
Learning in Time Ordered Domains
with Hidden Changes in Context

Michael Harries
Department of Artificial Intelligence,

University of NSW, Sydney 2052, Australia.
mbh@cse.unsw.edu.au

Kim Horn
Predictive Strategies Unit,

RMB Australia, Lvl 5, 37-49 Pitt St,
Sydney 2000, Australia

kim@rmb.com.au

Claude Sammut
Department of Artificial Intelligence,

University of NSW, Sydney 2052, Australia.
claude@cse.unsw.edu.au

Abstract

Concept drift due to hidden changes in context
complicates learning in many real world domains
including financial prediction, medical diagnosis,
and communication network performance. Ma-
chine learning systems addressing this problem
generally use an incremental learning, on-line
paradigm.
An off-line, meta-learning approach to the iden-
tification of hidden context is presented. This
approach uses an existing batch learner and the
process of contextual clustering to identify sta-
ble hidden contexts, and the associated, context
specific, locally stable concepts. The approach
is broadly applicable to a range of domains and
learning methods. We describe several evaluation
domains and report current progress on these do-
mains.

Introduction
Real world machine learning problems can be compli-
cated by changes in important properties of the domain
that are hidden from view. For example, in finance, a
successful stock buying strategy can change dramati-
cally in response to interest rate changes, world events,
or with the season. As a result, concepts learnt at
one time can subsequently become inaccurate, or worse,
concepts learnt from a data-set combining several such
changes can be quite inaccurate. Hidden changes in
context cause problems for any machine learning ap-
proach that assumes concept stability.

In many domains, hidden contexts can be expected
to recur. These domains include: financial prediction,
dynamic control and other commercial data mining ap-
plications. Recurring context can be due to cyclic phe-
nomena, such as seasons of the year or may be associ-

ated with irregular phenomena, such as inflation rates
or market mood.

In this paper, we present recent work on Splice,
an off-line meta-learning system for context-sensitive
learning. Splice is designed to identify stable con-
cepts during supervised learning in domains with hid-
den changes in context.

Motivation

This study had its genesis in an earlier data mining
project with an Australian merchant bank, RMB Aus-
tralia. The project goal was to find rules predictive of
financial market movement, for subsequent use in an
automated trading system.

Our early work on this domain (Harries & Horn
1995), took the approach of converting the domain from
an explicit time series problem to a predicate learning
problem. Each instance in the original data-set was
represented by a target classification, and a series of
attributes deemed significant by domain experts. We
applied C4.5 (Quinlan 1993) to this data.

The learning task was complicated by changes in
the target concepts over time, known as concept drift,
caused by changes in the financial market. In common
with many other researchers (such as (Widmer & Ku-
bat 1996)) we dealt with concept drift by re-training on
a window of recent instances for prediction in the near
future. We also incorporated a mechanism for detecting
when the current concept was outdated by associating
acceptable attribute ranges with each leaf of the deci-
sion tree.

Concept drift is often associated with changes in a
context hidden from the machine learning system. In
finance, the hidden context might be the current inter-
est rate or even the market mood. For a given value
of the hidden context a particular concept might be

From: AAAI Technical Report WS-98-07. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

dataset

order

initial
contextual
clusters

C4.5 C4.5 C4.5

initial
interim
concepts

Figure 1: Splice-2: stage 1

expected to be predictive. For instance, some techni-
cal trading rules (trading methods based only on the
pattern made by past prices) have been observed to be
effective only with particular market moods, such as
bullish, bearish, or jittery. Hidden changes of context
can also effect many other real world domains, includ-
ing the data mining of commercial data-bases, medical
diagnosis, and robotics.

We chose to investigate the detection and extrac-
tion of concepts that are stable over time (i.e. be-
tween drifts), with the aim of re-using the stable
concepts when similar contexts recur. The approach
was partially inspired by Widmer and Kubat (1993;
1996) who augmented an on-line learning system with a
mechanism to record and re-use apparently stable con-
cepts. In domains where a large amount of historical
data exists, batch learning can be used in favor of on-
line learning.

Splice is a batch meta-learning system designed to
extract recurring hidden context in classification do-
mains. Past work on the Splice method up to and
including Splice-2 has been published in (Harries &
Horn 1998; Harries, Sammut, & Horn in press).

