
Learning to Predict Rare Events in Categorical Time-Series Data

Gary M. Weiss
†
 and Haym Hirsh

Department of Computer Science
Rutgers University

Piscataway, NJ 08855
gmweiss@att.com, hirsh@cs.rutgers.edu

Abstract
Learning to predict rare events from time-series data with
non-numerical features is an important real-world problem.
An example of such a problem is the task of predicting
telecommunication equipment failures from network alarm
data.  For a variety of reasons, existing statistical and
machine learning methods are not well suited to solving this
class of problems.  This paper describes timeweaver, a
genetic algorithm based machine learning system that
predicts rare events by identifying predictive temporal and
sequential patterns within time-series data.  Timeweaver is
applied to two problems and is shown to produce results
which are superior to existing learning methods.

Introduction

Time-series data is being generated and stored at an ever
increasing pace.  It is often useful to predict the future
behavior of such a time-series.  One example of such a
prediction problem comes from the telecommunication
industry.  AT&T’s long distance traffic is handled by 4ESS
switches, which, when they detect a problem, send a
timestamped alarm to a central site.  Approximately
100,000 such alarms are generated each week and are
routed to a rule-based expert system.  This expert system
relies on simple hand-crafted rules to identify the
components that are likely to fail.  Since these rules were
created without any in-depth analysis of the data, we expect
a machine learning approach to do a better job of predicting
failures.  We call this problem an event prediction problem
since the task is to predict a future event (the failure of a
piece of equipment) based on past events (the alarm
messages).

In this paper we focus on rare event prediction problems
with categorical features.  The equipment failure prediction
problem is such a problem because equipment failures
occur very infrequently and because the alarm messages
contain non-numerical features.  Solving such problems is
an extremely challenging task, since rare events are much
harder to predict than common events and because existing

                                                
†Also AT&T Labs, Middletown NJ 07748
 Copyright © 1998, American Association for Artificial Intelligence
(www.aaai.org).  All rights reserved.

statistical time-series prediction methods cannot handle
data with categorical features. Predicting fraudulent credit
card transactions and the start of transcription in DNA
sequences are two additional problems with these
characteristics.

Unfortunately, existing machine learning methods cannot
be directly applied to these event prediction problems.
Many machine learning methods are designed to solve
concept learning problems, where the task is to induce a
general description of a concept from specific instances of
the concept.  The conventional approach for solving event
prediction problems has been to reformulate the problem
into a concept learning problem.  We argue that this
approach is inappropriate since it loses important temporal
and sequential information.

This paper describes timeweaver (Weiss 1998), a learning
system designed to solve rare event prediction problems
with categorical features by identifying predictive temporal
and sequential patterns.  Because it is generally not possible
to make predictions with high accuracy for such problems,
due do the inherent difficulty of the problem and the limited
information in the observed data, timeweaver returns
multiple solutions, which trade off precision and recall in
different ways.  Timeweaver also learns noise-tolerant
rules, since learning to solve these difficult problems is
similar to learning in a noisy environment.  This contrasts
with early work in the field which focused on finding
sequence-generating rules from artificially generated,
noise-free, datasets (Dietterich & Michalski 1985).
Timeweaver can also be applied to sequence prediction
problems, since  a sequence can be viewed as a time-series
where the timestamp is a sequence number.

Background

A time-series is a set of observations, or events, each
recorded at a specific time and described by a fixed number
of features.  Classical time-series prediction involves
predicting the next n successive observations from a history
of past observations. These problems have been studied
extensively within the field of statistics (Brockwell &
Davis 1996), but statistical techniques are only applicable
when the data is limited to numerical features.  Neural

From: AAAI Technical Report WS-98-07. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



networks using a “sliding window” technique or a recurrent
network architecture have also been successfully applied to
time-series prediction problems, but also require numerical
features to be effective (Biggus 1996).

Previous efforts to solve event prediction problems with
categorical features have relied on reformulating the
problem into a concept learning problem.  Dietterich &
Michalski (1985) provide a general discussion of such
methods.  The reformulation process involves transforming
the time-series data into an unordered set of examples by
identifying which events go into each example (typically by
sliding a window over the data), encoding these events as a
single example and then determining the class value for
each generated example. The transformation procedure will
ensure that some of the temporal information from the
time-series is preserved.  Any concept learning program
can then be applied to the transformed data.  This approach
has been used within the telecommunication industry to
identify recurring transient network faults (Sasisekharan,
Seshadri & Weiss 1996) and to predict catastrophic
equipment failures (Weiss, Eddy, Weiss & Dube 1998).

