
Approaches to Online Learning and Concept Drift
for User Identification in Computer Security

Terran Lane and Carla E. Brodley

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907-1285
terran,brodley @ ecn.purdue.edu

Abstract

The task in the computer security domain of anomaly
detection is to characterize the behaviors of a computer
user (the "valid’, or "normal’ user) so that unusual oc-
currences can be detected by comparison of the current
input stream to the valid user’s profile. This task re-
quires an online leaming system that can respond to
concept drift and handle discrete non-metric time se-
quence data. We present an architecture for online
learning in the anomaly detection domain and address
the issues of incremental updating of system parame-
ters and instance selection. We demonstrate a method
for measuring direction and magnitude of concept drift
in the classification space and present approaches to the
above stated issues which make use of the drift mea-
surement. An empirical evaluation demonstrates the
relative strengths and weaknesses of these techniques
in comparison to a number of baseline techniques. We
show that, for some users, our drift adaptive techniques
are advantageous.

Introduction

In this paper we examine methods for learning to classify
temporal sequences of nominal data as similar to or different
from previously observed sequence data when the underly-
ing concept is subject to drift. This problem arises from the
computer security task of anomaly detection (Kumar, 1995).
The goal in this domain is to characterize the behaviors of a
computer user (the "valid’, or "normal’ user) with a profile
so that unusual occurrences can be detected by comparing
a current input stream to the profile. This task presents us
with a number of challenging machine learning issues in-
cluding learning from discrete, non-metric time sequence
data, learning from examples from only a single class, online
learning, and learning in the presence of concept drift.

The goal of the anomaly detection domain is to produce
an agent which can detect, through observations of system
state, audit logs, or user generated events, when a user or
system deviates from "normal’ behavior. The presumption
is that malicious behavior, especially on the part of an in-
truder who has penetrated a system account, will appear dif-
ferent from normal behavior in terms of some function of the

Copyright (~)1998, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

present and historical observations of system state (Ander-
son, 1980; Denning, 1987). In this paper we refer to the in-
dividual observations as events. Taken over time, the events
form an unbroken stream of temporally distributed nominal
data. Our work focuses on an anomaly detection agent as a
personal assistant that aids a single user in protecting his or
her account from abuse. The alternative approach, of char-
acterizing the system’s state as normal or anomalous, entails
a somewhat different set of problems and is examinined in,
for example, (Lunt, 1990; Forrest, Hofmeyr, Somayaji
Longstaff, 1996; Lee, Stolfo & Chan, 1997). The learn-
ing task for our domain is to form a profile describing the
valid user’ s normal patterns of behavior, and to use that pro-
file to classify incoming events as belonging to or differing
from the valid user. This task is made yet more difficult be-
cause the definition of what constitutes "normal’ behavior
for a particular user is subject to change over time as tasks,
knowledge, and skills change. We envision the techniques
presented here as working in conjunction with other meth-
ods such as biometric measurements and attack signature
detection to create an overall accurate and robust security
assistant.

Because the space of possible malicious behaviors and in-
truder actions is potentially infinite, it is impractical to char-
acterize normal behavior as a contrast to known abnormal
behaviors (Spafford, 1998). It is also desirable, for privacy
reasons, that an anomaly detection agent only employ data
that originates with the profiled user or is publicly available
-- an important criterion to much of the computer security
community. This requirement leads to a learning situation
in which only instances of a single class (’valid user’) are
available.

In this environment, the anomaly detection agent sees
only an unbroken and undifferentiated stream of incoming
events and must classify each event as anomalous or normal.
The associated learning task (training the agent to recognize
a particular user) possesses a number of difficulties not faced
by traditional, static learning tasks. In particular:

Concept drift: A user’s behaviors and tasks change with
time. The anomaly detection agent must be capable of
adapting to these changes while still recognizing hostile ac-
tions and not adapting to those.

Online learning: There is no division of "training data’
versus "testing data’. Instead, the agent is presented with a
homogeneous instance stream and must select appropriate

64

From: AAAI Technical Report WS-98-07. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

training instances itself.
Single class learning: The agent is only provided with

examples from a single class (the normal user’s data) for
learning.

Temporal sequence learning: Many learning algorithms
process instances composed of attributes and classes defined
on a fixed attribute space. This representation is not particu-
larly amenable to the unbroken stream data available in this
domain. Either a mapping from the one to the other must
be sought, or an algorithm designed for the native temporal
data space must be found.