This paper presents an overview of the current state
of the Splice project. We present the Splice-2 algo-
rithm, and an improvement on the algorithm, Splice-

2.1. We also review progress on a number of evaluation
domains.

SPLICE-2
Splice’s input is a sequence of training examples, each
consisting of a feature vector and a known classification.
The data are ordered over time and may contain hidden
changes of context. From these data, Splice attempts
to learn a set of stable concepts, each associated with
a different hidden context. Since contexts can recur,
disjoint intervals of the data-set can be associated with
the same concept.

Splice uses a process called contextual clustering to
group instances that appear to share a similarity of con-
text. This similarity of context is measured by the de-
gree to which intervals of the data-set are well classified

by the same concept.
Splice is implemented as a meta-learning algorithm,

hence, concepts are not induced directly, but by ap-
plication of an existing batch learner. In this study,
we use Quinlan’s C4.5 (Quinlan 1993), but the Splice

methodology could be implemented using other ma-
chine learning systems. C4.5 is used without modifi-
cation. Furthermore, since noise is dealt with by C4.5,
Splice contains no explicit noise handling mechanism.
Unusual levels of noise are dealt with by altering the
C4.5 pruning parameters. The Splice-1 algorithm is
detailed in (Harries & Horn 1998). Here, we focus upon
Splice-2, and a modification, Splice-2.1.

The Splice-2 algorithm has two stages, detailed
briefly below. For a more complete description of
Splice-2, see (Harries, Sammut, & Horn in press).

Stage 1: Partition data-set Splice-2 begins by
guessing an initial partitioning of the data and subse-
quent stages refine the initial guess.

Several methods may be used for the initial guess:

• Random partitioning. Randomly divide the data-set
into a fixed number of partitions.

• Prior Domain Knowledge. In some domains, prior
knowledge is available about likely stable concepts.

Once the data-set has been partitioned, each interval
of the data-set is stored as an initial contextual cluster.
C4.5 is applied to each of these clusters to produce a
decision tree known as an interim concept. Figure 1
shows a schematic of this stage.

Stage 2: Contextual clustering Stage 2 iteratively
refines the contextual clusters generated in stage 1.
With each iteration, a new set of contextual clusters
is created in an attempt to better identify stable con-
cepts in the data-set. Table 1 provides an overview of
this stage.

This stage proceeds by testing each interim concept
for classification accuracy against all items in the origi-
nal data-set. A score is then computed for each pair of
interim concept and item number. This score is based
upon the number of correct classifications achieved in a

Table 1: Splice-2 overview.

Stage 1:
create the initial contextual clusters and interim concepts

Stage 2:
repeat
- Assess interim concepts on the original data-set
- Discard contextual clusters
- Create new contextual clusters - based upon similarity to interim concepts
- Discard interim concepts
- Create new interim concepts from the new contextual clusters
until - fixed number of iterations completed, or clusters stop changing.

window surrounding the item. The window is designed
to capture the notion that a context is likely to be stable
for some period of time.

On-line learning systems apply this notion implicitly
by using a window of recent instances. Many of these
systems use a fixed window size, generally chosen to
be the size of the minimum context duration expected.
The window in Splice has the same function as in an
on-line method, namely, to identify a single context.

The context of an item can be represented by a con-
cept that most correctly classifies all items within the
window surrounding that item. We define Wij to be the
score for concept j when applied to a window centered
on example i.

Wij =

i+w/2∑
m=i−w/2

Correctjm (1)

where:

Correctjm =

1 if interim concept j correctly

classifies example m
0 if interim concept j

misclassifies example m

w = the window size

The current contextual clusters, from stage one or
a previous iteration of stage two, are discarded. New
contextual clusters are then created for each interim
concept j. Once all scores are computed, each item, i,
is allocated to a contextual cluster associated with the
interim concept, j, that maximizes Wij over all interim
concepts. These interim concepts are then discarded.
C4.5 is applied to each new contextual cluster to learn
a new set of interim concepts.

The contextual clustering process iterates until either
a fixed number of repetitions is completed or until the
interim concepts do not change from one iteration to the
next. The last iteration of this stage provides a set of
stable concepts. The final contextual clusters give the
intervals of the data-set for which different contexts are
active.

SPLICE-2 Limitations

Splice-2 performs well on a number of domains but in
domains with high levels of noise it often converges on
contextual clusters that are very similar to the initial
clusters. The effect is apparently due to over-fitting
and can be reduced by increasing C4.5 pruning levels.
The use of C4.5 pruning in this way is not considered
to be a long term solution as Splice is designed to be
independent of the underlying machine learning system
used.