In this paper we employ a direct approach for solving
event prediction problems—one that does not require
reformulating the problem.  Previous work has also tried to
solve similar problems using a direct approach.  For
example, work in computational learning theory has
focused on learning sequences, regular expressions and
pattern languages from data, but has resulted in few
practical systems (Jiang & Li 1991; Lang 1992; Brazma
1993).  Of greater relevance are data mining methods for
identifying common temporal patterns in time-series data.
Complete and relatively efficient algorithms exist for
finding such patterns, but these common patterns are not
guaranteed to be useful for prediction.   Nonetheless, such
algorithms have been used to identify regularities in
telecommunication network alarm sequences in order to
help predict future faults (Manilla, Toivonen & Verkamo
1995) and to find sequential patterns in a database of
customer transactions (Agrawal & Srikant 1995).

The Event Prediction Problem

This section defines the event prediction problem, since our
formulation differs in several key ways from the traditional
time-series prediction problem.

Basic Problem Formulation
An event Et is a timestamped observation  which occurs at
time t and is described by a set of feature-value pairs.  An
event sequence is a time-ordered sequence of events, S =
Et1, Et2, ..., Etn, which includes all n events in the time
interval   t1 ≤ t ≤ tn.  Events are associated with a domain
object D which is the source, or generator, of the events (if
there are multiple domain objects then the definitions of
event and event sequence are extended to specify the
domain object).  The target event is the event to be
predicted and is specified by a particular set of feature-

value pairs.  The prediction problem is to learn a prediction
procedure P that correctly predicts the target events.  Thus,
the prediction procedure is a function that maps an event
sequence to a boolean prediction value which indicates
whether to predict the target event.  A prediction is made
upon observation of each event, so P: Et1, Et2,..., Etx→{+,-},
for each event Etx.

This formulation can be applied to the telecommunication
problem.  Each alarm generated by the 4ESS switches is an
event with three features: device, which identifies the
component within the switch reporting the problem,
severity, which identifies the severity of the problem and
code,  which specifies the exact problem.  Each 4ESS
switch is a domain object that generates an event sequence.
The target event is any event with the problem code set to
“FAILURE” and hence the problem is to learn a prediction
procedure that correctly predicts the failure of a device.

To complete our formulation, we need to specify the
semantics of a prediction.  A single positive prediction is
interpreted to mean that the target event will occur,
regardless of any subsequent negative predictions.  Thus,
any action to be taken in response to such a prediction
should occur immediately.  A prediction period is
associated with each target event, Xt, occurring at time t, as
shown below.  The warning time, W, is the “lead time”
necessary for a prediction to be useful and the monitoring
time, M, determines the maximum amount of time prior to
the target event for which a prediction is considered
correct.

  A target event is correctly predicted if there is at least
one positive prediction within its prediction period.  A
positive prediction is correct if it falls within the prediction
period of some target event.  Note that the warning and
monitoring times should be set based on the problem
domain.  In general, however, the problem will be easier
the smaller the value of the warning time and the larger the
value of the monitoring time (however too large a value for
the monitoring time will result in meaningless predictions).

Evaluation Measures

Our evaluation measures are summarized in Figure 1.  The
recall is the percentage of the target events correctly
predicted.  The simple precision is the percentage of the
positive predictions that are correct.  Simple precision is a
misleading metric since it is inconsistent with how
predictions are used—simple precision counts multiple
positive predictions of the same target event multiple times.
The normalized precision eliminates this multiple counting
by replacing the number of correct positive predictions with
the number of target events correctly predicted.  However,
this measure still does not account for the fact that n
incorrect positive predictions located closely together may
not be as harmful as the same number spread out over time
(depending on the nature of the actions taken in response to

Xtt - Wt - M

prediction period



the prediction of a target event).  Reduced precision
remedies this.  A prediction is “active” for a period equal to
its monitoring time, since the target event should occur
somewhere during that period.   The reduced precision
replaces the number of false positive predictions with the
number of discounted false positives—the number of
complete, non-overlapping, monitoring periods associated
with a false prediction.  Thus, two false positive predictions
occurring a half monitoring period apart yields 1½
discounted false positives, due to an overlap in their active
periods of ½ a monitoring period.

