
Predicting Sequences of User Actions

Brian D. Davison and Haym Hirsh
Department of Computer Science

Rutgers, The State University of New Jersey
New Brunswick, NJ 08903 USA
fdavison,hirshg@cs.rutgers.edu

Abstract

People display regularities in almost everything they do. This
paper proposes characteristics of an idealized algorithm that,
when applied to sequences of user actions, would allow a user
interface to adapt over time to an individual’s pattern of use.
We describe a simple predictive method with these character-
istics and show its predictive accuracy on a large dataset of
UNIX commands to be at least as good as others that have
been considered, while using fewer computational and mem-
ory resources.

Motivation
How predictable are you? Each of us displays patterns of ac-
tions throughout whatever we do. Most occur without con-
scious thought. Some patterns are widespread among large
communities, and are taught, as rules, such as reading from
left to right, or driving on the correct side of the road. Other
patterns are a function of our lifestyle, such as picking up
pizza on the way home from work every Friday, or program-
ming the VCR to record our favorite comedy each week.
Many are a result of the way interfaces are designed, like the
pattern of movement of your finger on a phone dialing a num-
ber you call often, or how you might log into your computer,
check mail, read news, and visit your favorite website for the
latest sports scores. As computers pervade more and more
aspects of our lives, the need for a system to be able to adapt
to the user, perhaps in ways not programmed explicitly by
the system’s designer, become ever more apparent.

A car that can offer advice on driving routes is useful; one
that can also guess your destination (such as a pizza parlor
because it is Friday and you are leaving work) is likely to
be found even more useful, particularly if you didn’t have to
program it explicitly with that knowledge. The ability to pre-
dict the user’s next action allows the system to anticipate the
user’s needs (perhaps through speculative execution or intel-
ligent defaults) and to adapt to and improve upon the user’s
work habits (such as automating repetitive tasks). Addition-
ally, adaptive interfaces have also been shown to help those
with disabilities (Greenberg et al. 1995; Demasco & McCoy
1992).

Copyright c
1998, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

This paper considers the more mundane, but present-day
activities of user actions within a command line shell. We
have concentrated initially on UNIX command prediction1

because of its continued widespread use; the UNIX shell
provides an excellent testbed for experimentation and auto-
matic data collection. However, our interest is in more gen-
eral action prediction, and so we hypothesize that successful
methodologies will also be applicable in other interfaces, in-
cluding futuristic ones anticipated above as well as present-
day menu selection in GUIs and voice-mail, or URL selec-
tion in web browsers. This paper, therefore, reflects our fo-
cus on the underlying technology for action prediction, rather
than on how prediction can be effectively used within an in-
terface.

In this paper, we use the data from two user studies to
suggest that relatively naive methods can predict a particu-
lar user’s next command surprisingly well. With the generic
task in mind, we will describe the characteristics of an ideal
algorithm for action prediction. Finally, we will present and
analyze a novel algorithm that satisfies these characteris-
tics and additionally performs better than the previous best-
performing system.

Background
This paper addresses the task of predicting the next element
in a sequence, where the sequence is made up of nominal (un-
ordered as well as non-numeric) elements. This type of prob-
lem (series prediction) is not studied often by machine learn-
ing researchers; concept recognition (i.e., a boolean classifi-
cation task such as sequence recognition) is more common,
as is the use of independent samples from a distribution of
examples. UNIX commands, and user actions in general,
however, are not independent, and being nominal, don’t fall
into the domain of traditional statistical time-series analysis
techniques.

Evaluation Criteria

In most machine learning experiments that have a single
dataset of independent examples, cross-validation is the stan-
dard method of evaluating the performance of an algorithm.
When cross-validation is inappropriate, partitioning the data

1We are currently ignoring command arguments and switches.

From: AAAI Technical Report WS-98-07. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



...
96102513:34:49 cd
96102513:34:49 ls
96102513:34:49 emacs
96102513:34:49 exit
96102513:35:32 BLANK
96102513:35:32 cd
96102513:35:32 cd
96102513:35:32 rlogin
96102513:35:32 exit
96102514:25:46 BLANK
96102514:25:46 cd
96102514:25:46 telnet
96102514:25:46 ps
96102514:25:46 kill
96102514:25:46 emasc
96102514:25:46 emacs
96102514:25:46 cp
96102514:25:46 emacs
...