In other work, (Lane & Brodley, 1997a), we have ex-
plored some of the data representation and single class learn-
ing issues associated with the anomaly detection domain.
The purpose of this paper is to explore issues associated with
online learning and concept drift.

Structure of the Learning Component
Previously we have examined a static model of learning for
anomaly detection in which separate train, parameter selec-
tion, and test data sets are available (Lane & Brodley, 1997a;
Lane & Brodley, 1997b; Lane & Brodley, 1997c). An online
learning system does not have the luxury of such distinc-
tions. Incremental methods are needed to select instances
for insertion into the model and to update current model pa-
rameters. In this section, we describe the structure of the
learning component of the anomaly detector and enumerate
the methods employed in our online system.

Token and Similarity Streams The incoming stream of
tokens (events) is segmented into overlapping fixed-length
sequences. The choice of the sequence length, l, was ex-
plored in (Lane & Brodley, 1997a) where it was found
depend on the profiled user. While not optimal for all users,
the value I = 10 was found to be an acceptable compromise
among the users tested there. Each sequence is then treated
as an instance in an/-dimensional space and is compared
to the known profile. The profile is a set, {T}, of previ-
ously stored instances and comparison is performed between
all y E {T} and the test sequence via a similarity mea-
sure. Similarity is defined by a measure, Sire(x, V), which
makes a point-by-point comparison of two sequences, x and
V, counting matches and assigning greater weight to adjacent
matches. Similarity to the profile Sirn{T} (z), is defined by:
Sim{T) (x) maXy~{T} Sim(x, y)Thisis th e 1-nearest-
neighbor rule of IBL on the non-Euclidean space defined by
Sire. This measure, and some alternatives, is described and
evaluated in (Lane & Brodley, 1997c).

Comparison of successive incoming sequences yields a
similarity stream representing the similarity over time of the
observed user to the profiled user. This signal turns out to be
quite noisy, so it is smoothed with a trailing window mean
value filter with window length w. Because classification
takes place after smoothing, the window length limits the
shortest time in which initial detection of an intruder can be
made. We choose w to be 80 sequences -- the minimum
window length that we have found to reduce noise accept-
ably. It has been argued that an intruder can do a great deal

of damage in less than l + w = 90 tokens and that alterna-
tive approaches should be explored for this reason. While
the danger of short-term attacks is undeniable, there are also
large classes of attackers who exploit a system over longer
time periods (see (Stoll, 1989) for one example) and we
ent our detector toward such attacks. Furthermore, an alter-
nate branch of computer security research focuses on pattern
matching detectors for locating known short-time attack sig-
natures (for example, (Kumar, 1995)).

Classification Classification is performed on each point
of the smoothed similarity stream, yielding a value of 0
(anomalous) or 1 (normal) for each time step. Classifica-
tion is subject to two types of errors: false acceptance (in-
correctly identifying hostile behaviors as normal) and false
alarm (incorrectly flagging normal behaviors). It’s impor-
tant that the false alarm rate be low for the system to be us-
able, but we wish to induce as little false acceptance as pos-
sible for that cost. Because only a single class is available
for training (the valid user), it’s not possible to construct
Bayes-optimal classifier. The classification rule we employ,
therefore, is:

1 if P{T}(X) _> class(x) = 0 if P{T}(Z) <

for "acceptable’ false alarm rate, r, where P{T} (z) denotes
the probability of observing similarity value x given user
profile {T}. As it turns out, all P{T}’S that we have ob-
served are characterized by a single strong peak with low-
probability noisy tails. So, in this case, the above-stated
classification rule can be approximated as:

1 if train <_ x <_ tmax
class(x)= 0 else

where train and tma~ are classification thresholds in the sim-
ilarity measure space.

System Initialization The question of initializing an
anomaly detector to a user’s behavioral patterns in a secure
fashion is a complex one and is beyond the scope of this
paper. For the work described here, we assume that an ade-
quate sample (a thousand tokens, in this paper) of intruder-
free data is available for the profiled user. In (Lane & Brod-
ley, 1997b), we show empirically that a thousand tokens is
often sufficient to characterize a large, but not complete, seg-
ment of user behaviors. During system initialization all se-
quences are automatically classified as valid and incorpo-
rated into the profile. Sequences are compared to the extant
profile before insertion, however, to accumulate usage and
similarity statistics for use by parameter and instance selec-
tion methods (see below).

