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Abstract

The surge of interest in multimedia and multimodal
interfaces has prompted the need for novel estima-
tion, prediction, and classification techniques for data
from different but coupled modalities. Unimodal tech-
niques ported to this domain have only exhibited lim-
ited success. We propose a new framework for fea-
ture estimation, prediction, and classification based
on multimodal knowledge-constrained hidden Markov
models (HMMs). The classical role of HMMs as statis-
tical classifiers is enhanced by their new role as mul-
timodal feature predictors. Moreover, by fusing the
multimodal formulation with higher level knowledge
we allow the influence of such knowledge to be re-
flected in feature prediction and tracking as well as in
feature classification.

Introduction

The surge of recent interest in multimodal information
processing and multimodal interfaces has prompted
the need for more sophisticated techniques for esti-
mation and classification of data represented in dif-
ferent but coupled modalities. Namely, it has become
necessary to devise techniques that take full advan-
tage of more or less "correlated" information present
in multiple modalities to enhance the estimation and
classification performance within individual modali-
ties. For instance, difficult recognition of visually per-
ceived hand motions (gestures) could potentially ben-
efit from (somehow) incorporating the accompanying
speech data into the recognition process. Similarly,
the accompanying speech could help in predicting the
values of hand motion parameters necessary for effi-
cient hand tracking. So far, numerous approaches em-
ploying loosely coupled unimodal techniques have been
ported directly into the multimodal domain to allevi-
ate the recognition problem. Various multimodal in-
terfaces such as (Fukumoto, Suenaga, ~ Mase 1994;
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Cohen et al. 1997) rely on high level joint inter-
pretation of different modalities. Initial feature es-
timation, prediction, and lower-level classification is
performed independently within each of the modal-
ity domains. This approach, unfortunately, discards
the inherent dependencies that may exist among dif-
ferent modes and ceases to exploit the benefits of
multimodal coupling. Another drawback of classical
tracking/classification approaches stems from the com-
monly found uncoupling of feature tracking and pre-
diction from feature classification. However, classifi-
cation very often involves higher level knowledge con-
straints, the presence of which can undoubtedly benefit
the tracking/prediction process.

In this work, we propose a novel framework for mul-
timodal object estimation/classification based on mul-
timodal knowledge-constrained hidden Markov mod-
els. Hidden Markov models are a commonly used sta-
tistical tool in the field of speech recognition (Rabiner
& Juang 1993). They have recently been brought into
domains of gesture recognition (Schlenzig, Hunter, 
Jain 1994), bimodal lip reading and speech interpre-
tation (Adjoudani & Benoit 1995), and bimodal ges-
ture/speech recognition and source separation (Brand
1997; Brand & Oliver 1997; Pavlovid, Berry, & Huang
1997). In this framework, we extend the classical role
of multimodal HMMs from statistical classifiers to fea-
ture predictors. Moreover, by fusing the multimodal
formulation with higher level knowledge (grammars)
we allow the influence of such knowledge to be reflected
in feature prediction and tracking as well as in feature
classification.

Multimodal Hidden Markov Models

A hidden Markov model (HMM) is a doubly stochastic
process, a probabilistic network with hidden and ob-
servable states. Each HMM can be defined as a triplet
(A, b, 7r), where A represents the (hidden) state tran-
sition matrix, b describes the probabilities of the ob-
servation states, and ~r is the initial hidden state dis-
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tribution. In other words,

A = [aij]NxN, aij = P(xt+l = j I xt =i),

b = [bi]Nxl, bi = P(Yt = Y I xt =i),

~r = [rl]N×l, ~ri = P(xo =i). (1)

where xt denotes a hidden state from the set A’ of
N possible discrete hidden states, and Yt denotes an
observation from a set of observations y. A describes
the time invariant distribution of hidden states at time
t + 1 conditioned on the first order Markov predeces-
sors at time t. The observations are assumed depen-
dent only on the current hidden states. Three types of
tasks are usually associated with a system modeled as
a HMM: observation classification, hidden state infer-
ence, and learning of model parameters. Efficient algo-
rithms based on forward/backward probability propa-
gation, Viterbi decoding, and Baum-Welsh reestima-
tion (EM algorithm) exist for all three tasks (Rabiner
& Juang 1993).

Multimodal hidden Markov models (MHMMs) can
be defined as an obvious extension of the classical uni-
modal HMMs, similar to (Brand 1997). Instead of hav-
ing a single set of hidden and observable states describ-
ing one type of processes, MHMMs have M such mu-
tually coupled sets or M modes. Formally, a MHMM
is a triplet (A, b, ~) where

A = [ak_,t]~_,tex, ak,t = P(xt+l = 1 I xt --- k),
b = [bk]k_eZ, bk_= P(Yt = Y I xt =k),

= [lrk_]k_eZ, rk_ = P(x_0 = _k). (2)

Here, k = [klk2...kMr , ki = 1,...,Ni, denotes a
vector of indices in the space A’ of all M-dimensional
indices. Analogous to HMMs, A now describes the
joint probability distribution of M multimodal states
conditioned on their M multimodal predecessors. This
dependence structure is depicted in Figure 1. Such de-
pendence structure allows for different internal dynam-
ics of each modality to exist (horizontal dependencies
among hidden states in Figure 1) while still introducing
inter-modal correlation (diagonal dependencies in Fig-
ure 1.)