Recall ≡ #  Target Events Predicted

 Total Target Events
, Simple Precision ≡ TP

TP +  FP

Normalized Precision ≡ #  Target Events Predicted

#  Target Events Predicted +  FP

Reduced Precision ≡ # Target Events Predicted

#  Target Events Predicted +  Discounted FP

 TP = True Positive Prediction   FP = False Positive Prediction

Figure 1: Evaluation Measures for Event Prediction

The Basic Learning Method

Our learning method uses the following two steps:

1. Identify prediction patterns: Search the space of
possible patterns to identify a set, C, of  candidate
prediction patterns.  Each pattern c∈C should do well
at predicting a subset of the target events (i.e., recall
may be traded off for higher precision).

2. Generate prediction rules: Generate an ordered list of
prediction patterns from the set of candidate patterns
from step 1.  Various prediction rules can then be
formed by creating a disjunction of the top n prediction
patterns.  These prediction rules can be used to form a
prediction/recall curve, where the larger the value of n,
the higher the recall (but presumably the lower the
precision since the “best” rules are listed first).

This two step approach allows us to focus our effort on the
more difficult task of identifying prediction patterns and
makes it possible to generate multiple solutions with
different precision/recall tradeoffs by combining prediction
patterns in different ways.  Also, by using a general search
based method in the first step, we are able to easily
incorporate our own evaluation metrics—which is
necessary given the “non-standard” formulation of our
prediction problem.  For efficiency, our learning method
also exploits the fact that for the class of problems we are
interested in, target events occur infrequently.  It does this
by maintaining, for each prediction pattern, a boolean
prediction vector of length n that indicates which of the n
target events in the training set are correctly predicted.
This information is used to ensure that a diverse set of
patterns are identified and to help efficiently generate good
prediction rules.

The Search Space
Our learning method requires a well defined space of
prediction patterns.  The language used for representing this
space is similar to the language used for expressing the raw
time-series data.  A prediction pattern is a sequence of
events in which consecutive events are connected by an
ordering primitive, which defines sequential or temporal
constraints between the events.  The following ordering
primitives define the ordering constraints:

• the wildcard “*” primitive matches any number of
events so the prediction pattern A*D matches ABCD

• the next “.” primitive matches no events so the
prediction pattern A.B.C only matches ABC

• the unordered “|” primitive allows events to occur in
any order and is commutative so that the prediction
pattern  A|B|C will match, amongst others,  CBA.

The “|” primitive has highest precedence so the pattern
“A.B*C|D|E” matches an A, followed immediately by a B,
followed sometime later by a C, D and E, in any order.
Each feature in the event is permitted to take on an
additional feature value, “?”, that matches any feature
value.  Each prediction pattern also includes a pattern
duration.  A prediction pattern matches a sequence of
events within an event sequence if 1) the ordering
constraints expressed in the prediction pattern are obeyed,
2) the events within the prediction pattern match events
within the time-series, and 3)  the events involved in this
match occur within a period not exceeding the pattern
duration.  Once a match “completes”, the target event is
predicted.  Note that for a prediction to be correct, it must
only complete within the prediction period—the pattern
may begin before the start of the prediction period.  This
language enables flexible and noise-tolerant prediction
rules to be constructed, such as the rule: if 3 (or more) A
events and 4 (or more) B events occur within an hour, then
predict the target event.  This language was designed to
provide a small set of  features useful for most real-world
prediction tasks.  In particular, this language does not
include regular expressions and does not allow time
intervals to be specified between individual events in the
prediction patterns—the pattern duration only imposes a
time constraint on the entire prediction pattern.  Extensions
to this language will require making only a few, very
localized, changes to timeweaver.

A Genetic Algorithm-Based Method for
Identifying Prediction Patterns

We use a genetic algorithm (GA) to identify a diverse set of
prediction patterns.  A GA was selected since most existing
machine learning methods are not directly applicable and
because the prediction problem translates naturally into a
GA search problem.  Furthermore, the adaptive nature of
the GA should help with the search process—features in the
pattern language which are not useful for prediction should



quickly die out, thereby reducing the effective size of the
search space.  The hope is that this approach, as opposed to
the reformulation-based approach, will allow the
characteristics of the problem space to influence the way
the solutions are represented (based on the fact that the
features in the pattern language define the representation).