To set initial classification thresholds, the system com-
pares incoming sequences to the current profile to accu-
mulate a similarity value frequency histogram that approx-
imates P{T}(X). With this distribution and an "acceptable’
false alarm rate, r, we can calculate the decision boundaries,
tma~: and train such that the a posteriori probability outside
the thresholds is r. For this paper, r was chosen to be 2%.

65

Instance Selection For each classified point after initial-
ization, the learning system needs to decide whether to add
the point to the profile or to reject it. This decision is es-
pecially critical in the presence of concept drift, when an
unknown behavior pattern might represent the valid user
changing tasks or might represent an intruder. A common
approach to dealing with concept drift is to incorporate in-
stances misclassified by the current model (Utgoff, 1989;
Aha & Kibler, 1989). Such an approach is not appropriate
to the anomaly detection domain because a training signal is
not available to the learner to inform it that it has made a mis-
classification. Furthermore, storing instances about which
the learner is extremely uncertain (i.e. have low similarity to
the profile) as is done in (Lewis & Catlett, 1994), has the
tential danger of assimilating hostile actions into the profile.
Sequences labeled as abnormal are, therefore, not included
in the profile. For the sequences labeled normal, we have
examined four storage heuristics. The keep heuristic sim-
ply preserves all normal sequences. The converse policy,
reject, refuses all sequences. An intermediate policy, uncer-
tain, attempts to focus on sequences about which the profile
is uncertain yet still labels normal. Under this heuristic, a
sequence is assigned a probability of insertion as follows: if
train < Sim]T} (x) <_ tmax then,

tin. - sim T (x)
P~ns(x) =

trnax -- train

otherwise, Pin,(x) = O, where Sim~T}(X) denotes the
smoothed similarity value of sequence x with respect to pro-
file {T}, and k is a constant selected to make P a probability
distribution. The final instance selection heuristic is DAIP
(Drift Analysis Insertion Policy) which selects sequences for
insertion only when a measure of concept drift indicates that
the profile needs to be updated. Measurement of drift and
the full description of this heuristic are deferred to the next
section.

Parameter Updating Learning parameters such as se-
quence length, smoothing window length, and classification
thresholds are all, potentially, dynamically adjustable. We
focus here on tmaz and tmln -- the classification thresholds.
After initialization, there are three methods available for up-
dating the classification boundaries. Entire recalculates the
thresholds at every time step from the similarity histogram
of the entire profile at that time. Windowed calculates the
thresholds only from a window of points within the profile.
For this work, we take the window to be the same size as
the initial profile -- 1000 tokens -- and to be drawn from
the most recently acquired sequences. Finally, DATA (Drift
Analysis Threshold Adjustment), adjusts the extant thresh-
olds via a measure of the concept drift. A complete descrip-
tion of DATA is deferred to the next section.

Measurement of Drift
Concept drift can take place at many time scales, varying
from a few tokens (perhaps stopping to read email in the
middle of writing a conference article) to change over many

months (changing research focus over time, for example).
At the shortest time scales, drift phenomena are difficult to
distinguish from noise. We focus on drift occuring at longer
time scales -- weeks to months -- appearing as changes in
the stream of similarity-to-profile measurements.

To quantify one class of drift effects, we calculate the best
fit line (in a mean squared error sense) over a window
the similarity signal. The window size is chosen to be long
enough to suppress most of the noise effects and yet short
enough to be responsive to the scales of interest. We have
found empirically that 1000 tokens is an acceptable length,
but are currently examining methods for selecting this size
automatically. The window size defines the scale at which
we are measuring drift. Because we have no wish to adapt
to behaviors "known’ to be hostile, we calculate the best fit
line only over instances classified (by the current model)
normal. The coefficient of the linear term of the best fit line
then gives us an indication of the general directional trend of
the similarity stream, and we take this value to be our drift
measure, ~x.

We employ our drift measure in two learning models (as
discussed in Section). In the DA’rP (Drift Analysis Inser-
tion Policy) model, we employ the sign of 2x for instance
selection. When 2x > 0, the similarity measure is generally
stable or increasing and the profile is doing a good job of
matching current user behaviors. To prevent the profile size
from increasing without bound, we do not insert sequences
that are already covered by the current profile. When A < 0,
then the profile is performing poorly, and so is updated by
inserting new instances.

