
OWL: A Recommender System for Organization-Wide Learning
Frank Linton, Andy Charron, & Debbie Joy

The MITRE Corporation
linton/asc/djoy@mitre.org

Abstract

We describe the use of a recommender system to enable continuous knowledge acquisition and individualized tutor-
ing of application software across an organization. Installing such systems will result in the capture of evolving
expertise and in organization-wide learning (OWL). We present the results of a year-long naturalistic inquiry into
application’s usage patterns, based on logging users’ actions. We analyze the data to develop user models, individual-
ized expert models, confidence intervals, and instructional indicators. We show how this information could be used to
tutor users.

Introduction

Recommender Systems typically help people select products, services, and information. A novel application of re-
commender systems is to help individuals select ’what to learn next’ by recommending knowledge that their peers
have found useful. For example, people typically utilize only a small portion of a software application’s functional-
ity (one study shows users applying less than 10% of Microsoft Word’s commands). A recommender system can
unobtrusively note which portions of an application’s functionality that the members of an organization find useful,
group the organization’s members into sets of similar users, or peers (based on similar demographic factors such as
job title, or similarities in command usage patterns), and produce recommendations for learning that are specific to
the individual in the context of his/her organization, peers, and current activities.

This paper reports research on a recommender system (Resnick & Varian, 1997) intended to promote gradual but
perpetual performance improvement in the use of application software. We present our rationale, an analysis of a
year’s collected data, and a vision of how users might learn from the system. We have worked with one commercial
application, and believe our approach is generally applicable.

The research explores the potential of a new sort of user modeling based on summaries of logged user data. This
method of user modeling enables the observation of a large number of users over a long period of time, enables con-
current development of student models and individualized expert models, and applies recommender system techniques
to on-the-job instruction. Earlier work is reported in Linton (1990), and Linton (1996). Kay and Thomas (1995),
Thomas (1996) report on related work with a text editor in an academic environment.

A recommender system to enhance the organization-wide learning of application software is a means of promoting
organizational learning (Senge, 1990). By pooling and sharing expertise, recommender systems augment and assist
the natural social process of people learning from each other. This approach is quite distinct from systems, such as
Microsoft’s Office Assistant, which recommend new commands based on their logical equivalence to the less-
efficient way a user may be performing a task. The system presented here will (1) capture evolving expertise from
community of practice (Lave & Wenger 1991), (2) support less-skilled members of the community in acquiring
expertise, and (3) serve as an organizational memory for the expertise it captures.

In many workplaces ... mastery is in short supply and what is required is a kind of collaborative bootstrap-
ping of expertise.

(Eales & Welch, 1995, p. 100)

The main goal of the approach taken in this work is to continuously improve the performance of application users
by providing individualized modeling and coaching based on the automated comparison of user models to expert
models. The system described here would be applicable in any situation where a number of application users perform
similar tasks on networked computers

65

From: AAAI Technical Report WS-98-08. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

In the remainder of this section we describe the logging process and make some initial remarks about modeling and
coaching software users. We then present an analysis of the data we have logged and our process of creating individ-
ual models of expertise. In the final section we describe further work and close with a summary.

Each time a user issues a Word command such as Cut or Paste, the command is written to the log, together with a
time stamp, and then executed. The logger, called OWL for Organization-Wide Learning, comes up when the user
opens Word; it creates a separate log for each file the user edits, and when the user quits Word, it sends the logs to a
server where they are periodically loaded into a database for analysis. A toolbar button labeled ’OWL is ON’ (or
OFF) informs users of OWL’s state and gives them control.

Individual models of expertise

We have selected the Edit commands for further analysis. A similar analysis could be performed for each type of
command. The first of the three tables in Figure 1 presents data on the Edit commands for each of our 16 users. In
the table, each column contains data for one user and each row contains data for one command (Edit commands that
were not used have been omitted). A cell then, contains the count of the number of times the individual has used the
command. The columns have been sorted so that the person using the most commands is on the left and the person
using the fewest is on the right. Similarly, the rows have been sorted so that the most frequently used command is
in the top row and the least frequently used command is in the bottom row. Consequently the cells with the largest
values are in the upper left corner and those with the smallest values are in the lower right comer. The table has been
shaded to make the contours of the numbers visible: the largest numbers have the darkest shading and the smallest
numbers have no shading, each shade indicates an order of magnitude.

