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Abstract

One method for detecting fraud is to check for suspi-
cious changes in user behavior over time. This paper
describes the automatic design of user profiling meth-
ods for the purpose of fraud detection, using a series of
data mining and machine learning techniques. It uses
a rule-learning program to uncover indicators of fraud-
ulent behavior from a large database customer trans-
actions. Then the indicators are used to create a set
of monitors, which profile legitimate customer behav-
ior and indicate anomalies. Finally, the outputs of the
monitors are used as features in a system that learns to
combine evidence to generate high-confidence alarms.
The system has been applied to the problem of detect-
ing cellular cloning, but is applicable to a more general
class of fraud called superimposition fraud. Experi-
ments indicate that this automatic approach performs
better than hand-crafted methods for detecting fraud.
Furthermore, this approach can adapt to the changing
conditions typical of fraud detection environments.

Introduction

In the United States, cellular fraud costs the telecom-
munications industry hundreds of millions of dollars
per year (Walters & Wilkinson 1994; Steward 1997).
One kind of cellular fraud called cloning is particu-
larly expensive and epidemic in major cities through-
out the United States. Cloning fraud causes great in-
convenience to customers and great expense to cellu-
lar service providers. Existing methods for detecting
cloning fraud are ad hoc and their evaluation is vir-
tually nonexistent. We have embarked on a program
of systematic analysis of cellular call data for the pur-
pose of designing and evaluating methods for detecting
fraudulent behavior.

Cloning fraud is one instance of superimposition
fraud, in which fraudulent usage is superimposed upon
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(added to) the legitimate usage of an account. Other
examples are credit card fraud, calling card fraud and
some forms of computer intrusion. Superimposition
fraud typically occurs when a non-legitimate user gains
illicit access to the account or service of a legitimate
user. Superimposition fraud is detectable if the legit-
imate users have fairly regular behavior that is gener-
ally distinguishable from the fraudulent behavior.

Our framework includes a data mining compo-
nent for discovering indicators of fraud. A construc-
tive induction component generates profiling detectors
that use the discovered indicators. A final evidence-
combining component determines how to combine sig-
nals from the profiling detectors to generate alarms.
The rest of this paper describes the domain, the frame-
work and the implemented system, the data, and re-
sults.

Cellular Cloning Fraud and its

Detection

Every cellular phone periodically transmits two unique
identification numbers: its Mobile Identification Num-
ber (MIN) and its Electronic Serial Number (ESN).
These two numbers are broadcast unencrypted over
the airwaves, and can be received, decoded and stored
using special equipment that is relatively inexpensive.
Cloning occurs when a customer’s MIN and ESN are
programmed into a cellular telephone not belonging
to the customer. When this telephone is used, the
network sees the customer’s MIN and ESN and sub-
sequently bills the usage to the customer. With the
stolen MIN and ESN, a cloned phone user (whom we
shall call a bandit) can make virtually unlimited calls,
whose charges are billed to the customer.1 If the fraud-
ulent usage goes undetected, the customer’s next bill
will include the corresponding charges. Typically, the
customer then calls the cellular service provider (the
carrier) and denies the usage. The carrier and cus-

1According to the Cellular Telecommunications Indus-
try Association, MIN-ESN pairs are sold on the streets of
major US cities for between $5 and $50 apiece.
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tomer then determine which calls were made by the
"bandit" and which were legitimate calls. The fraud-
ulent charges are credited to the customer’s account,
and measures are taken to prohibit further fraudulent
charges, usually by assigning the customer a (new) Per-
sonal Identification Number.

Fraud causes considerable inconvenience both to the
carrier and to the customer. Fraudulent usage also in-
curs significant financial losses due to costs of land-line
usage (most cellular calls are to non-cellular destina-
tions), costs of congestion in the cellular system, loss
of revenue by the crediting process, and costs paid to
other cellular companies when a customer’s MIN and
ESN are used outside the carrier’s home territory.