The DATA (Drift Analysis Threshold Adjustment) model
employs both the sign and magnitude of A for parame-
ter estimation. DATA begins with the classification thresh-
olds, t,na~(0) and train(O) selected during system initial-
ization, and updates them at each time step by adding 7~:

t{max,min } (i+ 1) = t{max,min } (i) +~(i). Under this model,
the "width’ or discrimination of the thresholds (tmax -train)
remains unchanged for the lifetime of the system.

Empirical Evaluation
In this section, we describe learning models, data sources,
and experimental structure and give results evaluating the
learning models previously described.

Models examined For time and space reasons, we have
not tested all of the twelve possible combinations of in-
stance selection and parameter updating policies. Instead,
we have focused on examining each issue (parameter updat-
ing and instance selection) separately. We have constructed
six classifiers based on the previously described heuristics.
The learning models we have examined are summarized in
Table 1.

While some of the names we assign to learning models
have obvious meanings (truncate and random), others
bear some explanation. P-opt is "pseudo-optimal’. This
model retains all valid instances of a user’ s behavior and is

66

Model Select Update
P-opt keep entire
truncate reject entire
W-opt keep window
DAIP DAIP entire
DATA keep DATA
U-ins uncertain entire

Table 1: Learning models as combinations of selection and
update heuristics.

capable of finding the best possible similarity measure for a
new sequence given prior experience. As we will see, how-
ever, making the best similarity match does not necessarily
equate to having the best overall performance. Similarly,
N-opt preserves all instances for the similarity calculation,
but selects thresholds only over a window. Finally, U-ins
selects instances for inclusion in the profile based on their
uncertainty (i.e. proximity to the minimum acceptable simi-
larity threshold).

Data Sources and Structure Of the thousands of possible
data sources and features that might characterize a system or
user, we chose to examine UNIX shell command data. We
did so for two primary reasons: first, our interest is mainly
in methods of characterizing human behavioral patterns and
command traces reflect this more directly than do, say, CPU
load averages and, second, shell data is simple and conve-
nient to collect,t Lacking shell traces of actual intrusive or
misuse behaviors, we demonstrate the behavior of the sys-
tem on traces of normal system usage by different users. In
this framework, an anomalous situation is simulated by test-
ing one user’ s command data against another user’ s profile.
This represents only a subset of the possible misuse scenar-
ios -- that of a naive intruder gaining access to an unautho-
rized account -- but it allows us to evaluate the approach.

We have acquired shell command data from eight differ-
ent users over the course of more than a year. The data
events were tokenized into an internal format usable by the
anomaly detector. In this phase, command names and be-
havioral switches were preserved, but file names were omit-
ted under the assumption that behavioral patterns are at least
approximately invariant across file names. The pattern "vi
<file> gcc <file> a.out’, for example, represents
the same class of action regardless of whether file is
homeworkl, c or cluster, c.

Baselining the system We are interested in baselining our
techniques against currently implemented anomaly detec-
tion systems but it turns out to be difficult to do so, as
we have not encountered published accuracies for other
anomaly detection systems. In fact, according to Spafford

1The techniques discussed here could, of course, be extended
to cover any discrete stream of nominal values such as system
call logs, keystrokes, or GUI events. Furthermore, this classifier
could likely be combined with classifiers based on other measures
to yield a system with higher overall performance.

(1998), with the exception of IDIOT (Kumar, 1995),
formance measures for intrusion and anomaly detection sys-
tems have not been released in a refereed publication.2 The
exceptions to this general state are systems with roots in the
machine learning community such as (Forrest, Hofmeyr, So-
mayaji & Longstaff, 1996) or (Lee, Stolfo & Chan, 1997).
These systems concentrate on examination of data from
privileged system tasks and are oriented toward characteri-
zation of programs and systems rather than users-- a related
but distinct task. Lacking baseline performance data, we
have begun a project to implement some of the user-based
anomaly detection algorithms described in the security liter-
ature.

It will also be noted that the false alarm rate for many of
the techniques displayed below are relatively high. In fact,
these rates are unacceptably high for a standalone anomaly
detection system. We envision the techniques proposed here,
however, as only a segment of a larger anomaly detection
system, working in tandem with other detectors (possibly in
a meta-learning framework).