The genetic algorithm is responsible for evolving a
population of prediction patterns, where each individual
should perform well at classifying a subset of the target
events and which collectively should cover most of the
target events.  Thus, each individual represents only part of
a complete solution.  Our approach resembles that of
classifier systems, which are GAs that evolve a set of
classification rules (Goldberg 1989).  The main difference
between these approaches is that the rules in our approach
are much simpler and cannot chain together (eliminating
the need for credit assignment) and that instead of forming
a ruleset from the entire population, a second step is used to
form a ruleset from a subset of the rules in the population.
Our approach is also similar to the approach taken by other
genetic algorithms which learn disjunctive concepts from
examples (Giordana, Saita & Zini 1994; McCallum &
Spackman 1990).  We use a steady-state GA instead of a
generational GA because we expect the time to evaluate an
individual to be large (due to large training sets) and a
steady-state GA is believed to be more computationally
efficient in this case.  The main difference between these
two types of GA’s is that in a steady-state GA only a few
individuals from the population change each “iteration”.
The basic steps in our steady-state GA are:

1. Initialize population
2. while stopping criteria not met
3. select 2 individuals from the population
4. apply crossover operator with probability PC and

mutation operator with probability PM

5. evaluate the 2 newly formed individuals
6. replace 2 existing individuals with the new ones
7. done

Our population is initialized by creating prediction patterns
containing a single event, where the feature values in this
event are set 50% of the time to the wildcard feature value
and the remaining time to a randomly selected feature
value.  The GA continues until either a pre-specified
maximum number of iterations are executed or the
performance of the population peaks.  The first step within
each iteration is to select two “fit” individuals.  Next, either
a crossover operator is applied to generate two new
offspring from the selected individuals or a mutation
operator is applied to each individual.  Crossover is
accomplished via a variable length crossover operator, as
shown in Figure 3.  Crossover points are randomly selected
within each of the two individuals and the portion to the left
of each crossover point is joined with the portion to the
right of the other individual’s crossover point.  The lengths
of the offspring may differ from that of the parents and
hence over time prediction patterns of any size can be
generated.  The pattern duration of each child is set by

trying several values (based on the parents’ pattern
durations) and then selecting the value which yields the best
results.  The ordering primitives are also “crossed over” in
the crossover process.

A | B C D E
X Y | Z
A Z
X Y B C D E

Figure 3: Variable Length Crossover

Our GA also employs mutation operators which randomly
modify a prediction pattern.  These mutation operators
make the pattern more specific or general (by modifying
the feature values or ordering primitives) and may also
randomly change the prediction duration.  The newly
formed individuals are then evaluated on the entire training
set and the evaluation metrics described earlier are
computed.  Two “unfit” individuals are then chosen from
the population and are replaced by these new individuals.

The Selection and Replacement Strategy
The selection strategy is the most critical and complex
component of the GA since it must balance two opposing
criteria: it must focus the search for prediction patterns in
the most profitable areas of the search space but must also
maintain a diverse population.  The challenge is to maintain
a diverse population with only a minimal amount of global
information that can be efficiently computed.

The fitness of an individual prediction pattern is based on
both its precision and recall and is computed using the F-
measure, defined below in equation 1, where β controls the
importance of precision relative to recall (Van Rijsbergen
1979).  Any fixed value of β yields a fixed bias in the
algorithm and, in practice, leads to poor performance of the
GA.  To avoid this problem, for each iteration the value of
β is randomly selected from the range of 0 to 1, similar to
what was done by Murata & Ishibuchi (1995).

           fitness = 
(β

β

2

2

 +  1) precision recall

precision +  recall

⋅
                      (1)

The diversity maintenance strategy must ensure that a few
prediction patterns do not dominate the population and that
collectively the individuals in the population predict most,
if not all, of the target events in the training set.  We use a
niching strategy called sharing to maintain a diverse
population (Goldberg 1989).  Diversity is encouraged by
selecting individuals proportional to their shared fitness,
where shared fitness is defined as fitness divided by niche
count.  The niche count, defined in equation 2, is a measure
that indicates the degree of similarity of an individual i to
the n individuals comprising the population.

          niche counti ≡ (1 -  distance(i, j))3

j

n

=
∑

1

                 (2)

The similarity of two individuals is measured using a
phenotypic distance measure that measures the distance



based on the performance of the individuals.  In our case
this distance is simply the number of bit differences
between the two individuals’ prediction vectors (i.e., the
number of target events for which they have different
predictions).  The more similar an individual to the rest of
the individuals in the population, the smaller the distances
and the greater the niche count value; if an individual is
identical to every other individual in the population, then
the niche count will be equal to the population size.