Figure 1: A portion of one user’s history, showing the times-
tamp of the start of the session and the command typed. (The
token BLANK marks the start of a new session.)

into separate training and test sets is common. For sequen-
tial datasets, then, the obvious split would have the training
set contain the first portion of the sequence, and the test set
contain the latter portion (so that the algorithm is not trained
on data occuring after the test data). However, since we are
proposing an adaptive method, we will be evaluating perfor-
mance online — each algorithm is tested on the current com-
mand using the preceding commands for training. This max-
imizes the number of evaluations of the algorithms on unseen
data and reflects the likely application of such an algorithm.

When considering performance across multiple users with
differing amounts of data, we use two methods to compute
averages. Macroaveraged results compute statistics sepa-
rately for each user, and then averages these statistics over
all users. Alternately, microaveraged results compute an av-
erage over all data, determining the number of correct pre-
dictions made across all users divided by the total number
of commands for all users combined. The former provides
equal weight to all users, since it averages across the average
performance of each user; the latter emphasizes users with
large amounts of data.

People Tend To Repeat Themselves
In order to determine how much repetition and other recog-
nizable regularities were present in the average user’s com-
mand line work habits, we collected command histories of
77 users, totaling over 168,000 commands executed during a
period of 2-6 months (Davison & Hirsh 1997a; 1997b) (see
Figure 1 for an example of the data that was collected). The
bulk of these users (70) were undergraduate computer sci-
ence students in an Internet programming course and the rest
were graduate students or faculty. All users had the option to
disable logging and had access to systems on which logging
was not being performed.

The average user had over 2000 command instances in his

or her history, using 77 distinct commands during that time.
On average over all users (macroaverage), 8.4% of the com-
mands were new and had not been logged previously. The
microaverage of new commands, however, was only 3.6%,
reflecting the fact that smaller samples had larger numbers
of unique commands. Approximately one out of five com-
mands were the same as the previous command executed.

Earlier Results

In previous work (Davison & Hirsh 1997a; 1997b), we con-
sidered a number of simple and well-studied algorithms. In
each of these, the learning problem was to examine the com-
mands executed previously, and to predict the command to
be executed next. We found that, without explicit domain
knowledge, a naive method based on C4.5 (Quinlan 1993)
was able to predict each command with a macroaverage ac-
curacy of 38.5% (microaverage was 37.2%). For each pre-
diction, C4.5 was trained on the series of examples of the
form (Commandi�2;Commandi�1) ) Commandi; for
1 � i � k, where k is the number of examples seen so
far. Command0 and Command

�1 are both given the value
BLANK to allow prediction of the first and second com-
mands using the same form.

While the prediction method was a relatively straightfor-
ward application of a standard machine learning algorithm,
it has a number of drawbacks, including that it returned only
the single most likely command. C4.5 also has significant
computational overhead. It can only generate new decision-
trees; it does not incrementally update or improve the deci-
sion tree upon receiving new information. (While there are
other decision-tree systems that can perform incremental up-
dates (Utgoff 1989), they have not achieved the same levels
of performance as C4.5.) Therefore, C4.5 decision tree gen-
eration must be performed outside of the command predic-
tion loop.

Additionally, since C4.5 (like many other machine learn-
ing algorithms) is not incremental, it must revisit each past
command situation, causing the decision-tree generation to
require more time and computational resources as the num-
ber of commands in the history grows. Finally, it treats each
command instance equally; commands at the beginning of
the history are just as important as commands that were re-
cently executed. Note that C4.5 was selected as a com-
mon, well-studied decision-tree learner with excellent per-
formance over a variety of problems, but not with any claim
of superiority over other algorithms applicable to this do-
main.

These initial experiments dealt with some of these is-
sues by only allowing the learning algorithm to consider
the command history within some fixed window. This pre-
vented the model generation time from growing without
bound and from exceeding all available system memory.
This workaround, however, caused the learning algorithms
to forget relatively rare but consistently predictable situa-
tions (such as typographical errors) and restricted consider-
ation only to recent commands.



Incremental Probabilistic Action Modeling
Ideal Online Learning Algorithm
With this experience in mind and the intuition that recent
actions more strongly affect future actions than older ac-
tions, we propose the following description of an Ideal On-
line Learning Algorithm (IOLA). In order to have the desir-
able characteristics of the best algorithms, an IOLA would:

1. have predictive accuracy at least as good as the best known
resource-unlimited methods (which here is C4.5);

2. operate incrementally (modifying an existing model rather
than building a new one as new data are obtained);

3. be affected by all events (remembering uncommon, but
useful, events regardless of how much time has passed);

4. not need to retain a copy of the user’s full history of ac-
tions;

5. output a list of predictions, sorted by confidence;

6. adapt to changes to the target concept;

7. be fast enough for interactive use;

8. learn by passively watching the user (Mitchell, Mahade-
van, & Steinberg 1985); and

9. apply even in the absence of domain knowledge.