Given the above definition of a MHMM, the prob-
lems of inference and learning may seem difficult to
tackle. However, every MHMM can be readily trans-
formed into an equivalent HMM! This can be achieved
using the state grouping technique often employed in
the domain of Bayesian networks (Frey 1998). An 
modal state in (N1, N2,..., NM) dimensional X space
can be represented as a unimodal state in a one dimen-
sional set of N1 x N2 × ... NM different states. Well
known classification, inference and learning techniques
of unimodal HMMs can then be readily applied to MH-
MMs.

Figure 1: Independence graph for multimodal hid-
den Markov models. Solid and dashed arrows de-
pict intra-modal and inter-modal dependencies, respec-
tively. Each row contains states associated with one
mode of the multimodal process.

Prediction

HMMs are often employed as classifiers of temporal se-
quences of features in conjunction with some classical
feature predictors/trackers such as Kalman filters. Us-
ing this approach, however, decouples feature predic-
tion from feature classification: features are estimated
and predicted independently of how they are later clas-
sifted. This can often result in degradation of the sys-
tem performance. A more closely coupled prediction
and classification may be beneficial to each other. For
instance, knowing which class a hand motion belongs
to can bear influence on which motion model parame-
ters are used for the hand tracking. HMMs represent
a useful framework for such unification.

Consider a unimodal (or for that matter a multi-
modal) HMM as defined in the previous section. Given
a set of observations yt = [Yl "’" Ytr, it can be shown
that the expected value of an observation at time t + 1
can obtained as

1
Yt+l = E[yt+l I Yt] = P(~-t) ~+~ E[yt+l Xt+l] c~°(xt),

where we use a°(xt+l) ~’ ]~ c~t(xt)P(xt+l I xtand
(~t(xt) = P(xt Yt) denotes the fo rward probability,
a product of the efficient forward probability propaga-
tion procedure (Rabiner & Juang 1993). Similar ex-
pression can be derived for the variance of Yt+l,

E ’ 1 [y~+~y~+~ I zt+~] ~0(~+~).[Yt+lYt+l l Yt] - ~ E ’
P(~t) Xt+l

This can, of course, be generalized for an arbitrary
K >__ 1 step prediction as well as the filtering, K = 0.
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The above estimates of Yt+l and their variance ob-
tained from the HMM hence eliminate the need for an
additional Kalman-type predictor. Moreover, this pre-
diction approach can be utilized in the framework of
multimodal HMMs, thus effectively producing a mul-
timodal estimate of the future observations in each of
the coupled modes. For instance, a video object feature
(velocity of the hand in a sequence of images, for exam-
ple) can be predicted based on previous values of that
video feature as well as the accompanying audio fea-
tures. This can greatly increase robustness of the pre-
diction process. In addition, a higher level knowledge,
such as grammars defined over sets of MHMMs, can be
brought into play using this prediction approach. We
discuss this notion in the following section.

Higher-Level Knowledge Constraints

Complex natural processes such as speech and object
motion can rarely be accurately and efficiently de-
scribed using a single model. It is more plausible to
view such processes as being produced by a set of mod-
els governed by some higher level knowledge. An ex-
ample is often found in speech recognition: phonemes
as the smallest speech units are modeled using HMMs.
Words are modeled as specific sequences of phonemes,
and sentences are modeled using grammatical rules de-
fined on words. Similar approaches can be employed to
describe object motion, for instance, by defining a set
of rules over the set of basic motion models. Classifica-
tion of unknown motion or speech can then be tackled
in this framework.

Consider a set of HMMs 7/= {H1,... ,Hw) and a
probabilistic grammar describing the temporal depen-
dencies of the individual HMMs Hi in the set. One
way to model such a grammar would be to view it as
a Markov model (Ao,~ra) defined over the space 7/,
where

Aa = [aaij]w×w, aaij = P(Hj I Hi), (3)

and P(Hj I Hi) denotes the probability of model Hi
followed by Hi. zrc denote initial model probabilities.

An easy way to integrate this grammar in the HMM
framework arises when one observes that the set 7/
with grammar (Ac, rG) can be viewed as one complex
HMM. This complex HMM is defined over the set of
N = N1 + N2 + ... + Nw hidden states formed from
the hidden states of all individual HMMs. The prob-
ability transition matrix of this set, Acompl~ can be
easily obtained from individual model’s transition ma-
trices, entry and exit state distributions, and AG. The
observation distributions are simply carried over from
the individual HMMs.

By viewing the probabilistic grammar-constrained
set of HMMs as a complex HMM itself enables us

to directly apply the tools of classification, inference,
and prediction of simple HMMs to this case. This,
in turn, introduces higher level knowledge constraints
to all those tools with all of it’s benefits and possible
drawbacks. Furthermore, straightforward extensions
of this approach can be applied to multimodal HMMs
yielding knowledge-constrained multimodal classifica-
tion, inference, and tracking.