Inspection of the first table reveals that users tend to acquire the Edit commands in a specific sequence, i.e., those
that know fewer commands know a subset of the commands used by their more-knowledgeable peers. If instead, us-
ers acquired commands in an idiosyncratic order, the data would not sort as it does. And if they acquired commands in
a manner that strongly reflected their job tasks or their writing tasks, there would be subgroups of users who shared
common commands. Also, the more-knowledgeable users do not replace commands learned early on with more pow-
erful commands, but instead keep adding new commands to their repertoire. Finally, the sequence of command acqui-
sition corresponds to the commands’ frequency of use. While this last point is not necessarily a surprise, neither is it
a given.

There are some peaks and valleys in the data as sorted, and a fairly rough edge where commands transition from being
used rarely to being used not at all. These peaks, valleys, and rough edges may represent periods of repetitive tasks or
lack of data, respectively, or they may represent overdependence on some command that has a more powerful substi-
tute or ignorance of a command or of a task (a sequence of commands) that uses the command. In other words, some
of the peaks, valleys, and rough edges may represent opportunities to learn more effective use of the software.

In the second table in Figure 1 the data have been smoothed. The observed value in each cell has been replaced by an
expected value, the most likely value for the cell, using a method taken from statistics, based on the row, column
and grand totals for the table (Howell, 1982). In the case of software use, the row effect is the overall relative utility
of the command (for all users) and the column effect is the usage of related commands by the individual user. The
expected value is the usage the command would have if the individual used it in a manner consistent with his/her
usage of related commands and consistent with his/her peers’ usage of the command.

These expected values are a new kind of expert model, one that is unique to each individual and each moment in
time; the expected value in each cell reflects the individual’s use of related commands, and one’s peers’ use of the
same command. The reason for differences between observed and expected values, between one’s actual and expert
model, might have several explanations such as the individual’s tasks, preferences, experiences, or hardware, but we
are most interested when the difference indicates the lack of knowledge or skill.

66

I Observed I [I
Count of COMMAND EMPNMBR [__1 I
COMMAND - ~ m9371m242 m974 m375 m707 m118 m590 m926 m553 m600 m151 m000 m272 m0681m464

0 0 -- 0 t 0:2

o ~ o~-_o-F7 oI=~ o ~::~2 o o o ~1 oF o) o Ol o o
EditPasteS eci ; !~ 4; ~ 0 01 0Lo~_ o. 1~ Q
EditRedo ~:.~ ii ~4 ~)::~. 0 0 0 0 0 0) 0 ; ; 2 0
~! 6 o o o o 0 o] oleo o
EdltGoToHeade ;.. ~ ’~::2:i 0 0 0 0 0 0 0l 0J 0 0
!EditCoPvAsPic 0 " 8 0 0 .~:i 0!_ 0 0 0 0 0 0 0_] Of 0 O_
EditAutoText 0 0 0 0 ~ 0 0 0 0 0 Q 0Q. 1 0 0
EditDeleteaack 0 0 0 0 | 0 0 0 0 0[0 01 0| 01 0
EditBookmark 0 0 0 " 0 0 | 0 0 0 0 0 0 0~ 0 0
EditGoBack 0 o o| o| o o o o o o ~l ~1

Expec!ed
1

Count of COMMAND EMPNMBR I I /
COMMAND Ira300 m9371m2421m974 m375 m707 n1118 m590 m9261m553 m6001m151 m000)m272 m068 m464

’
~0~

~ o
EditCut ~ ~ ~ ¯ . " 9 8 0
EditUndo ~ ~! : 7 : 3 3 2 0
IEditFind ~ 0

........ i; ~ ~ o o
EditReolace ~ i;~i.~7 :.~-L~-I5 5’!:, :4 i ~) O 0oF o o o
~~l~I :I 0 0 O_ 0 0
EditOoTo 0 0 0 _0 0 0 0

EditCo~ 0 0 0 0 0 0 0 0 0 0 0 0 0
EditAutoText ~i, ~::~_ 0[01 0 0 0 0 0 0 0 0 0 0 0 0 0
EditDeleteBack 2 0 0 0 0 0 0 0 0 0 0_ 0 0 0 0 ___ D

o o o o o o o o o o o o o o o
EditGoBack I 01 0 O O O O 0 O O O O O Q O O 0

I-- Instruction

Count of COMMAND EMPNMBR
COMMAND m300 m9371m2421m974 m375 m707 m118 m590 m926 m553 m6001m151 m000 m272m068 m464
EditPaste ~

~EditClear _ ~~ l_~ _ ~ m m nmm

Edi~l ~

Ed~tFind I~i~ ~ ~ ~1~ ---

EditSelectAll |_ _ =L- ~~ _ ~I_ I_ ~_
EditDeleteWor~ -
EditCopyAsPic m~
EditAutoText
EditDeleteBa¢l
EditBookmark m
EditGoBack I i

~.~ o ~ ~ o ~ ~_~1___~_~___~_~1_~__~ o
’

Figure 1. Computing Tutorial Intervention

67

In the third table in Figure I, each cell contains one of five symbols. The symbols are indicators of learning oppor-
tunities that could be used by an automated tutoring process. These indicators are data that, combined with domain
and curriculum knowledge, would result in recommendations for learning. The five symbols are: "_" (underscore),
(blank), "New," "More," and "Alt." "New" has the darkest shading, followed by "More" and "Alt." The underscore
and blank have no shading.