Cellular carriers therefore have a strong interest in
detecting cloning fraud as soon as possible. Stan-
dard methods of fraud detection include analyzing call
data for overlapping calls (collisions), or calls in tem-
poral proximity that could not have been placed by
the same user due to geographic dispersion (velocity
checks) (Davis & Goyal 1993). More sophisticated
methods involve profiling user behavior and looking
for significant deviations from normal patterns. This
paper addresses the automatic design of such methods.

One approach to detecting fraud automatically is to
learn a classifier for individual calls. We have not had
success using standard machine learning techniques to
construct such a classifier. Context is very impor-
tant: a call that would be unusual for one customer
would be typical for another. Furthermore, legitimate
subscribers occasionally make isolated calls that look
suspicious, so in general decisions of fraud should not
be made on the basis of individual calls (Fawcett 
Provost 1997).

To detect fraud reliably it is necessary to determine
the normal behavior of each account with respect to
certain indicators, and to determine when that behav-
ior has deviated significantly. Three issues arise:

1. Which call ]eatures are important? Which features
or combinations of features are useful for distinguish-
ing legitimate behavior from fraudulent behavior?

2. How should profiles be created? Given an important
feature identified in Step 1, how should we charac-
terize the behavior of a subscriber with respect to
the feature?

3. When should alarms be issued? Given a set of profil-
ing criteria identified in Step 2, how should we com-
bine them to determine when fraud has occurred?

Our goal is to automate the design of user-profiling
systems. Each of these issues corresponds to a compo-
nent of our framework.
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Figure 1: A framework for automatically constructing
fraud detectors.

The Framework and the DC-1 System

Our system framework is illustrated in Figure 1. The
framework uses data mining to discover indicators of
fraudulent behavior, and then builds modules to pro-
file each user’s behavior with respect to these indica-
tors. The profilers capture the typical behavior of an
account and, in use, describe how far an account is
from this typical behavior. The profilers are combined
into a single detector, which learns how to detect fraud
effectively based on the profiler outputs. When the
detector has enough evidence of fraudulent activity on
an account, based on the indications of the profilers, it
generates an alarm.

Figure 1 depicts the automatic generation of a fraud
detector from a set of data on fraudulent and legit-
imate calls. The system takes as input a set of call
data, which are chronological records of the calls made
by each subscriber, organized by account. The call
data describe individual calls using features such as
TIME-OF-DAY, DURATION and CELL-SITE. The
constructor also takes as input a set of profiler tem-
plates, which are the basis for the construction of the
individual profilers.

Mining the Call Data

The first stage of detector construction, data mining,
involves combing through the call data searching for
indicators of fraud. In the DC-1 system, the indi-
cators are conjunctive rules discovered by a standard

14



rule-learning program. We use the RL program (Clear-
water & Provost 1990), which is similar to other Meta-
DENDRAL-style rule learners (Buchanan & Mitchell
1978; Segal & Etzioni 1994). RL searches for rules
with certainty factors above a user-defined threshold.
The certainty factor we used for these runs was a sim-
ple frequency-based probability estimate, corrected for
small samples (Quinlan 1987).

The call data are organized by account, and each call
record is labeled as fraudulent or legitimate. When
RL is applied to an account’s calls it produces a set
of rules that serve to distinguish, within that account,
the fraudulent calls from the legitimate calls. As an
example, the following rule would be a relatively good
indicator of fraud:

(TIME-OF-DAY = NIGHT) AND (LOCATION = BRONX)
==> FRAUD

Certainty factor = 0.89

This rule denotes that a call placed at night from
The Bronx (a Borough of New York City) is likely 
be fraudulent. The Certainty factor = 0.89 means
that, for this account, a call matching this rule has an
89% probability of being fraudulent.

Each account generates a set of such rules. Each rule
is recorded along with the account from which it was
generated. After all accounts have been processed, a
rule selection step is performed, the purpose of which is
to derive a general covering set of rules that will serve
as fraud indicators.

The set of accounts is traversed again. For each ac-
count, the list of rules generated by that account is
sorted by the frequency of occurrence in the entire ac-
count set. The highest frequency unchosen rule is se-
lected. If an account has been covered already by four
chosen rules, it is skipped. The resulting set of rules is
used in profiler construction.