Of course, complex HMMs or MHMMs designed in
this fashion are defined over very high dimensional
state spaces. However, by constraining the individual
model topologies to sparse structures (such as the often
used left-to-right HMMs), the complexity of complex
HMMs and MHMMs becomes quite tractable.

Experimental Results

Our experiments were aimed at testing the feasibility
of the proposed framework. As the testbed application
we chose a joint audio-visual interpretation of speech
and unencumbered hand gestures for interaction with
immersive virtual environments described in (Pavlovid,
Berry, & Huang 1997). The setup allows a user to in-
teract with a virtual 3D environment using hand ges-
tures, such as pointing and simple symbolic motions,
and spoken commands. For example, the user would
point with her/his hand at an object and say "select."
Once the object is selected, the user could make it
rotate counter-clockwise by saying "rotate left" and
performing a hand gesture symbolizing rotation to the
left. In total, a set of twelve gestural commands and
fourteen spoken words was used to interact with the
environment.

In the original setup, gestures and speech were ini-
tially independently recognized using unimodal HMMs
and then jointly interpreted on the word level. Unen-
cumbered hand tracking is accomplished using a set
of one or two video cameras. Analysis and prediction
of hand motion from the video stream was originally
obtained using a second-order Kalman predictor, as
described in (Pavlovid, Berry, & Huang 1997).

The multimodal HMMs were constructed from uni-
modal models of the original setup, the known intra-
and inter-modal grammars, we have constructed a joint
MHMM of the modeled audio/video process. Intra-
model state transition probabilities were approximated
by relative transition frequencies between the uni-
modally segmented states. Our training set consisted
of a sequence of 40 multimodal commands. The test
set was a different sequence of 40 commands performed
by the same user. This model was then used to perform
multimodal gesture feature prediction and multimodal
gesture/speech classification.

An example of multimodal gesture and speech pa-
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Figure 2: One step prediction of hand angle and a cepstral coefficient using multimodal knowledge-constrained
HMM. Blue lines, red lines, and green lines depict measured features, unimodal estimates, and bimodal estimates,
respectively.

rameter prediction on a sequence of test data is de-
picted in Figure 2. As the example indicates the mul-
timodally predicted gesture feature is closer to the real
(measured) data then the one predicted unimodally.
However, one should note the effect of hidden space
discretization in HMMs. Namely, the predicted values
are "quantized" about the levels of observation means
associated with the hidden states. If the number of hid-
den states is sufficiently high, the discretization will not
significantly effect the prediction. On the other hand,
higher number of hidden states results in increased
computational complexity and demand on larger train-
ing data sets. To circumvent this problem, we have
formulated a mixed-state HMM which encompasses
both discrete and continuous hidden states (Pavlovic
& Huang 1998).

Gesture and speech recognition was also tested on a
short sequence of data. The results were again encour-
aging: using gestures alone (unimodal recognition) the
recognition rate was close to 80%. Once the multi-
modal model was employed, the recognition rate im-
proved to 94%. An example of unimodal and multi-
modal classification on a sequence of data is depicted
in Figure 3. Unfortunately, these encouraging recog-

nition results are counterweighted by the complexity
of inference in the high dimensional multimodal state
space. Sparsity of the system significantly effects this
complexity. Yet, training of the model parameters is
largely not affected by the sparsity. To address this
issues we are currently devising approximate learning
techniques based on variational inference(Jordan et al.
1998).

Conclusions

The recent gain in popularity of multimedia and mul-
timodal interfaces has prompted the need for more
sophisticated techniques for estimation and classifica-
tion of multimodal data. Classical approaches em-
ploying loosely coupled unimodal techniques applied
to the multimodal domain have shown limited suc-
cess, possibly due to the loss of inherent dependen-
cies that may exist among different modes at lower
levels of integration. Moreover, the lack of tight cou-
pling between feature prediction and feature classifi-
cation in the classical approaches may further reduces
the performance of such techniques in the multimodal
domain. In this work, we propose a novel probabilis-
tic network framework for multimodal object track-
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ing/classification which fuses the feature tracking and
classification enhanced by constraints of a higher level
knowledge. Results of our test indicate the feasibil-
ity of this approach. Despite these encouraging results
two problems still remain: computational complexity
induced by a high-dimensional state space, and "dis-
cretization" of the estimation and prediction spaces.
These problems will be addressed in the future us-
ing approximate inference and learning techniques and
mixed-state HMMs.
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Figure 3: Recognition of spoken words and gestural actions. The figure shows results of temporal segmentation of
hand gestures and speech using independent (top two graphs) and joint (bottom two graphs) inference. Depicted
features for video and audio streams are the hand angle and a cepstral coefficient, respectively. Top line depicts
correct sequence transcription. Note that joint interpretation eliminates a spurious "stop" in speech and correctly
classifies "move up" in gestures. (Initial miss-labeling in the video stream is due to click noise.)
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