The replacement strategy also uses shared fitness.
Individuals are chosen for deletion inversely proportional to
their shared fitness, where the fitness component is
computed by averaging together the F-measure of equation
1 with β values of 0, ½, and 1, so that patterns that perform
poorly on precision and recall are most likely to be deleted.

Creating Prediction Rules

Finding the disjunction of prediction patterns which yields
optimal performance on the training data is an NP-complete
problem. To solve this problem efficiently, a greedy
algorithm is used.  This algorithm utilizes the information
returned from the GA in the first step, which includes the
precision and recall of each pattern as well as the prediction
vector indicating which target events are correctly
predicted.  The algorithm for forming a solution, S, from a
set of candidate patterns, C, is shown below:

1. C = patterns returned from the GA; S = {};
2. while C ≠ ∅ do
3.     for c ∈C do
4.         if (increase_recall(S+c, S) ≤ THRESHOLD)
5.         then C = C - c;
6.         else c.score = PF × (c.precision - S.precision) +
7.                         increase_recall(S+c, S);
8.     done
9.     best = {c ∈C, ∀x∈C| c.score ≥ x.score}
10.     S = S || best; C = C - best;
11.     recompute S.precision on training set;
12. done

This algorithm incrementally builds solutions with
increasing recall by heuristically selecting the “best”
prediction pattern remaining in the set of candidate
patterns, using the  formula on lines 6 and 7 as an
evaluation function. Prediction patterns that do not increase
the recall of the solution by at least THRESHOLD are
discarded.  The evaluation function rewards those candidate
patterns that have high precision and predict many of the
target events not already predicted by S.  The Prediction
Factor (PF) controls the relative importance of precision vs.
recall.  Both THRESHOLD and PF affect the complexity of
the learned concept and can be used to prevent overfitting
of the data.  This algorithm returns an ordered list of
patterns, with the “best” (typically most precise) patterns at
the beginning of the list.   If n prediction patterns are
returned, then n solutions are available: the first solution is
comprised of the first prediction pattern in the list, the
second solution the first two prediction patterns in the list,

etc.  Thus, a precision/recall curve can be constructed from
S and the user can select a particular solution based on the
relative importance of precision and recall.

Although the basic learning method only calls for the
prediction rules to be formed upon termination of the GA,
we also form prediction rules every 250 iterations of the
GA.  We do this for two, related, reasons.  First, this allows
us to accurately evaluate the true  progress of the GA.  This
is necessary since the standard approach of basing the
progress on the performance of the best individual in the
population is not meaningful, given that each individual is
only part of the total solution.  Secondly, all of the
prediction patterns used in these rules are saved to ensure
than no good prediction patterns are ever lost.   At the end
of the execution of the GA, the final prediction rules are
formed from these saved patterns.  Saving these patterns is
an optimization step and only leads to a moderate increase
in timeweaver’s performance.

This algorithm is quite efficient: if n is the number of
candidate patterns returned from the first step (i.e., the
population size), then the algorithm requires O(n2)
computations of the evaluation function and O(n)
evaluations on the training data (step 11).  Since all of the
information required to compute the evaluation function is
available and given the earlier assumption of large data sets
and a relatively small number of target events, this leads to
an O(ns) algorithm, where s is the size of the training set.
In practice, much less than n iterations of the for loop will
be necessary, since the majority of the prediction patterns
will not pass the test on line 4.

Experiments

This section describes the performance of timeweaver at
predicting telecommunication equipment failures and at
predicting the next command in a sequence of UNIX
commands (the second prediction problem is to
demonstrate that timeweaver can handle general event
prediction problems).  The default value of 1% for
THRESHOLD and 10 for PF are used for all experiments.
All results are based on evaluation on an independent test
set, and, unless otherwise noted, on 2000 iterations of the
GA.  Precision is measured using reduced precision for the
equipment failure problem, except in Figure 7 where simple
precision is used to allow comparison with other
approaches; for the UNIX command prediction problem,
reduced and simple precision are identical, due to the
nature of the prediction problem.