Such a system would be ideally suited for incorporation into
many types of user interfaces.

The Algorithm
In our work, we implicitly assumed that the patterns of use
would form multi-command chains of actions, and accord-
ingly built algorithms to recognize such patterns. If, how-
ever, we make the simpler Markov assumption that each
command depends only on the previous command (i.e., pat-
terns of length two, so that the previous command is the
state), we can use the history data collected to count the num-
ber of times each command followed each other command
and thus calculate the probability of a future command. This
could be implemented by the simple structure of an n by n
table showing the likelihood of going from one command to
the next.

For the anticipated use of action prediction in an adaptive
interface, however, an incremental method is desirable. If
a table of counts were recorded, this could be updated pe-
riodically and probabilities easily computed. As mentioned
in the previous section, we believe it is useful to weigh re-
cent events more highly when calculating a predictive model.
This can be accomplished in this probabilistic model by the
use of an update function with an exponential decay (in
which the most recent occurrence has full impact; older oc-
currences have ever-decreasing contributions). Given the
previous table of probabilities and another table containing
probabilities from new data points, a combined new table
may be computed by the weighted average of the two, where
the weights sum to 1. So, for example, if the weights were
both :5, the new probabilities would have equal contributions
from the old table and from the new. Assuming that the table
updates were performed periodically, the data points making
up the first table would be contributing only 1

2n
percent of

Update(PreviousCommand, CurrentCmd):
- Call UpdateRow for the default row
- Call UpdateRow for row corresponding
to PreviousCommand

UpdateRow(ThisRow, CurrentCmd):
- If initial update for ThisRow, copy
distribution from default row

- Multiply probability in each column by
alpha and add (1-alpha) to column that
corresponds to CurrentCmd

Figure 2: The update function.

the final weights (where n is the number of table updates so
far).

We can extend this model further, to an algorithm that
starts with an empty table and updates after every command.
An empty table is one in which all commands are equally
likely (initially a uniform probability distribution). After
seeing the first command, ci, a new row is added for that
command, and has a uniform distribution. When the second
command, ci+1, is seen, it too gets a new row with a uniform
distribution, but we update the first row (since we saw ci fol-
lowed by ci+1) by multiplying all elements of that row by a
constant 0 � alpha � 1, and the probability of seeing ci+1
is increased by adding (1� alpha). In this way, we empha-
size more recent commands, at the expense of older actions,
but the sum of the probabilities in each row is always 1.

Note that an alpha of 0 equates to a learner that always
predicts what it most recently saw for that command, and an
alpha of 1 corresponds to an algorithm that never changes its
probabilities (in this case, keeping a uniform distribution).

For prediction, the command probabilities for the appro-
priate row can be sorted, and the one with the highest value
would be output as the most likely next command. Instead
of making no prediction for a command with an empty row,
we can track probabilities in an additional default row, which
would use the same mechanism for updating but would ap-
ply to all commands seen so far (without consideration of the
preceding command). Finally, since we are keeping track of
overall likelihoods in this default row, we can use it to ini-

Predict(NumCmds,PreviousCmd):
- Call SelectTopN with NumCmds, the row
for PreviousCmd, and the empty list

- Let P be the number of commands returned
- If P < NumCmds, call SelectTopN again,
but ask for the top (P - NumCmds)
commands from the default row and to
exclude those commands already returned

- Return the combined set of commands

SelectTopN(NumCmds,Row,ExcludeCmds):
- Sort the probabilities in Row
- Eliminate commands in ExcludeCmds
- Return the top NumCmds from sorted list

Figure 3: The predict function



34

36

38

40

42

44

0.65 0.7 0.75 0.8 0.85 0.9 0.95

A
cc

ur
ac

y 
(%

)

Parameter Value

Macroaverage
Microaverage

Figure 4: For a range of alpha values, the predictive accu-
racy of the Incremental Probabilistic Action Modeling algo-
rithm is shown.

tialize rows for new commands (making the assumption that
these default statistics are better than a uniform distribution).

See Figures 2 and 3 for pseudocode for the Update and
Predict functions that implement this Incremental Proba-
bilistic Action Modeling (IPAM) algorithm.