Adaptation to Drift Concept drift in the anomaly detec-
tion domain can only occur between the valid user’s past and
present behaviors. Changes in the observed patterns of us-
age attributable to another user are not drift but anomalies.
Thus, we are interested in measuring two quantities for a
learning model: the true acceptance rate over time (repre-
senting the ability of the model to adapt to drift) and the true
detection rate independent of time (representing the ability
of the model to differentiate anomalies from drift). To mea-
sure these quantities, we constructed 42 simulated "attack’
traces for each user. For each user we began by building six
"base’ traces of lengths one, two, five, ten, and fifteen thou-
sand tokens drawn from that user’s data. Each base trace
was then converted into seven final traces by appending a
block of one thousand tokens from each other user’s data.
The true acceptance rate is then the accuracy of a model on
the basal part of a data trace, while the true detection rate
is the accuracy on the final thousand tokens of a trace. Ex-
amination of true acceptance across the basal traces yields a
view of acceptance over time. Similarly, examination of true
detection rate across the five time steps gives us an indica-
tion of a model’ s ability to preserve correct detections while
attempting to model drift.

We measured the performance of each of the six learn-
ing models described above. We are examining two axes si-
multaneously in these experiments: parameter measurement
and instance selection policies. We present results for each
class of learning model in turn below. Merely presenting av-
erages summaries of each technique’ s performance over all
data sets does not not reveal the true structure of the space,
because such summaries have high variances for this do-
main. Instead, we present extreme and characteristic case

2IDIOT is an intrusion detection system which employs a pat-
tern matching algorithm to detect known attack signatures in audit
data. Its patterns are not intended to generalize to unknown cases,
so rather than accuracy, time and space performance measures are
reported.

67

I {[Test] Elapsed time (thousands of.tokens)
Model{tUserf 11 21 51 101 151

True accept rote (%)
P-opt S 100.0 97.8 89.2 81.0 80.9
W-opt S 100,0 97.1 82.2 "53.9 51.3
DATA. I S "100.0 97.9. 89~6 83.3 84.2

True detect fate (%)
U2 5.4 5.5 5.7 6.8 6.9

P-opt U4 52.2 52.8 54.2 54.7 55.1
U6 16.2 17,3 18.4 26.2 21.5
U2 719 10.4 6815 100.0 96.3

w-opt U4 52.0 58’.8 73.9 100.0 79.4
U6 16.2 96.7 95.7 100.0 97.7
U2 5.6 5.6 8.9 I 1.9 17.0

DATA U4 52.6 53.0 5917 62.5" 66.8
U6 20.1 2712 40.2 94.4" 95.3

Table 2: Results for parameter selection models on USERI’s
profile.

[[Test { Elapsed time (thousands of tokens)
{Model {I User [1 [2 [5 [10 [15.J

r DAIP

True accept rate (%)
61.4 57.9

I trunc
S 100.0 93.9 73.1
S 100.0 94.8 81.4 78.7 80.8

I U-ins S 100.0 92.2 75.2 65.7 62.9
True detect rate (%)

U0 0.0 6.6 10.8 .] 23.6 31.2
DAIP U1 18.2 25.4 30.2 43.6 41.3

U4 57.9 66.5 65.2 64.2 -73.1
U0 5.1 5.1 5.1 11.3 5.i

trunc UI 11.3 11.3 11.3 14.9 11~3
U4 50.1 50.1 50.1 55.0 50.1
UO 0.0 1.5 1.2 12.2 16.5

U-ins U1 14~2 16.5 19.5 31.1 31.7
U4 62.3 65.2 68.3 69.2 67.5

Table 3: Results for instance selection models on USER5’s
profile.

behaviors for the various models to indicate the strengths
and weaknesses of each approach.

Parameter selection methods Table 2 displays relative
behaviors for the three tested parameter adaptation meth-
ods. Recall that all of these methods use the "keep’ instance
selection strategy. We find, here, that p-opt has strong
true accept performance but weak true detection rates. Re-
call that P-opt sets its classification thresholds based on
its entire previous experience. While this allows it to recog-
nize a broad range of behaviors, it has the twin difficulties
that the decision boundaries become widely spaced (thus in-
creasing false acceptance) and that it becomes difficult to ad-
just the decision boundaries quickly in response to changing
circumstance. As an attempt to minimize the second prob-
lem, we introduced the w-opt model. This learning strat-
egy also preserves all known valid instances for the purpose
of similarity measurement, but selects classification bound-
aries based only on data from a window of those instances,
While W-opt has substantially superior true detect rates, it
suffers in true accept rates.3 This model is setting tighter
decision boundaries than is the P-opt model and can adapt
more quickly, but is unable to predict changing usage pat-
terns. Analysis of similarity value frequency over the trail-
ing window only gives W-opt an idea of where the concept
was, not where it is going to be. A useful balance is struck
between the two extremes by DATA. This model begins with
the classification boundaries selected during system initial-
ization and updates them in response to the large scale mea-
sure of drift described above. Again, the update is based
only on data from a recent window of experience, but DATA

aGiven a tradeoff, it is generally preferable in this domain to
have strong accept rates rather than strong detect rates. High false
alarm rate renders the security system annoying or unusable, while
high false accept rates only delay detection. This may allow an
intruder to do more damage but, in the end, the intruder need only
be caught once.