Constructing Profilers

The second stage of detector construction, profiler con-
struction, generates a set of profilers from the discov-
ered fraud rules. The profiler constructor has a set
of templates which are instantiated by rule conditions.
The profiler constructor is given a set of rules and a
set of templates, and generates a profiler from each
rule-template pair. Every profiler has a Training step,
in which it is trained on typical (non-fraud) account
activity; and a Use step, in which it describes how far
from the typical behavior a current account-day is. For
example, a simple profiler template would be"

¯ Given: Rule conditions from a fraud rule.

Training: On a daily basis, count the number of
calls that satisfy rule conditions. Keep track of the
maximum as daily-threshold.

Use: Given an account-day, output 1 if the num-
ber of calls in a day exceeds daily-threshold, else
output O.

Assume the Bronx-at-night rule mentioned earlier
was used with this template. The resulting instan-
tiated profiler would determine, for a given account,
the maximum number of calls made from The Bronx
at night in any 24-hour period. In use, this profiler
would emit a 1 whenever an account-day exceeded this
threshold.

Different kinds of profilers are possible. A thresh-
olding profiler yields a binary feature corresponding
to whether the user’s behavior was above threshold
for the given day. A counting profiler yields a feature
corresponding to its count (e.g., the number of calls
from BRONX at NIGHT). A percentage profiler yields
a feature whose value is between zero and one hundred,
representing the percentage of calls in the account-day
that satisfy the conditions. Each type of profiler is
produced by a different type of profiling template.

Combining Evidence from the Profilers

The third stage of detector construction learns how to
combine evidence from the set of profilers generated
by the previous stage. For this stage, the outputs of
the profilers are used as features to a standard ma-
chine learning program. Training is done on account
data, and profilers evaluate a complete account-day at
a time. In training, the profilers’ outputs are presented
along with the desired output (the account-day’s classi-
fication). The evidence combination learns which com-
binations of profiler outputs indicate fraud with high
confidence.

Many training methods for evidence combining are
possible. After experimenting with several methods,
we chose a simple Linear Threshold Unit (LTU) for our
experiments. An LTU is simple and fast, and enables
a good first-order judgment of the features’ worth.

A feature selection process is used to reduce the
number of profilers in the final detector. Some of the
rules do not perform well when used in profilers, and
some profilers overlap in their fraud detection cover-
age. We therefore employ a sequential forward selec-
tion process (Kittler 1986) which chooses a small set
of useful profilers. Empirically, this simplifies the final
detector and increases its accuracy.
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Account-Day
Day Time Duration Origin Destination
Tue 01:42 I0 mins Bronx, NY Miami, FL
Tue 10:05 3 mins Scrsdl, NY Bayonne, NJ
Tue 11:23 24 sec Scrsdl, NY Congers, NY
Tue 14:53 5 mins Trrytwn, NY Grnwich,CT
Tue 15:06 5 mins Manhat, NY Wstport, CT
Tue 16:28 53 sec Scrsdl, NY Congers, NY
Tue 23:40 17 mins Bronx, NY Miami, FL

Profilers ~ ~ ~ "~
,~.nW2aM~l.r°m~.~ fAIrllma from~/’SUNDAY alrtime’~
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Figure 2: A DC-1 fraud detector processing a single
account-day of data.

The Detector

The final output of the constructor is a detector that
profiles each user’s behavior based on several indica-
tors, and produces an alarm if there is sufficient evi-
dence of fraudulent activity. Figure 2 shows an exam-
ple of a simple detector evaluating an account-day.

Before being used on an account, the profilers un-
dergo a profiling period (usually 30 days) during which
they measure unfrauded usage. In our study, these ini-
tial 30 account-days were guaranteed free of fraud, but
were not otherwise guaranteed to be typical. From this
initial profiling period, each profiler measures a char-
acteristic level of activity.

The Data
The call data used for this study are records of cellular
calls placed over four months by users in the New York
City area--an area with high levels of fraud. Each call
is described by thirty-one attributes, such as the phone
number of the caller, the duration of the call, the ge-
ographical origin and destination of the call, and any
long-distance carrier used. Because of security consid-
erations, we are unable to disclose all the features used
in the system.