Determining Alpha
We empirically determined the best average alpha by com-
puting the performance for this algorithm on the dataset with
each of seven values of alpha (from :65 to :95 in increments
of :05). While the best value of alpha varied, depending on
how performance was calculated over the dataset, our sub-
jective choice for the the best overall was :80. (See Figure 4
for a graph of the parameter study of alpha showing the av-
erage user’s performance as well as the average performance
over all commands.) We will use this value of alpha for the
rest of the experiments in this paper. Since alpha controls
the amount of influence recent commands have over earlier
commands, we expect that this value will vary by problem
domain.

Evaluation
This algorithm, when applied to the data set discussed ear-
lier, performs better than C4.5 (given an alpha of .80). It
achieves a 39.9% macroaverage predictive accuracy (38.5%
microaverage) versus C4.5’s 38.5% and 37.2% (macroaver-
age and microaverage, respectively) for best guess predic-
tions (see the bars labeled C4.5 and IPAM in Figure 5). For
comparison, we also show our method without the special-
ized update, which corresponds to naive Bayes (that is, a
predictor in which the conditional probabilities to select the
most likely next command are based strictly on the frequency
of pairs of commands), as well as a straightforward most re-
cent command predictor (labeled MRC).

To be precise, over the 77 users, IPAM beat the C4.5-based
system sixty times, tied once, and lost sixteen times on the
task of predicting the next command. At the 99% confi-
dence level, the average difference between their scores was
1:42�1:08percentage points, showing that the improvement
in predictive accuracy for IPAM over C4.5 is statistically sig-
nificant, given the ideal value for alpha.

0

5

10

15

20

25

30

35

40

45

50

C4.5 IPAM Bayes MRC

A
cc

ur
ac

y 
(%

)

Figure 5: Macroaverage (per user) predictive accuracy for a
variety of algorithms.

IPAM keeps a table in memory of size O(k2), where k is
the number of distinct commands. Predictions can be per-
formed in constant time (when a list of next command is kept
sorted by probability), with updates requiring O(k) time.

Since some applications of this method may be able to
take advantage of a top-n predictive system, and this method
generates a list of commands with associated probabilities
for prediction, we can also compute the average accuracy
of the top-n commands for varying values of n (as com-
pared to only the single most likely command). Figure 6
shows that we do get increased performance and that for
n = 5, the correct command will be listed almost 75% of the
time. This makes it possible for an interface designer to con-
sider the tradeoff of increased likelihood of listing the correct
command versus the increased cognitive load of an interface
showing multiple suggestions.

In UNIX command prediction, it is also helpful to be able
to perform command completion (that is, taking the first k
characters typed and produce the most likely command that

15
20
25
30
35
40
45
50
55
60
65
70
75

1 2 3 4 5

A
cc

ur
ac

y 
(%

)

number of commands suggested

IPAM
Bayes
MRC

Figure 6: Average per user accuracies of the top-n predic-
tions. The likelihood of including the correct command goes
up as the number of suggested commands increases.



35
40
45
50
55
60
65
70
75
80
85
90
95

100

0 1 2 3

A
cc

ur
ac

y 
(%

)

Number of characters to match

IPAM top1
IPAM top2
IPAM top3

Bayes top1
Bayes top2
Bayes top3

Figure 7: Command completion accuracies.

is prefixed by those characters). Such a mechanism would
enable shells that perform completion when there is a unique
command with that prefix (such as tcsh) to also be able
to perform completion when there are multiple possibilities.
Figure 7 measures the predictive accuracy when given 0-3
initial characters to match when applied to all of the data.
(Note that command completion when given 0 initial char-
acters is just command prediction.)

Similar overall performance of IPAM can be seen in Fig-
ures 8 and 9 which shows command prediction accuracy
and completion over a larger csh dataset (Greenberg 1988;
1993), containing more than twice as many users, and ap-
proximately twice as many commands overall. Again, IPAM
outperforms the simpler Bayes and MRC algorithms, even
when using the setting for alpha determined by the parame-
ter study over the first dataset.

Discussion
While not shown, the results described apply to both
macroaverage performance (shown in most figures) and mi-
croaverage performance, although the former is almost al-
ways slightly higher. While the results on the first dataset
(collected on users of tcsh) can be argued as showing the
potential for this method (since the selection of alpha was
based on the same set), the performance on the larger, and
arguably more representative, Greenberg dataset (collected
almost ten years earlier on users of csh) demonstrates a more
believable performance.