has some indication of where the similarity value concept
will be in the immediate future. Finally, DATA prevents the
decision region from becoming too narrow by preserving the
initially selected width (i.e. tma~: - train is constant).

Overall, we find that DATA matches or outperforms
P-opt approximately 70% of the time on both true accept
and true detect. Conversely, w-opt beats DATA on 68% of
the true detect cases, but loses to it in 81% of the true accept
tests.

Instance selection methods One class of behaviors for in-
stance selection models is displayed in Table 3. These mod-
els employ the "entire’ parameter selection method. The
truncate model is, in this case, equivalent to merely em-
ploying the static classifier trained during system initializa-
tion. Its true detect rate is effectively constant; the varia-
tions observed here are effects of the smoothing filter which
can "carry over’ high similarity values from the valid user’s
data into the hostile user’s data. As the "valid user’ con-
cept drifts, this static model cannot adapt and true accept
accuracy drops. The "intelligent’ instance selection methods
experience a more drastic drop in this case, in exchange for
increasing detection accuracy. The problem here seems to
be less in the particular method of instance selection, but in
the fact of instance selection itself. All models discussed in
this paper accumulate only instances that are "known’ (by
the current model) to be valid. If the current model does not
encompass a particular change in concept, then all behaviors
associated with that change are lost, and the decision bound-
aries become correspondingly narrower. As truncate is
a static model, it is not subject to such loss. Though DAIP
makes an effort to account for changing concept, it appears
to fail for this user. U-ins performs better (in both accept
and detect rates), apparently because it focuses explicitly on
uncertain instances and, thus, accepts a wider class of be-
haviors than does DAIP.

The converse situation is displayed in Table 4. Here DAIP
and O-ins are quite effective at identifying the true user,

68

Test Elapsed time (thousands of tokens)
Model User 1 2 5 10 15

True accept rate (%)
DAIP S 100.0 91.5 92.9 95.3 96.5
trunc S 100.0 83.7 81.8 82.9 82.9
U-ins S 100.0 100.0 92.2 94.4 94.9

True detect rate (%)
U3 95.0 81.0 93.7 69.8 52.9

DAIP U4 95.0 24.4 38.6 26.7 26.2
U6 94.7 41.2 50.0 37.6 34.9
U3 96.0 96.5 94.6 97.6 96.1

trunc U4 96.3 96.5 94.8 97.4 96.1
U6 95.7 95.6 93.5 95.6 95.2
U3 83.5 82.0 85.3 74.5 71.0

U-ins U4 13.8 21.8 27.8 33.2 34.2
U6 94.6 41.4 75.6 43.8 50.6

Table 4: Results for instance selection models on USER2’s
profile.

but are far more lax in detecting hostile actions. In this case,
truncate’s static classifier turns out to be more accurate
at discriminating foreign behaviors. Now the narrow con-
centration of the adaptive methods serves them, as this user’s
behaviors seem concentrated to a narrower class and to ex-
perince less drift than the behaviors of other users. (Manual
examination of the history traces verify this observation.)
Because the static decision boundaries were not originally
selected optimally, truncate is restricted to a more-or-
less constant false alarm rate, while the other methods are
free to adapt to more accurate hypotheses. The tradeoff is
that there appears to be a certain degree of overlap between
USER2’ s behaviors and those of the other users. The adap-
tive methods seem to focus the profile and decision thresh-
olds into this layer -- as hostile behaviors are added to the
profile it becomes progressively easier to add more hostile
behaviors and the false accept error rate grows quickly.

Overall, we find that D/kiP matches or outperforms
truncate in 52% of the true accept tests, but loses to it on
true detect nearly 85% of the time. Interestingly, the cases
in which D/kI P wins are concentrated into a few profiles for
true accept tests and a few profile/attacker pairs for true de-
tect tests. This indicates that there may be many sorts of drift
taking place, and that the DAIP bias is appropriate to only
some of them. The disparity is even greater for U-ins who
beats truncate 60% of the time on true accept but loses
90% of the time on true detect tests.