Predicting Equipment Failure
Most of the details of this prediction problem have already
been provided and will not be repeated here.  The problem
is to predict telecommunication equipment failures from
alarm data.  The data contains 250,000 alarms reported
from 75 4ESS switches, of which 1200 of the alarms
indicate distinct equipment failures.  Except when specified
otherwise, all experiments have a 20 second warning time



and an 8 hour monitoring time.  The alarm data was broken
up into a training set with 75% of the alarms and a test set
with 25% of the alarms (the training and test sets contain
data from different 4ESS switches).

Figure 4 shows the performance of the learned prediction
rules, generated at different points during the execution of
the GA.  The curve labeled “Best 2000” shows the
performance of the prediction rules generated by combining
the “best” prediction patterns from the first 2000 iterations.
The figure shows that the performance improves with time.
Improvements were not found after iteration 2000.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60
RECALL

 P
R

E
C

IS
IO

N

Iteration 0

Iteration 250

Iteration 500

Iteration 1000

Best 2000

(4.4,90.0)

Figure 4: Learning to Predict Telecommunication Failures

These results are notable—the “baseline” strategy of
predicting a failure every warning time (20 seconds)  yields
a precision of 3% and a recall of 63%.  The curves
generated by timeweaver all converge to this value, since
the timeweaver essentially mimics this “baseline” strategy
to maximize recall. A recall greater than 63% is never
achieved since 37% of the failures have no events in their
prediction period; this prevents correct predictions from
being made. The prediction pattern corresponding to the
first data point for the “Best 2000” curve in Figure 4 is:
351:<|TMSP|?|MJ|>*<|?|?|MJ|>*<|?|?|MN|>.  This pattern
indicates that a major severity alarm occurs on a TMSP
device, followed sometime later by a major alarm and then
by a minor alarm, all within a 351 second time period.

Experiments were run to vary the warning time and the
results are shown in Figure 5.  These results show that it is
much easier to predict failures when only a short warning
time is required.  This effect is understandable since one
would expect the alarms most indicative of a failure to
occur shortly before the failure.

0

2 0

4 0

6 0

8 0

1 0 0

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
R E C A L L

P
R

E
C

IS
IO

N

1 se c .

1 0  se c .

2 0  se c .

1 0  m in .

3 0  m in .

Figure 5: Effect of Warning Time on Learning

Figure 6 shows that increasing the monitoring time from
1 to 8 hours significantly improves timeweaver’s ability to
predict failures. The prediction problem should continue to
become easier as the monitoring time increases past 8
hours, due to the increased prediction period.  We believe
this does not happen because the increased prediction
period ensures there will be more patterns that will
“predict” each target event, leading timeweaver to focus
more of its attention on a large number of “spurious
correlations” in the data.

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 1 0 2 0 3 0 4 0 5 0 6 0
R E C A L L

P
R

E
C

IS
IO

N

1 5  m in
1  h r
8  h r
1  d a y

Figure 6: Effect of Monitoring Time on Learning

Comparison with Other Methods
The performance of timeweaver on the equipment failure
prediction problem will now be compared against two rule
induction systems, C4.5rules (Quinlan 1993) and RIPPER
(Cohen 1995), and FOIL, a system that learns logical
definitions from relations (Quinlan 1990).  In order to use
the “example-based” rule induction systems, the time-series
data was first transformed by sliding a window of size n
over the data and combining the n events within the
window into a single example by “concatenating” the
features.  With a window size of 2, examples are generated
with the features: device1, severity1, code1, device2,
severity2 and code2.  The classification assigned to each
example is still based on the time-series data and the values
of the warning and monitoring times.  Since the equipment
failures are so rare, the generated examples have an
extremely skewed class distribution.  As a result, neither
C4.5rules nor RIPPER predict any failures when their
default parameters are used.  To compensate for the skewed
distribution, various values of misclassification cost (i.e.,
the relative cost of false negatives to false positives) were
tried and only the best results are shown in Figure 7.  Note
that in this figure, the number after the w indicates the
window size and the number after the m the
misclassification cost.