Although learning may be performed throughout the his-
tory of a user’s actions, the cumulative accuracy of a user
does not vary much after an initial training period. Fig-
ures 10 and 11 show the performance of IPAM and Bayes,
respectively over the history of one user. The solid line de-
picts the current overall average predictive accuracy (from
the first command to the current command), while the dashed
line shows the variations in predictive accuracy when mea-
sured over the most recent 30 commands.

We might consider initializing the table in IPAM with use-

15
20
25
30
35
40
45
50
55
60
65
70
75

1 2 3 4 5

A
cc

ur
ac

y 
(%

)

number of commands listed

IPAM
Bayes
MRC

Figure 8: Average per user accuracies of the top-n predic-
tions for the Greenberg dataset.

ful values rather than starting from scratch. For example, is
the performance improved if we start with a table averaged
over all other users? This lets us examine cross-user train-
ing to leverage the experience of others. Unfortunately, pre-
liminary experiments indicate that, at least for this dataset,
starting with the average of all other users’ command pre-
diction tables does not improve predictive accuracy. This re-
sult matches with those of Greenberg (1993) and Lee (1992),
who found that individual users were not as well served by
systems tuned for best average performance over a group of
users.

The goal of our work has been to discover the performance
possible without domain knowledge. This can then be used
as a benchmark for comparison against ‘strong methods’, or
as a base upon which a system with domain-specific knowl-
edge might be built. IPAM’s implementation, in addition,
was guided by the characteristics of an IOLA, and thus has

35
40
45
50
55
60
65
70
75
80
85
90
95

100

0 1 2 3

A
cc

ur
ac

y 
(%

)

Number of characters to match

IPAM top1
IPAM top2
IPAM top3

Bayes top1
Bayes top2
Bayes top3

Figure 9: Command completion accuracies for the Green-
berg dataset.



0

10

20

30

40

50

60

70

80

90

100

0 250 500 750 1000 1250 1500 1750 2000

A
cc

ur
ac

y 
(%

)

Command number

Cumulative average
30-point window average

Figure 10: Cumulative performance of IPAM (when n=3)
over time for a typical user.

other benefits in using limited resources in addition to per-
formance.

This research has many possible extensions that would be
desirable to investigate, such as predicting an entire com-
mand line (that is, commands plus parameters), and extend-
ing IPAM to recognize patterns longer than 2. Finally, incor-
poration of IPAM into a real-world interface would be useful
to get user feedback on its performance (this is underway, as
an extension to tcsh).

Related Work
The problem of learning to predict a user’s next action is re-
lated to work in a number of areas. There are of course many
similarities in the problems studied in plan and goal recog-
nition in the user modeling community (e.g., (Bauer 1996;
Lesh & Etzioni 1995; Lesh 1997)). Such work attempts to
model users in terms of plans and goals specific to the given
task domain. Most efforts in this area thus require that the
modeling system know the set of goals and plans in advance.
This usually requires a significant human investment in ac-
quiring and representing this domain knowledge. In contrast,
our goal is to explore the potential for action prediction in
a knowledge-sparse environment (i.e., where user plans are
not known or cannot easily be developed).

A smaller number of researchers have, instead, studied
methods that have similar goals of generality. Yoshida and
Motoda (Motoda & Yoshida 1997; Yoshida & Motoda 1996;
Yoshida 1994) apply specially developed machine learning
techniques to perform command prediction. This lets them
implement speculative execution, and they report fairly high
predictive accuracy (albeit on a small amount of real user
data). However, much of the success of their work comes
from knowing a fair amount about each action a user takes,
by using a powerful extension to the operating system that
lets them record the I/O accesses (e.g., reading files) that each
command performs.

While on the surface the command prediction problem
(and especially the IPAM approach) may bear some similar-
ities to Markov decision processes, reinforcement learning
approaches (Sutton & Barto 1998) are not likely to be a good

0

10

20

30

40

50

60

70

80

90

100

0 250 500 750 1000 1250 1500 1750 2000

A
cc

ur
ac

y 
(%

)

Command number

Cumulative average
30-point window average

Figure 11: Cumulative performance of Bayes (when n=3)
over time for a typical user.

choice for the following reasons: 1) while we have made the
Markov assumption, it is only a rationalization that we used
to motivate the IPAM approach; 2) every ‘state’ has equal
value – the task is to correctly predict the next state, not to
optimize the sequence to a goal state; 3) similarly, the reward
function is transparent, with no credit assignment difficulty;
and 4) not only is the domain noisy, but we believe the target
concept changes over time.