SPLICE-2.1

Splice-2.1 was designed to overcome over-fitting in
Splice-2. It contains two improvements, both aimed
at reducing the likelihood of poor convergence due to
over-fitting. The first is an additional method for ini-
tial partitioning, in which a number of equally sized sets
can be drawn randomly from the initial data-set. This
avoids bias in the initial contextual clusters.

The second Splice-2.1 improvement is designed to
reduce over-fitting in the clustering stage. When test-
ing an interim concept, ICi, Splice-2 does not distin-
guish between items that were in the prior contextual
cluster, CCi, used for training the interim concept ICi,
and items that were not. This means that ICi is likely
to get the maximum accuracy possible on most items
in CCi. As a result, there is a tendency for Splice-

2 concepts to become fixed which limits the contextual
cluster refinement that can occur. Splice-2.1 improves
the process of testing each interim concept for classifica-
tion accuracy against items in the associated contextual
cluster.

Splice-2.1 divides each contextual cluster into ten
equally sized hold-out sets. In turn, each is held out of
the training set for a new interim concept, that interim
concept is then assessed for classification accuracy on
items in the hold-out set. The new classification accu-
racy figures are then used for calculating the Wij scores
as per Splice-2.

Application Areas
Here we introduce some evaluation domains. The first
two have been tackled with Splice-2, and the third
with both Splice-2 and Splice-2.1.

Splice-2

-45000
-35000

-25000
-15000

-5000 0
2000

4000

6000

0

1000

2000

North/South (feet)

East/West (feet)

Height (feet)

C4.5
Sample flight

Figure 2: Flight comparison

Stagger
The Stagger domain is an artificial test domain designed
to test on-line methods for concept drift (Schlimmer
& Granger 1986). Splice has been applied and ex-
tensively tested on this domain (Harries & Horn 1998;
Harries, Sammut, & Horn in press). For on-line predic-
tion, Splice is competitive with on-line methods once
given historical data containing the Stagger concepts.
Splice is also very effective under a broad range of noise
and other conditions at recognizing the Stagger con-
cepts.

Learning to Fly
The “Learning to Fly” domain is a behavioral cloning
task, in which the goal is to use a machine learning
system to clone the control actions of a pilot flying a
flight simulator through a fixed, seven stage, flight plan.
This domain was initially investigated by Sammut et
al. (1992). Previous work on this domain found it nec-
essary to explicitly divide the domain into a series of
individual learning tasks or stages. Splice-2 was able
to induce an effective pilot for a substantial proportion
of the original flight plan with no explicitly provided
stages (Harries, Sammut, & Horn in press). In the fol-
lowing sections we briefly describe the problem domain
and the application of Splice-2.

The “Learning to Fly” experiments (Sammut et al.
1992) were intended to demonstrate that it is possible
to build controllers for complex dynamic systems by
recording the actions of a skilled operator in response
to the current state of the system. A flight simulator
was chosen as the dynamic system because it was a com-
plex system requiring a high degree of skill to operate
successfully and yet is well understood.

We had 30 flight logs from a single pilot. The logs
contained a record for every control action made by the
pilot. Each log contained upward of 500 items with a
total of 18781 training examples over all. Each example
had 15 attributes showing position and motion, and 4

control attributes. The values for each of the control
attributes are used as target classes for the induction of
separate decision trees for each control attribute. These
decision trees are then tested by compiling the trees into
the autopilot code of the simulator and then “flying”
the simulator.

Splice was used to learn stable concepts from the
combined data logs. These were then combined into
a control procedure by associating each example with a
context (detected by Splice), a single decision tree was
then induced to predict the current context (and thus
the correct stable concept to apply).

This is a very complex task. At best, C4.5 alone
was able to complete only two stages of the flight plan.
Previous research on this domain has been successful
only after providing a manual partitioning of the task.
Even then, they still had to put in a great deal of work
to make the simulator fly.

We were able to use Splice-2 to successfully fly four
of the seven stages of the flight without dividing the
task explicitly into stages. Figure 2 shows three flights:
the successful Splice-2 flight on stages 1 to 4; the best
C4.5 flight; and a sample complete flight.

Although we have not yet been able to fly all seven
stages of the flight plan, successfully flying four stages
is much more than had previously been achieved on this
domain without manually partitioning the task.

The use of Splice-2 in synthesizing controllers for
stages 1 - 4 is the first time that any automated proce-
dure has been successful for identifying contexts in this
very complex domain.