FOIL, which can learn from relations, is in many ways a
more natural learning system for categorical time-series
prediction problems, since it does not require any
significant transformation of the data.  With FOIL, the
sequential information is encoded via the extensionally
defined successor relation.  Since FOIL provides no way
for the user to modify the misclassification cost, the
“default” value of 1 was used.



0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8RECALL

P
R

E
C

IS
IO

N
 timeweaver
c4.5 (w2 m10)
c4.5 (w3 m5)
ripper (w2 m 35)
ripper (w3 m 20)
ripper (w4 m 20)
FOIL

Figure 7: Comparison with Other ML Methods

C4.5rules required 10 hours to run for a window size of 3.
RIPPER was significantly faster and could handle a
window size up to 4; however, peak performance was
achieved with a window size of 3.  FOIL produced results
which were generally inferior to the other methods.  All
three learning  systems achieved only low levels of recall
(note the limited range on the x-axis). For C4.5rules and
RIPPER, increasing the misclassification cost beyond the
values shown caused a single rule to be generated—a rule
that always predicted the target event.   Timeweaver
produces significantly better results than these other
learning methods and also achieves higher levels of recall.

Timeweaver can also be compared against ANSWER, the
expert system responsible for handling the 4ESS alarms
(Weiss, Ros & Singhal 1998).  ANSWER uses a simple
thresholding strategy to generate an alert whenever more
than a specified number of interrupt alarms occur within a
specified time period.  These alerts can be interpreted as a
prediction that the device generating the alarms is going to
fail.  Various thresholding strategies were tried and the
thresholds generating the best results are shown in Figure 8.
Each data point represents a thresholding strategy.  Note
that increasing the number of interrupts required to hit the
threshold decreases the recall and tends to increase the
precision.  By comparing these results with those of
timeweaver in Figure 4, one can see that timeweaver yields
superior results, with a precision often 3-5 times higher for
a given recall value (these results are off the scale in Figure
8).  Much of this improvement is undoubtedly due to the
fact that timeweaver’s concept space is much more
expressive than that of a simple thresholding strategy.  This
study also showed that ANSWER’s existing threshold of  3
interrupts in 8 hours is sub-optimal.

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

0 1 0 2 0 3 0 4 0 5 0
R E C A L L

P
R

E
C

IS
IO

N

t h r e s h o l d  d u r a t i o n :  4  h r

t h r e s h o l d  d u r a t i o n :  1  d a y

2  i n  1  d a y

3  i n  1  d a y

4  i n  1  d a y

1  i n t e r r u p t   i n  1  d a y

1  i n t e r r u p t   
i n  4  h o u r s

2  i n  4  h r s

9  i n  1  d a y

3  i n  4  h r s

6  i n  1  d a y
4  i n  4  h r s

7  i n  4  h r s

Figure 8: Using Interrupt Thresholding to Predict Failures

Predicting UNIX Commands

The task is to predict if the next UNIX command is a target
command.  The time at which each command was executed
is not available, so this is a sequence prediction problem
(thus the warning and monitoring times are both set to 1).
The dataset contains 34,490 UNIX commands from a single
user.  Figure 9 shows the results for 4 target commands.
Note that timeweaver does much better than the strategy of
always guessing the target command (i.e., the strategy
taken by timeweaver to achieve 100% recall). Timeweaver
does better, and except for the more command much better,
than a non-incremental version of IPAM, a probabilistic
method that predicts the most likely next command based
on the previous command (Davison & Hirsh 1998). The
results from IPAM are shown as individual data points.
The first prediction pattern in the prediction rules generated
by timeweaver to predict the ls command is the pattern:
6:cd.?.cd.?.cd (the pattern duration of 6 means the match
must occur within 6 events).  This pattern will match the
sequence cd ls cd ls cd, which is likely to be followed by
another ls command.

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

R E C A L L

P
R

E
C

IS
IO

N

c d
m o re
ls
w

w

c d

ls m o re

Figure 9: Predicting  UNIX Commands

Future Work

The problem of predicting rare events within time-series
data warrants additional reserach.  We plan to further refine
timeweaver and to apply it to additional problems.  We also
intend to further investigate the reformulation-based
approach, in order to determine if more sophisticated
transformations of the data significantly improve the
efficacy of these methods and allow them to achieve
performance comparable, or superior to, timeweaver.  We
believe that relational learning systems show particular
promise.  Although the performance of FOIL at predicting
equipment failures was not particularly good, we feel its
performance can be improved significantly by modifying
FOIL to include a misclassification cost parameter and by
supplying additional relations, beyond the simple successor
relation.  Finally, we will investigate the use of learning
systems that permit relations to be defined intensionally.
These systems will allow much more sophisticated relations
to be provided than is possible with FOIL.