To these thirty-one attributes are added several de-
rived attributes that incorporate knowledge we judged

to be potentially useful. One such attribute is a cat-
egorical TIME-0F-DAY variable representing the time
segment of the day in which a call is placed. Its
values are MORNING, AFTERNOON, TWILIGHT,
EVENING and NIGHT. Another derived attribute is
T0-PAYPHONE, a binary flag indicating whether the call
terminated at a payphone. Note that any number of
additional features could be added to encode relevant
domain knowledge.

Each call is also give a class label of legitimate
or fraudulent. This is done by cross referencing a
database of all calls that were credited as being fraud-
ulent for the same time period.

Rule learning and selection used 879 accounts com-
prising over 500,000 calls. About 3600 accounts were
selected for profiling, training, and testing. The only
condition used to select these 3600 accounts was that
they be guaranteed to have at least thirty fraud-free
days of usage before any fraudulent usage. The initial
thirty days of each account were used for profiling. The
remaining days of usage were used to generate approx-
imately 96,000 account-days. Using randomly selected
accounts, we generated sets of 10,000 account-days for
training and 5000 account-days for testing. Training
and testing accounts were distinct, so their account-
days were not mixed between training and testing?
Each set of account-days was chosen to comprise 20%
fraud and 80% non-fraud days.

Results
Data mining generated 3630 rules, each of which ap-
plied to two or more accounts. The rule selection pro-
cess, in which rules are chosen in order of maximum
account coverage, yielded a smaller set of 99 rules suf-
ficient to cover the accounts. Each of the 99 rules was
used to instantiate two profiler templates, yielding 198
profilers. The final feature selection step reduced this
to nine profilers, with which the experiments were per-
formed.

Each detector was run ten times on randomly se-
lected training and testing accounts. Accuracy aver-
ages and standard deviations are shown in the left-
most column of Table 1. For comparison, we evaluated
DC-1 along with other detection strategies:

¯ Alarm on All represents the policy of alarming
on every account every day. The opposite strategy,
Alarm on None, represents the policy of allowing

2If account-days from a single account appear in both
training and testing sets, the performance evaluation can
be deceptively optimistic. Fraudulent behavior within a
specific cloning episode is more similar than fraudulent be-
havior between episodes. When deployed, the monitors will
be used to search for previously unseen cloning episodes.
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Table 1: Accuracies and costs of various detectors.

Detector Accuracy (%) Cost (US$) Accuracy at cost 
Alarm on All 20 20000 20
Alarm on None 80 18111 4- 961 80
Collisions + Velocities 82 ± .3 17578 ± 749 82 ± .4
High Usage 88 ± .7 6938 + 470 85 ± 1.7
Best individual DC-1 monitor 89 ± .5 7940 4- 313 85 4- .8
State of the Art (SOTA) 90 ± .4 6557 ± 541 88 =h .9
DC-1 detector 92 :h .5 5403 ± 507 91 4- .8
SOTA plus DC1 92 ± .4 5078 ± 319 91 ± .8

fraud to go completely unchecked. The latter corre-
sponds to the maximum likelihood accuracy classifi-
cation. Note that the cost of Alarm on None does
not take into account the inhibitory effect of fraud
detection, without which fraud levels would likely
continue to rise.

¯ Collisions and Velocities is a detector using colli-
sion and velocity checks, described earlier. DC-1 was
used to learn a threshold on the number of collision
and velocity alarms necessary to generate a fraud
alarm. It is surprising that Collisions and Velocity
Checks, commonly thought to be reliable indicators
of cloning, performed poorly in our experiments.

The performance of collisions and velocity checks
was originally worse than reported here because of
false alarms. Manual inspection of false alarms re-
vealed a few synchronization problems; for example,
some apparent collisions were caused when a call was
dropped then quickly re-established in a neighboring
cell whose clock did not agree with the first cell’s.
Some such conditions could be caught easily, so we
patched the detection algorithms to check for them.
The results in this paper are for the improved detec-
tors.

