
space, where the result was groups of words that co-
incide with classes like NOUN-FOOD or VERB-PERCEPT.
But how can we ground such syntactic classes in senso-
rimotor interaction with the environment?

We answer this question, not with recurrent neu-
ral networks, which require a great deal of training,
but with the method of delays, which maps a snip-
pet of time series data to a point in delay-coordinate
space. Delay coordinates are just successive sensor read-
ings taken at a suitable time interval (Takeus 1981;
Roseustein, Collins, & De Luca 1994). For instance,
imagine that our mobile robot is two meters from an
obstacle and its sonar reports the value 2015 ram. From
this single reading there is no way to know if the robot
will crash into the obstacle. But suppose the sonar re-
ports 9-140 mm a second later. We could plot the point
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(2140, 2015) in a two-dimensional space, and notice
that all nearby points correspond to the situation where
the robot moves away from an object. This example
may seem trivial, yet it illustrates the intuition behind
the method of the delays: if the state of the environ-
ment at time t is uncertain, then examination of sensor
readings prior to time t will reduce the ambiguity.

Our first application of clustering with delay coordi-
nates involved a simulated world where agents adopted
one of several strategies for pursuit or avoidance of an
opponent (Rosenstein et al. 1997; Rosenstein & Cohen
1998). Whenever two agents interacted, the simulator
recorded the distance between them as well as the final
outcome (contact, escape, or perpetual chase). This
distance time series was the input to an incremental
algorithm that clustered points based on Euclidean dis-
tance in delay-coordinate space. Nearby points were
merged to create an average time series, or prototype.
A prototype is best understood as a representative class
member, and our implementation is entirely consistent
with Rosch’s influential work on categories and proto-
types (Rosch & Lloyd 1978).

Figure 1 shows the six prototypes derived from 100
agent interactions where the movement strategies were
chosen randomly. These prototypes reflect actual dif-
ferences in the simulated world, and one could describe
the corresponding categories as "chase," "contact," con-
tact after the agents first "overshoot" one another, and
"escape" with short, medium, and long escape times.
These categories not only were grounded in physical
measurements, but also were formed in an entirely un-
supervised manner. But where is meaning?

For this work the meaning associated with each cat-
egory is the predictions it affords the agent; we call
this a predictive semantics. So while a category may
prove useful simply as an abstraction of sensory ex-
perience, the real benefit comes from its entailments,
or consequences of category membership. In the pur-
suit/avoidance simulator, our agents like to predict out-
comes, such as contact, escape, or chase. When the
learning algorithm finds clusters of points in delay-
coordinate space, it also keeps a count of the number
of member interactions that finish in each of the three
outcomes. The members themselves are forgotten, ex-
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Figure I: Cluster prototypes for I00 interactions in the pur-
suit/avoidance simulator.

cept for their influence on the prototype. For subse-
quent interactions, i.e., for new time series of distance
measurements, the algorithm computes the prototype
nearest the time series in delay-coordinate space and re-
ports the majority outcome for the corresponding clus-
ter. This straightforward predicition scheme performed
quite well at recognizing new situations and predicting
their outcomes.

Our present interest is the transfer of this work to Pi-
oneer mobile robots, which come equipped with over 30
sensors including a real-time vision system and gripper.
(For related work see (Schmill et ai. 1998).) In a 
liminary experiment, the robot moved around an office
environment, occasionally bumping into objects. One
way for the robot to sense objects is by contact with
the bump switches at the tips of its gripper paddles;
such events cause the corresponding sensor readings to
change from low to high. In this experiment, the clus-
tering algorithm discovered several categories, includ-
ing two that involved the bump sensors. Comparison
of the category prototypes showed that the robot’s stall
sensors triggered for one cluster but not the other. In-
terestingly, the former cluster was due to events where
the robot hit a wall, whereas the latter was the result
of all times the robot pushed a waste basket several
centimeters across the floor. These prototypes suggest
that the robot discovered two categories with comple-
mentary semantics: IMMOVABLE and MOVABLE.

Perhaps the most promising aspect of this work is the
possibility of an agent discovering meaningful categories
for itself. In particular, this work shows the value of de-
lay coordinates for transforming time series into clus-
ters of points. And since time series are grounded in
measurements out in the world, the resulting categories
provide the foundation on which to build a symbolic,
grounded, conceptual structure.
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