Greenberg (1993) and Lee (1992) have studied patterns of
usage in the UNIX domain, focusing on simple patterns of
repetitions. They found that the recurrence rate (the likeli-
hood of repeating something) was high for command lines
as well as for commands themselves, but that individual us-
age patterns varied. More recently, Tauscher and Greenberg
(1997) extended Greenberg’s recurrence analysis to URL re-
visitation in World Wide Web browsers. These efforts con-
sider only some simple methods for offering the top-n pos-
sibilities for easy selection (such as the most recent n com-
mands). The Reactive Keyboard (Darragh, Witten, & James
1990) also uses simple history-matching methods for predic-
tion, but at the lower level of keypresses.

Stronger methods (including a genetic algorithm-based
classifier system) were attempted by Andrews in his master’s
thesis (1997) to predict user commands, but he had only a
small sample of users with fairly short histories (� 500) in a
batch framework and thus unclear implications. In a recent
conference paper, Debevc, Meyer, and Svecko (1997) report
on an application for presenting a list of potential URLs as
an addition to a web browser. This method goes beyond
recency-based selection methods, and instead tracks a prior-
ity for each URL which is updated after each visitation. The
priority for a particular URL is computed essentially as the
normalized averages of: a count of document usage, relative
frequency of document usage, and the count of highest se-
quential document usage. This contrasts with our approach
most significantly in that it does not consider relationships
between documents and thus patterns of usage. Therefore,
the Adaptive Short List computes a simplistic ’most likely’
set of documents without regard to context.

A number of researchers have studied the use of machine



learning in developing intelligent interfaces incorporating
action prediction. For example, WebWatcher (Joachims,
Freitag, & Mitchel 1997) predicts which links on a page on
World Wide Web a user will select, and Hirashima et al.
(1998) present a method for context-sensitive filtering, but
both systems rely on the precise nature of the artifacts being
manipulated (namely decomposable pages of text). Predic-
tive methods in automated form completion (Schlimmer &
Wells 1996; Hermens & Schlimmer 1993) are similarly tai-
lored to the specifics on the application.

Maes (Maes 1994; Maes & Kozierok 1993; Sheth &
Maes 1993) considers the broader task of building intelligent
agents to serve as information filters and personal assistants.
Such agents learn to “program themselves” by learning ap-
propriate behavior from the user (and potentially from other
agents). These agents are designed to be helpful, making
suggestions and only gradually taking on more responsibil-
ity as their users’ trust grows. Maes uses a variety of learn-
ing methods in designing these agents, including learning by
watching the user. Thus, a mechanism that can learn to better
model a user would be quite valuable in this context.

Programming by demonstration (Cypher 1993b; Nevill-
Manning 1993) also has some similarities to our work. For
example, Cypher’s Eager (Cypher 1993a) can automate ex-
plicitly marked loops in user actions in a graphical interface.
They, too, are concerned with performance when integrated
into a user interface. While our approach is not designed
to notice arithmetic progressions in loops, we can find and
use the patterns in usage that do not recur as explicit loops
and do not require special training by the user. Masui (1994)
also learns repeated user patterns, requiring the user to hit
the ’repeat’ button when the system should learn or execute
a macro.

Sequence prediction is also strongly related to data com-
pression (Bell, Cleary, & Witten 1990) since an algorithm
that can predict the next item in a sequence well can also be
used to compress the data stream. Indeed, many of the ap-
proaches we describe could indeed be used in this fashion,
precisely because they apply when only the user’s history is
available. However, we differ in that success in compres-
sion would only be an interesting phenomenon but not one
that we explicitly target for our methods. Perhaps even more
importantly, we target methods in which additional informa-
tion sources can be easily injected. Our methods also are de-
signed to be responsive to concept drift, since we make no as-
sumptions about the stability of a user’s actions over time —
something that tends to reduce the usefulness of dictionary
or grammar-based compression schemes (Nevill-Manning
1996). Laird and Saul (1994) present the TDAG algorithm
for discrete sequence prediction, and apply it to a number
of problems, including text compression, dynamic program
optimization, and predictive caching. TDAG is based on
Markov-trees, but limits the growth of storage by discarding
the less likely prediction contexts. It is a fast online algo-
rithm, but it, too, does not explicitly consider the problem of
concept drift — each point in a sequence has essentially the
same weight as any other point.