Conclusion

This paper investigated the problem of predicting rare
events with categorical features from time-series data.
Existing reformulation-based methods for solving such
problems were shown to have several deficiencies.  Most
importantly, information is lost in the reformulation process
and the resulting problem formulation does not really fit the
original problem (e.g., predictive accuracy is not a good
evaluation metric for the prediction problem).  This paper
showed how the rare event prediction problem could be
properly formulated as a machine learning problem and
how timeweaver, a GA-based machine learning program,
could solve this class of problems by identifying predictive
temporal and sequential patterns directly from the
unmodified time-series data.

References

Agrawal, R., and Srikant, R. 1995.  Mining sequential
patterns. In Proceedings of the International Conference on
Data Engineering.

Biggus, J. P. 1996. Data Mining with Neural Networks.
McGraw Hill.

Brazma, A. 1993. Efficient Identification of Regular
Expressions from Representative Examples. In Proceedings
of the Sixth Annual Workshop on Computational Learning
Theory, 236-242.

Brockwell, P. J., and Davis, R. 1996. Introduction to Time-
Series and Forecasting.  Springer-Verlag.

Cohen, W. 1995.  Fast Effective Rule Induction.  In
Proceedings of the Twelfth International Conference on
Machine Learning, 115-123.

Davison, B., and Hirsh, H. 1998.  Probabilistic Online
Action Prediction.  In Proceedings of the AAAI Spring
Symposium on Intelligent Environments.

Dietterich, T., and Michalski, R. 1985.  Discovering
patterns in sequences of Events, Artificial Intelligence,
25:187-232.

Giordana, A., Saitta, L., and Zini, F. 1994.  Learning
Disjunctive Concepts by Means of Genetic Algorithms. In
Proceedings of the Eleventh International Conference on
Machine Learning, 96-104.

Goldberg, D. 1989. Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley.

Jiang, T., and Li, M. 1991.  On the complexity of learning
strings and sequences.  In Proceedings of the Fourth Annual
Workshop on Computational Learning Theory, 367-371.
Santa Cruz, CA: Morgan Kaufmann.

Lang, K. 1992.  Random DFA’s can be approximately
learned from sparse uniform examples, In Proceedings of
the Fifth Annual Workshop on Computational Learning
Theory.

Manilla, H., Toivonen, H., and Verkamo, A. 1995.

Discovering Frequent Episodes in Sequences.  In First
International Conference on Knowledge Discovery and
Data Mining, 210-215, Montreal, Canada, AAAI Press.

McCallum, R., and Spackman, K. 1990.  Using genetic
algorithms to learn disjunctive rules from examples. In
Proceedings of the Seventh International Conference on
Machine Learning, 149-152.

Murata, T., and Ishibuchi, H. 1995.  MOGA: Multi-
Objective Genetic Algorithms. In IEEE International
Conference on Evolutionary Computation, 289-294.

Quinlan, J. R., 1990.  Learning Logical Definitions from
Relations, Machine Learning, 5: 239-266.

Quinlan, J. R. 1993.  C4.5: Programs for Machine
Learning.  San Mateo, CA: Morgan Kaufmann.

Sasisekharan, R., Seshadri, V., and  Weiss, S. 1996.  Data
mining and forecasting in large-scale telecommunication
networks, IEEE Expert, 11(1): 37-43.

Van Rijsbergen, C. J. 1979.  Information Retrieval,
Butterworth, London, second edition.

Weiss, G. M. 1998.  Timeweaver WWW Home Page:
http://paul.rutgers.edu/~gweiss/thesis/timeweaver.html.

Weiss, G. M., Eddy, J., Weiss, S., and Dube., R. 1998.
Intelligent Technologies for Telecommunications.  In
Intelligent Engineering Applications, Chapter 8, CRC
Press.

Weiss, G. M., Ros J. P., and Singhal, A. (1998).
ANSWER: Network Monitoring using Object-Oriented
Rules.  In Proceedings of the Tenth Conference on
Innovative Applications of Artificial Intelligence, Madison,
Wisconsin.