Calendar Scheduling

Another machine learning domain with hidden con-
text is the calendar scheduling problem, described by
Mitchell et al. (1994). In this domain, personal cal-
endar software is augmented with a machine learning
system designed to intelligently assist users by making
scheduling predictions (time, location, day of week, and

Spring

Summer

Fall

Winter

0 200 400 600 800 1000 1200 1400 1600 1800

C
M

U
 s

es
si

on
s

Calendar entries - ordered by date entered

Sessions
Context change

Figure 3: CMU Calendar.

duration) about new meetings. Each prediction is made
on the basis of past scheduling decisions and some in-
formation (such as attendance) about the new meeting.

We evaluate both Splice-2 and Splice-2.1 contex-
tual clustering on an aspect of the calendar schedul-
ing problem, the prediction of meeting duration, for a
single user, Tom Mitchell. The data-set1 runs from 3
March 1992 to 16 December 1993 and has 1685 entries,
each entry has 14 attributes and a classification. These
data were previously used by (Mitchell et al. 1994;
Widmer 1997).

This preliminary result shows the context boundaries
found by Splice-2.1 on this data-set. Splice-2.1 was
run ten times with four randomly drawn initial clusters,
a window size of 100 items, and for 20 iterations. The
window size was chosen to make the recognition of large
scale contexts, such as semesters, more likely.

Repeated runs of Splice-2 on this domain tend not
to agree on context boundaries. In fact, the boundaries
detected are often very similar to those of the original
partitions, suggesting that Splice-2 is unable to adapt
contextual contexts in this domain. We have not in-
cluded a figure to illustrate this.

Figure 3 shows CMU semesters, based upon the dates
in the 97/98 calendar. The dashed line in this graph
shows the proportion of Splice runs finding a con-
text boundary within five items of each calendar entry.
There are four prominent spikes in this line at entries
69, 727, 1263, and 1324. The second and fourth of these
correspond to the beginning of teaching semesters. This
chart shows that Splice-2.1 finds consistent context
boundaries. It also suggests that a strong hidden con-
text affects this domain.

Splice-2.1 has been shown to identify consistent
context changes in this domain. Further experimen-
tation is required to confirm that the context changes
identified are useful for prediction.

1These data have been made avail-
able by Tom Mitchell and colleagues at
http://www.cs.cmu.edu/afs/cs/project/theo-5/www/cap-
data.html. Thanks to Gerhard Widmer for his copy of this
data in C4.5 format.

Conclusion
This article has presented a new off-line paradigm for
recognizing and dealing with hidden changes in context.
Hidden changes in context can occur in any domain
where the prediction task is poorly understood or where
context is difficult to isolate as an attribute.

References
Harries, M., and Horn, K. 1995. Detecting concept
drift in financial time series prediction using symbolic
machine learning. In Yao, X., ed., Eighth Australian
Joint Conference on Artificial Intelligence, 91–98. Sin-
gapore: World Scientific Publishing.

Harries, M., and Horn, K. 1998. Learning stable con-
cepts in a changing world. In Learning and Reasoning
with Complex Representations, number 1359 in LNAI.
Springer-Verlag.

Harries, M.; Sammut, C.; and Horn, K. in press. Ex-
tracting hidden context. Machine Learning.

Mitchell, T.; Caruana, R.; Freitag, D.; McDermott,
J.; and Zabowski, D. 1994. Experiences with a learn-
ing personal assistant. Communications of the ACM
37(7):81–91.

Quinlan, J. R. 1993. C4.5: Programs for Machine
Learning. San Mateo, California: Morgan Kaufmann
Publishers Inc.

Sammut, C.; Hurst, S.; Kedzier, D.; and Michie, D.
1992. Learning to fly. In Machine Learning: Proceed-
ings of the Ninth International Conference, 385–393.
San Mateo, California: Morgan Kaufmann Publishers.

Schlimmer, J., and Granger, Jr., R. 1986. Incremental
learning from noisy data. Machine Learning 1(3):317–
354.

Widmer, G., and Kubat, M. 1993. Effective learning in
dynamic environments by explicit concept tracking. In
Brazdil, P. B., ed., European Conference on Machine
Learning, 227–243. Berlin: Springer-Verlag.

Widmer, G., and Kubat, M. 1996. Learning in the
presence of concept drift and hidden contexts. Ma-
chine Learning 23:69–101.

Widmer, G. 1997. Tracking context changes through
meta-learning. Machine Learning 27:259–286.