Finally, more distantly related, work in anomaly detection
for computer systems (Kumar 1995; Lunt 1990) develops

ways to quantify a user’s normal behavior so that unusual
activity can be flagged as a potential intrusion. Most in-
trusion detection systems can be categorized as using either
statistical-anomaly detection, or rule-based detection. While
rule-based expert systems monitor for known attack patterns
and thus trigger few false alarms, they are also criticized
as encouraging the development of ad hoc rules (Esmaili,
Safavi-Naini, & Pieprzyk 1996) and require significant hu-
man engineering effort to develop. In contrast, statistical
systems traditionally build profiles of normal user behavior
and then search for the unusual sequences of events for con-
sideration. Unlike most systems that perform anomaly de-
tection by audit-trail processing off-line, our method works
online, incrementally updating users’ profiles as additional
data arrives and could be augmented to provide user recog-
nition.

Summary
We have presented a method that fulfills the requirements
of an Ideal Online Learning Algorithm. Incremental Proba-
bilistic Action Modeling has an average predictive accuracy
at least as good as that previously reported with C4.5. It op-
erates incrementally, will remember rare events such as ty-
pos, and does not retain a copy of the user’s action history.
IPAM can generate top-n predictions, and by weighing re-
cent events more heavily than older events it is able to react
to ‘concept-drift’. Finally, its speed and simplicity make it a
strong candidate for incorporation into the next adaptive in-
terface.

Acknowledgments
Our use of a probabilistic bigram model is based on an idea
suggested by Corinna Cortes. This research is partially sup-
ported by a Rutgers University special allocation to strategic
initiatives in the Information Sciences.

References
Andrews, T. 1997. Computer command prediction. Mas-
ter’s thesis, University of Nevada, Reno.
Bauer, M. 1996. Acquisition of user preferences for plan
recognition. In Chin, D., ed., Proceedings of the Fifth In-
ternational Conference on User Modeling (UM96).
Bell, T. C.; Cleary, J. G.; and Witten, I. H. 1990. Text Com-
pression. Englewood Cliffs, NJ: Prentice Hall.
Cypher, A. 1993a. Eager: Programming repetitive tasks by
demonstration. In Cypher (1993b). 204–217.
Cypher, A., ed. 1993b. Watch What I Do: Programming by
Demonstration. Cambridge, MA: MIT Press.
Darragh, J. J.; Witten, I. H.; and James, M. L. 1990. The
reactive keyboard: A predictive typing aid. IEEE Computer
23(11):41–49.
Davison, B. D., and Hirsh, H. 1997a. Experiments in UNIX
command prediction. Technical Report ML-TR-41, De-
partment of Computer Science, Rutgers University.
Davison, B. D., and Hirsh, H. 1997b. Toward an adap-
tive command line interface. In Advances in Human Fac-
tors/Ergonomics: Design of Computing Systems: Social



and Ergonomic Considerations, 505–508. San Francisco,
CA: Elsevier Science Publishers. Proceedings of the Sev-
enth International Conference on Human-Computer Inter-
action.

Debevc, M.; Meyer, B.; and Svecko, R. 1997. An adap-
tive short list for documents on the world wide web. In
Proceedings of the 1997 International Conference on Intel-
ligent User Interfaces, 209–211. Orlando, FL: ACM Press.

Demasco, P. W., and McCoy, K. F. 1992. Generating text
from compressed input: An intelligent interface for people
with severe motor impairments. Communications of the
ACM 35(5):68–78.

Esmaili, M.; Safavi-Naini, R.; and Pieprzyk, J. 1996. Evi-
dential reasoning in network intrusion detection systems. In
Pieprzyk, J., and Seberry, J., eds., Information Security and
Privacy: First Australasian Conference, ACISP’96, 253–
265. Wollongong, NSW, Australia: Springer-Verlag. Lec-
ture Notes in Computer Science 1172.

Greenberg, S.; Darragh, J. J.; Maulsby, D.; and Witten,
I. H. 1995. Predictive interfaces: What will they think of
next? In Edwards, A. D. N., ed., Extra-ordinary human–
computer interaction: interfaces for users with disabilities.
Cambridge University Press. chapter 6, 103–140.

Greenberg, S. 1988. Using unix: collected traces of 168
users. Research Report 88/333/45, Department of Com-
puter Science, University of Calgary, Alberta. Includes tar-
format cartridge tape.