Conclusions
We have examined some of the difficulties involved in track-
ing user behaviors over time for use in the computer security
task of anomaly detection. We demonstrated an online learn-
ing system for this domain, and described some of the issues
inherent in incremental learning with no training signal. In
particular, we investigated techniques for updating hypothe-
sis parameters and selecting instances for insertion into the
user profile. We found that, although there is high variability
in the strengths and weaknesses of the various techniques,

intelligent methods exist for each of these areas. A measure
of drift based on estimating its magnitude and direction in
a continuous, 1-D feature space was found to be useful (in
up to 70% of the cases) both for updating parameters and
for selecting instances for inclusion in the profile. An in-
stance selection method based on uncertainty sampling was
also found to have areas of strength.

The high variability in regions of effectiveness of the var-
ious techniques suggests two possible directions for future
work in this area. First, we hope to be able to exploit com-
plementary strengths in different learning models through
the use of hybrid systems. In this paper we investigated
each phase of the overall learning model (parameter selec-
tion and instance selection) separately. Our hope is that in-
telligent combination of techniques from each can lead to a
stronger overall system. The second avenue of exploration
is to attempt to exploit overlapping strengths through a form
of meta-learning. We have observed that some techniques
(truncate and DATA, for example) yield generally uncor-
related results, making them tempting models for use with
meta-learning.

Finally, we are interested in examining more sophisticated
measurements of concept drift. The measurement used in
this paper only tracks the general direction and amount of
change of the concept of interest. We would also like to be
able to track and predict the complete envelope of the clas-
sification region, as well as other system parameters such as
window lengths and profile size.

In conclusion, we have presented methods for an online
learning system for anomaly detection. Although error rates
are too high to be of use for a standalone system, in combina-
tion with other user classification techniques such as biomet-
ric measurements or model-based behavioral analysis, these
techniques may form a valuable part of a robust security sys-
tem.

References
Aha, D. W., & Kibler, D. (1989). Noise-tolerant instance-

based learning algorithms. Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence
(pp. 794-799). Detroit, Michigan: Morgan Kaufmann.

Anderson, J. E (1980). Computer security threat monitoring
and surveillance, (Technical Report), Washington, PA,
James E Anderson Co.

Denning, D. E. (1987). An intrusion-detection model. IEEE
Transactions on Software Engineering, 13, 222-232.

Forrest, S., Hofmeyr, S. A., Somayaji, A., & Longstaff, T.
A. (1996). A sense of self for Unix processes. Proceed-
ings of 1996 IEEE Symposium on Computer Security
and Privacy.

Kumar, S. (1995). Classification and detection of computer
intrusions. Doctoral dissertation, Department of Com-
puter Sciences, Purdue University, W. Lafayette, IN.

Lane, T., & Brodley, C. E. (1997a). Detecting the abnormal:
Machine learning in computer security, (TR-ECE 97-
1), West Lafayette, IN: Purdue University.

69

Lane, T., & Brodley, C. E. (1997b). An application of ma-
chine learning to anomaly detection. National Informa-
tion Systems Security Conference.

Lane, T., & Brodley, C. E. (1997c). Sequence matching and
learning in anomaly detection for computer security.
Proceedings of AAAI-97 Workshop on AI Approaches
to Fraud Detection and Risk Management.

Lee, W., Stolfo, S., & Chan, P. (1997). Learning patterns
from UNIX process execution traces for intrusion de-
tection. Proceedings of AAAI-97 Workshop on AI Ap-
proaches to Fraud Detection and Risk Management.

Lewis, D., & Catlett, J. (1994). Heterogeneous uncertainty
sampling for supervised learning. Machine Learning:
Proceedings of the Eleventh International Conference
(pp. 148-156). New Brunswick, N J: Morgan Kaufmann.

Lunt, T. E (1990). IDES: An intelligent system for detecting
intruders. Proceedings of the Symposium: Computer
Security, Threat and Countermeasures. Rome, Italy.

Spafford, E. H. (1998). Personal communication.

Stoll, C. (1989). The Cuckoo’s Egg. Pocket Books.

Utgoff, E E. (1989). Incremental induction of decision trees.
Machine Learning, 4, 161-186.

7O