Investigation of confusion matrices revealed that the
collision and velocity check detectors’ errors were
due almost entirely to false negatives. In other
words, when the detectors fired they were accurate,
but many fraud days never exhibited a collision or
velocity check.

¯ Some fraud analysts believe that cloning fraud is
usually accompanied by large jumps in account us-
age, and sophisticated mining of fraud indicators
is probably unnecessary since most fraud could be
caught by looking for sudden increases in usage. We
created the High Usage detector to test this hy-
pothesis. It generates alarms based only on amount
of usage. It is essentially a standard deviation mon-
itor (Fawcett & Provost 1997) whose rule conditions

are always satisfied. The threshold of this detector
was found empirically from training data.

Note that the evaluation of cost for the high usage
detector may be overly optimistic, due to inadequa-
cies in our cost model. In particular, a trained high
usage detector learns to optimally "skim the cream,"
without regard to the fact that the errors it makes
will involve annoying the best customers. In these
cases, the cost of a false alarm may be much higher
than the fixed cost we assigned.

¯ The Best Individual DC-1 Monitor was used as
an isolated detector. This experiment was done to
determine the additional benefit of combining mon-
itors. The best individual monitor was generated
from the rule:

(TIME-OF-DAY = EVENING) ==> FRAUD

Rule learning had discovered (in 119 accounts) that
the sudden appearance of evening calls, in accounts
that did not normally make them, was coincident
with cloning fraud. The relatively high accuracy of
this one monitor reveals that this is a valuable fraud
indicator.

Our TIME-0F-DAY attribute has five possible val-
ues: MORNING, AFTERNOON, TWILIGHT,
EVENING and NIGHT. Although EVENING is by
far the most frequent value implicated in fraud, rule
learning generated fraud rules involving each of these
values. This suggests that any time-of-day change in
a subscriber’s normal behavior may be indicative of
fraud, though the other shifts may not be predictive
enough to use in a fraud monitor.

¯ The DC-1 detector incorporates all the monitors
chosen by feature selection. We used the weight
learning method described earlier to determine the
weights for evidence combining.

¯ The SOTA ("State Of The Art") detector incorpo-
rates thirteen hand-crafted profiling methods that
were the best individual detectors identified in a
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previous study. Each method profiles an account
in a different way and produces a separate alarm.
Weights for combining SOTA’s alarms were deter-
mined by our weight-tuning algorithm.

In this domain, different types of errors have dif-
ferent costs, and a realistic evaluation must take these
costs into account. A false positive error (a false alarm)
corresponds to wrongly deciding that a customer has
been cloned. Based on the cost of a fraud analyst’s
time, we estimate the cost of a false positive error to
be about $5. A false negative error corresponds to
letting a frauded account-day go undetected. Rather
than using a uniform cost for all false negatives, we
estimated a false negative to cost $.40 per minute of
fraudulent airtime used on that account-day. This fig-
ure is based on the proportion of usage in local and
non-local ("roaming") markets, and their correspond-
ing costs.3

Because LTU training methods try to minimize er-
rors but not error costs, we employed a second step
in training. After training, the LTU’s threshold is ad-
justed to yield minimum error cost on the training set.
This adjustment is done by moving the decision thresh-
old from -1 to +1 in increments of .01 and computing
the resulting error cost. After the minimum cost on
training data is found, the threshold is clamped and
the testing data are evaluated. The second column of
Table 1 shows the mean and standard deviations of
test set costs. The third column, "Accuracy at cost,"
is the corresponding classification accuracy of the de-
tector when the threshold is set to yield lowest-cost
classifications.

Discussion
The results in Table 1 demonstrate that DC-1 performs
quite well. In fact, DC-1 outperforms SOTA in terms
of both accuracy and cost.4 In our experiments, lowest
cost classification occurred at an accuracy somewhat
lower than optimal. In other words, some classifica-
tion accuracy can be sacrificed to decrease cost. More

aWe have still glossed over some complexity. For a given
account, the only false negative fraud days that incur cost
to the company are those prior to the first true positive
alarm. After the fraud is detected, it is terminated. Thus,
our analysis overestimates the costs slightly; a more thor-
ough analysis would eliminate such days from the compu-
tation.