Greenberg, S. 1993. The Computer User as Toolsmith: The
Use, Reuse, and Organization of Computer-based Tools.
New York, NY: Cambridge University Press.

Hermens, L. A., and Schlimmer, J. C. 1993. A machine-
learning apprentice for the completion of repetitive forms.
In Proceedings of the Ninth IEEE Conference on Artificial
Intelligence Applications, 164–170. Los Alamitos, CA:
IEEE Computer Society Press.

Hirashima, T.; Matsuda, N.; and Toyoda, J. 1998. Context-
sensitive filtering for hypertext browsing. InProceedings of
the 1998 International Conference on Intelligent User In-
terfaces. ACM Press.

Joachims, T.; Freitag, D.; and Mitchel, T. 1997. Web-
watcher: A tour guide for the world wide web. In Proceed-
ings of the Fifteenth International Joint Conference on Ar-
tificial Intelligence, 770–775. Morgan Kaufmann.

Kumar, S. 1995. Classification and detection of computer
intrusions. Ph.D. Dissertation, Purdue University, West
Lafayette, IN.

Laird, P., and Saul, R. 1994. Discrete sequence prediction
and its applications. Machine Learning 15(1):43–68.

Lee, A. 1992. Investigations into History Tools for User
Support. Ph.D. Dissertation, University of Toronto. Avail-
able as Technical Report CSRI–271.

Lesh, N., and Etzioni, O. 1995. A sound and fast goal
recognizer. In Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence, 1704–
1710. Morgan Kaufmann.

Lesh, N. 1997. Adaptive goal recognition. In Proceedings
of the Fifteenth International Joint Conference on Artificial
Intelligence. Morgan Kaufmann.
Lunt, T. F. 1990. IDES: An intelligent system for detect-
ing intruders. In Proceedings of the Symposium: Computer
Security, Threat and Countermeasures.
Maes, P., and Kozierok, R. 1993. Learning interface
agents. In Proceedings of the Eleventh National Confer-
ence on Artificial Intelligence, 459–465. Menlo Park, CA:
AAAI Press.
Maes, P. 1994. Agents that reduce work and information
overload. Communications of the ACM 37(7):31–40.
Masui, T., and Nakayama, K. 1994. Repeat and predict
— two keys to efficient text editing. In Proceedings of the
Conference on Human Factors in Computing Systems, 118–
123. New York: ACM Press.
Mitchell, T. M.; Mahadevan, S.; and Steinberg, L. I. 1985.
LEAP: A learning apprentice for VLSI design. In Proceed-
ings of the Ninth International Joint Conference on Artifi-
cial Intelligence.
Motoda, H., and Yoshida, K. 1997. Machine learning tech-
niques to make computers easier to use. In Proceedings
of the Fifteenth International Joint Conference on Artificial
Intelligence, 1622–1631. Morgan Kaufmann.
Nevill-Manning, C. G. 1993. Programming by demonstra-
tion. New Zealand Journal of Computing 4(2):15–24.
Nevill-Manning, C. G. 1996. Inferring Sequential Struc-
ture. Ph.D. Dissertation, University of Waikato, New
Zealand.
Quinlan, J. R. 1993. C4.5: Programs for Machine Learn-
ing. San Mateo, CA: Morgan Kaufmann.
Schlimmer, J. C., and Wells, P. C. 1996. Quantitative results
comparing three intelligent interfaces for information cap-
ture: A case study adding name information into an elec-
tronic personal organizer. Journal of Artificial Intelligence
Research 5:329–349.
Sheth, B., and Maes, P. 1993. Evolving agents for personal-
ized information filtering. In Proceedings of the Ninth IEEE
Conference on Artificial Intelligence Applications, 345–
352. Los Alamitos, CA: IEEE Computer Society Press.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, MA: MIT Press.
Tauscher, L., and Greenberg, S. 1997. How people revisit
web pages: Empirical findings and implications for the de-
sign of history systems. International Journal of Human
Computer Studies 47(1):97–138.
Utgoff, P. E. 1989. Incremental induction of decision trees.
Machine Learning 4(2):161–186.
Yoshida, K., and Motoda, H. 1996. Automated user
modeling for intelligent interface. International Journal of
Human-Computer Interaction 8(3):237–258.
Yoshida, K. 1994. User command prediction by graph-
based induction. In Proceedings of the Sixth International
Conference on Tools with Artificial Intelligence, 732–735.
Los Alamitos, CA: IEEE Computer Society Press.