A command whose expected value is zero need not be learned, and can be ignored; its indicator is a blank. A com-
mand that has an expected value, but is one the individual has never used, is a command the individual probably
would find useful if s/he were to learn it; its indicator is "New." A command whose usage is within normal range of
the expected value can also be ignored. The normal range was determined empirically so as to limit the amount of
recommended learning, on average, to two New commands, one More command, and one Alt command. The indica-
tor for a command within normal range of the expected value is an underscore. A command that is used less than
expected may be a component of tasks unknown but potentially valuable to the user; its indicator is "More." A
command that is used more than expected may indicate ignorance of more powerful ways of accomplishing some
tasks; its indicator is "Alt."

Providing feedback to users: Intelligent Tips and Skillometer

We envision two methods the OWL system could use to provide coaching and feedback to users. An active method,
Intelligent Tips, would coach passive learners; and a passive method, the Skillometer, would provide information to
active learners. Both methods would make use of the data analysis processes discussed in the preceding section, but
the Intelligent Tip interface would interpret the data conservatively, sending the user a tip only when it was rather
certain of the utility of the tip to the user. For software like Word, the Intelligent Tip might appear when the user
started up Word; it would inform the user of the nature of the tip and point the user to the appropriate information in
the application’s Help system. The goal of Intelligent Tips would be to provide the tip with perfect timing: after the
user has become aware of his/her need for a command, but before s/he has made an effort to find the command.

The Skillometer (Figure 2), in contrast, would provide an interface for the user to explore his/her observed and ex-
pected models, and those of any demographic group in the organization that the user might be a member of, such as
Engineer, Division 40, writer-of-long-documents, etc. The Skillometer would make it easy to compare and contrast
one’s actual usage with one’s expert model, and with the synthesized expert models of various groups, enabling the

Figure 2. Skillometer: Skill Analysis

68

user to make decisions for himself or herself about the utility of the commands that others are using. The Skillome-
ter should be useful to someone who anticipates performing a set of tasks and wants to become aware of which
commands will be applicable.

Concluding remarks

We have proposed a recommender system as a means of helping a community of practice pool and share its exper-
tise, where the community is a set of people who desire to become skilled users of their application software. Exper-
tise evolves because users respond to changes in the work environment and to changes in the software, as well as
continuously figuring out better ways to accomplish their tasks. The system will provide continuous performance
improvement to those who do complex job tasks with application software. The system’s expert models will serve
as the organization’s memory of expertise. Analysis of user log data collected over the past year revealed that editing
command usage frequencies follow a power law. As a result of this power law of usage, careful work is required to
distinguish apparent user ignorance or learning from effects due solely to the amount of information logged. A
method was proposed for taking these effects into account. We further discovered that users tend to acquire commands
in sequence. By combining the power law of usage with the acquisition sequence, we can determine the expected us-
age of each command by each individual: an individualized expert model; and take large deviations from this model as
indicators of ineffective software use -- and learning opportunities. Finally, we proposed two methods of communi-
cating these learning opportunities to users.

Bibliography

Eales, J., & Welch, J. (1995). Design for collaborative learnability. In J. Schnase and E. Cunnius (Eds.), Proceed-
ings of CSCL ’95: The First International Conference on Computer Support for Collaborative Learning (pp. 99-
106). Erlbaum, Mawah NJ.

Howell. D., (1982). Statistical methods for psychology. Boston: Duxbury Press.

Kay, J., Thomas, R. (1995). Studying long-term system use; computers, end-user training and learning. Communi-
cations of the ACM Volume 38 number 7.

Lave, J., and Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge Uni-
versity Press.

Linton, F. (1990). A coach for application software. CBTDirections (pp. 22-29), March 1990.

Linton, F. (1996). Promoting the Organization-Wide Learning of Application Software. ACM SIGOIS Bulletin.
Vol 17 number 3.

Resnick, P., and Varian, H. (1997). Introduction to Special Section on Recommender Systems. Communications
the ACM Volume 40 number 3.

Senge, P. (1990). The fifth discipline: The art & practice of the learning organization. New York: Currency Dou-
bleday.

Thomas, R. (1996). Long term exploration and use of a text editor. Unpublished doctoral dissertation. University
Western Australia.

69