4Earlier work (Fawcett & Provost 1996) reported 
higher accuracy for SOTA than is shown here. Further
development of SOTA revealed that some of its compo-
nent methods, developed in a prior study, had been built
from account data that overlapped data used to test the
methods. When a strict separation was enforced, SOTA
performance declined slightly to the figures shown here.

sophisticated methods could be used to produce cost
sensitive classifiers, which would probably produce bet-
ter results.

Finally, the monitors of SOTA and DC-1 were com-
bined into a hybrid detector. The resulting detector
(SOTA plus DC-1) exhibits no increase in classifica-
tion accuracy, but does show a slight improvement in
fraud detection cost.

Related Work
Yuhas (1993) and Ezawa and Norton (1995) address
the problem of uncollectible debt in telecommuni-
cations services. However, neither work deals with
characterizing typical customer behavior, so mining
the data to derive profiling features is not necessary.
Ezawa and Norton’s method of evidence combining is
much more sophisticated than ours and faces some of
the same problems (unequal error costs, skewed class
distributions).

Methods that deal with time series are relevant to
our work. However, most time series analysis (Chat-
field 1984; Farnum & Stanton 1989) strives to charac-
terize an entire time series or to forecast future events
in the series. Neither ability is directly useful to fraud
detection. Hidden Markov Models (Rabiner & Juang
1986) are concerned with distinguishing recurring se-
quences of states and the transitions between them.
However, fraud detection usually only deals with two
states (the "frauded" and "un-frauded" states) with 
single transition between them. It may be useful to rec-
ognize recurring un-frauded states of an account, but
this ability is likely peripheral to the detection task.

A longer article based on this work (Fawcett 
Provost 1997) evaluates the performance of DC-1 on
shifting distributions of fraud, as well as the use of
fraudulent call classifiers.

Conclusions and Future Work
It is difficult to evaluate DC-1 against existing ex-
pert systems for fraud detection. Fraud detection
departments carefully protect information about how
much fraud they have and how effective their detec-
tion strategies are. Likewise, vendors of fraud detec-
tion systems protect details of their systems’ operation
that may constitute trade secrets. Little performance
data on fielded systems are available, and what data
do exist are insufficient for careful evaluation.

For these reasons, we evaluated DC-1 against indi-
vidual known fraud detection techniques, as well as
against a collection of techniques representing the state
of the art as we understand it. Results in the previous
sections show that the DC-1 detector performs better
than the high-usage alarm and the collision/velocity
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alarm. DC-1 also out-performs the SOTA detector,
consisting of a collection of the best fraud detection
techniques known to us, trained by DC-I’s evidence
combining method.

DC-I’s framework has three main components, and
is more complex than other approaches. Our experi-
ments were designed not only to evaluate the overall
performance of the system, but also to analyze the con-
tribution of the individual components. In particular:

¯ The High Usage detector profiles with respect to un-
differentiated account usage. Comparison with DC-
l’s performance demonstrates the benefit of using
rule learning to uncover specific indicators of fraud-
ulent calls.

¯ The Call Classifier detectors represent rule learning
without the benefit of account context. Comparison
with DC-I’s performance demonstrates the value of
DC-I’s rule generation step, which does preserve ac-
count context.

¯ Comparison of DC-1 with the single best individual
DC-1 monitor demonstrates the benefit of combining
evidence from multiple monitors.

¯ Experiments with shifting fraud distributions
(Fawcett & Provost 1997) indicate the benefit 
making evidence combination sensitive to fraud dis-
tributions.

In each of these cases, the composite DC-1 system
out-performed the detector in which a significant piece
was missing. These results suggest that each compo-
nent contributes critically to the performance of the
entire detector.

We believe our framework will be useful in other do-
mains in which typical behavior is to be distinguished
from unusual behavior. Prime candidates are similar
domains involving fraud, such as credit-card fraud and
toll fraud. In credit-card fraud, data mining may iden-
tify locations that arise as new hot-beds of fraud. The
constructor would then incorporate profilers that no-
tice if a customer begins to charge more than usual
from that location.
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