
Integrating Different Knowledge Representations in an Intelligent
System: Standardization Allows Diversity?

Ronnie W. Smith
Department of Mathematics

East Carolina University
Greenville, NC 27858, USA

rws@cs.ecu.edu

Abstract

This paper proposes that for a complex intelligent sys-
tem, the choice of a knowledge representation lan-
guage for the interaction processing component and
the domain reasoning component should be left uncon-
strained provided that some type of common knowl-
edge representation language for communicating goals,
actions, and inputs is available. This common language
would be used for both components for information ex-
change. In this way, it may be possible to design a
domain-independent interaction processing component
that is applicable to a genre of interactions such as ad-
visory, database query, or task-assistance interactions.

Designer Knows Best

This paper argues for the position that it is unwise to
constrain all components of an intelligent system that
engages in sophisticated human-computer interaction
to using the same knowledge representation language.
Specifically, if we are interested in separating interac-
tion from domain reasoning so that a standard set of
interaction modules can be used with a variety of ap-
plication domains, then we should not presume to con-
strain the internal knowledge representation used by
the designer of the domain reasoning component. After
all, one of the lessons that has been learned through
the years in developing computational representations
of algorithms and knowledge is that different represen-
tations are appropriate in different circumstances. As
evidence we have the never-ending evolution of pro-
gramming languages as well as a variety of program-
ming paradigms. For knowledge representation (KR)
we also have a variety of languages that are in use,
and effective KR in multi-modal systems for human-
computer interaction will probably require a variety of
these languages.

The arguments presented here are based on personal
experience in the development of a natural language di-
alog system known as the Circuit Fix-It Shop (Smith
& Hipp 1994), a system that communicates with users
via speech in order to assist a user in the repair of an
electronic circuit. While only using one communication

modality1 it is still a rather complex system? A major
emphasis of the research has been to develop a unified
architecture that integrates a variety of necessary dia-
log processing capabilities (problem-solving, subdialog
processing, expectation usage, user-model usage, and
mixed-initiative behavior). In developing this unified
architecture the focus has been on general principles
of task-oriented dialog rather than domain-specific as-
pects that would enhance system performance in circuit
repair. Consequently, an important aspect of the archi-
tecture is the definition of the communication interface
between the general dialog processing component and
the domain-specific reasoning component as discussed
below.

Interaction Processor/Domain
Processor Interface

A Message-Passing Interface

In our model the process controlling the interaction (in
the case of the Circuit Fix-It Shop, the dialog process-
ing component) must control the processing done by
the domain reasoner. This is done via sending messages
to the domain reasoner in the form [OpCode,Input]
where OpCode specifies the operation to be performed
by the domain reasoner and Input is any additional in-
formation the domain reasoner might need (such as the
description of a user input providing domain informa-
tion). The list of operations that the domain reasoner
should be able to perform include the following.

¯ Determine the next domain goal based on the domain
reasoner’s strategy for completing the task.

¯ Determine the next domain goal based on helpful in-
formation provided by the user that is not directly
relevant to the domain reasoner’s strategy for com-
pleting the task.

¯ Determine information relevant to the perceived user
strategy for task completion.

IKeyboard input of text is allowed, but this was not used
experimentally.

2The software includes over 17000 lines of Prolog, over
7600 lines of C, and 560 grammar rules.

76

From: AAAI Technical Report WS-98-09. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



* Provide a list of expected responses based on the cur-
rent domain action of the user.

¯ Reset domain reasoner status to the values it had
when an already completed action was performed.3

¯ Process user input about a domain action.

Common Interlingua: Uses and Limitations

A common language is of course needed for exchange of
information about goals, actions, and inputs between
the dialog processor and domain reasoner. The Goal
and Action Description Language (GADL) described
in (Smith & Hipp 1994) is used for this purpose. 
uses a Prolog-style syntax for specifying predicates and
propositions that describes goals, actions and inputs
using [Object,Property,Value] triples for basic informa-
tion description.

While useful as the common interlingua between the
dialog processor and the domain reasoner, it is not con-
venient as an internal knowledge representation lan-
guage for all forms of knowledge required in the two
components. If natural language is used as one of the
communication modalities, the interaction processor
also needs to represent information about speech acts,
linguistic constraints, dialog context, mental states, and
user knowledge while the domain reasoner may have its
own special needs. For example, in the Circuit Fix-It
Shop the domain reasoner must maintain information
about relative suspicion of circuit trouble spots as the
potential cause of error as well as structural and behav-
ioral descriptions of the circuit. We do not claim that
the knowledge representation formalism that is appro-
priate for the Circuit Fix-It Shop is necessarily the most
appropriate knowledge representation for other task-
oriented application domains (e.g., general scheduling
problems and other types of diagnostic and repair prob-
lems such as medical diagnosis).

Summary View

¯ There are general principles of interaction that cross
domain boundaries.

¯ Consequently, it may be possible to design a gen-
eral architecture for the interaction component in a
particular interaction genre such as database query
or task assistance. Of necessity, a general interac-
tion component will specify a standard interface and
knowledge representation language via which com-
munication with the domain processing component
must occur.

¯ However, within an interaction genre, there may be
such a disparity across domains in the type of internal
reasoning that is needed that it renders it imprac-
tical to require a specific knowledge representation
language to be used across all domains.

3This is for cases of miscommunication when it is later
determined that this action actually was not completed.

¯ Thus, all that can be required is that the information
a domain processor must exchange with the interac-
tion processor must be represented in a common in-
terlingua. Whether all knowledge in the domain pro-
cessor is represented in this interlingua or whether
the domain processor will use other knowledge repre-
sentation languages internally and simply transform
knowledge as needed to the interlingua should remain
a designer choice.

Acknowledgments

This work has been supported by National Science
Foundation Grant IRI-9501571.

References
Smith, R., and Hipp, D. 1994. Spoken Natural Lan-
guage Dialog Systems: A Practical Approach. New
York: Oxford University Press.

77




