
A Statistical Approach to Multimodal Natural Language Interaction

John Vergo

IBM CorporatiowT.J. Watson Research Center
30 Saw Mill River Road

Hawthorne, New York 10532
(914) 784-7035

jvergo@us.ibm.com

Abstract

The Human-Centric Word Processor is a research
prototype that allows users to create, edit and manage
documents. Users can use real-time continuous speech
recognition to dictate the contents of a document. Speech
recognition is coupled with pen or mouse based input to
facilitate all aspects of the command and control of the
application. The system is multimodal, allowing the user
to point and speak simultaneously. In particular, the
correction, formatting, organization and manipulation of
dictated text are greatly facilitated by the combination of
natural language understanding and multimodal input.
The system uses a maximum entropy, statistical approach
for mapping a combination of natural language and
pointing events into multimodal formal language
statements.

Keywords

Multimodal input, natural language processing, speech
recognition, gesturing.

Introduction

The Human-Centric Word Processor (HCWP) is work
that grew out of the MedSpeak/Radiology project (Lai
and Vergo 1997). The MedSpeak system was the first
commercial real-time continuous speech recognition
system. Radiologists use the system to dictate radiology
reports. Speech is used to dictate the reports and to
navigate through the application in a "hands free" and
"eyes free" manor.

Usability field studies of the MedSpeak/Radiology system
identified two important areas for potential improvement.
MedSpeak uses a very constrained dynamic vocabulary
for command and control of the system. Although
simplicity was a primary design goal, it was found that
users (radiologists) had significant problems
remembering the specific commands that were required
to navigate the system.

The second area for potential improvement is in the
correction of speech recognition errors. Working in a
"hands free" environment means radiologists do not use
a keyboard to do their work. MedSpeak has a 96%
accuracy rate for dictation, which means that for a typical
300 word report the radiologist has to correct 12 errors
on average. This requires significant manipulation of the
keyboard and mouse.

Radiologists are an unusual user group, in that they are
experts at dictation. They typically dictate 100 to 150
reports a day. Because of the large number of reports, and
because the reports are relatively short, they can mentally
compose well-organized text in their minds and dictate
the report cleanly to the MedSpeak application.

When considering dictation applications for the general
public, the dynamics change considerably. Document
sizes may increase dramatically, and the vast majority of
the people are not trained on how to dictate. The result is
that much the text produced by dictation requires
considerable manipulation after the dictation has been
completed. The manipulation might include rewording
sections of text, formatting changes, and significant
organizational changes. With commercially available
systems today, making these types of changes requires
extensive keyboard manipulation and/or cumbersome and
error prone navigation through the document by voice.

The HCWP strives to address the issue of radiologists
having to remember specific commands by employing
natural language understanding (NLU). The NLU engine
(Papineni, Roukos and Ward, 1997) developed at IBM
research, uses a maximum entropy approach to the
translation of unconstrained natural language statements
to application specific formal language statements. This
process is described in greater detail below.

The HCWP addresses the issues of error correction and
post-dictation manipulation of text by allowing actions to
be constructed multimodally, using speech and stylus.

81

From: AAAI Technical Report WS-98-09. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Typical mullimodal user interactions

These are some typical examples of multimodal
constructions that are handled by the HCWP:

Example 1.1 "Delete this word"
Example 1.2 "Underline from here to there"
Example 1.3 "Playback this paragraph"
Example 1.4 "Change this date to the third"

Examples 1.1, 1.3 and 1.4 are all accompanied by a
single pointing event. Example 1.2 is accompanied by
two pointing events. In Example 1.3, the user is
requesting the system to play back the audio associated
with the indicated paragraph. In Example 1.4, the user
need only point in the vicinity of a date for the system to
understand her. In all cases, the ability to express these
requests multimodally results in greatly reduced task
completion times when compared with traditional GUI
techniques or speech only systems.

Architecture

A taxonomy of multimodal integration mechanisms has
been presented by (Blattner and Glinert 1996). They
describe three general approaches; frame integration,
neural nets and the use of agents. The HCWP combines
some aspects of all three approaches in handling multiple
input modalities. Figure 1 gives an Overview of the

functional aspects of the system.

The NLU engine has neural net-like features in that it
operates in two distinct phases. First, it must be trained
using a corpus of training data. It is then used to translate
new natural language statements into formal language
statements.

The formal language produced by the NLU engine is
similar to the concept of a frame, in that formal language
statements contain objects, each of which have attributes.
This will be illustrated in greater detail in the sections on
natural language understanding and augmented formal
language.

Finally the HCWP directly implements agents to process
actions that are represented by the formal language.

Speech Recognition

The HCWP system uses the IBM ViaVoice continuous
speech engine, along with an object oriented framework
that completely encapsulates the speech engine
functionality (Srinivasan, Vergo 1998). The HCWP
system places the engine in one of two modes. In
dictation mode, the speech engine is given a specific
vocabulary that it uses to decode speech to text. The
decoded text goes through a formatting process, and is
sent to a multi-line editor (MLE) control, where it

HCE Multimodal Architecture

~~ Speech ~l~

I
reco engine

[Formal
NLU engine

~i
language

/
itparser

Deictic
Gestures
History

~r
NLUEvent

dispatcher

,’
I

~_

_. . Multi line
Edit Agent edit control

Figure 1
82

displayed to the end user. Formatting typically includes
capitalization, putting the correct spacing between words,
punctuation, etc.

The second mode is navigation mode, where the user is
controlling the application. This is the mode that we
concern ourselves with for the remainder of the paper. In
this mode, the spoken commands are not displayed in the
MLE, but are ultimately turned into actions that are
performed by the system. In navigation mode, the speech
engine is again decoding text from a dictation
vocabulary, but the vocabulary is especially built for the
navigation task. It is a large vocabulary (>64,000 words),
approximately the same size as the vocabulary used in
dictation mode. With this large recognition vocabulary
the user can phrase requests for actions to the system in
an unconstrained manner. This is in stark contrast to a
dynamic vocabulary or grammar based approach to
speech recognition.

With dynamic vocabularies, the user speaks single words
to affect actions in the application. For example, to
traverse a menu, the user might have to say "File",
"Print" and "OK", each quoted word being a single word
in the dynamic vocabulary. Alternatively, "Print" might
bring up the print dialog directly, without having to
traverse a GUI menu structure.

A grammar based approach allows the users to speak in
predefined constrained phrases. For example, the user
might be allowed to say "Print the document" or "Print
it". These grammatical constructions must be explicitly
allowed by the grammar that has been enabled on the
speech recognition engine. If instead, the user says "Send
it to the printer", and the construct is not part of the
grammar, it will not be properly recognized.

Gesturing

The HCWP system currently uses a liquid crystal display
(LCD) tablet with a stylus for input. At present, the only
gesturing supported by the system is deictic gesturing
(i.e., pointing events with no semantic content contained
therein). Using a stylus to accomplish spatially oriented
tasks has been shown to be a natural mode of interaction
(Oviatt 1997), with 100% of the tested user group having
a preference to interact multimodally during a map task.

Deictic gestures are detected as asynchronous events and
arestored in the deictic gesture history (Figure 1). The
gestures are stored with context dependent information.
For example, if a user points at the MLE, character
position and selection information are saved along with
the event. If the user gestures at a list of files, indices are
stored along with the event.

Natural Language Understanding

The natural language understanding engine uses a
feature-based language understanding approach
[Papineni, Roukos and Ward 1996]. The engine uses a
statistical translation approach that translates a natural
language statement into a formal language statement.
Formal language statements are well-defined statements
that the application can accept as an "action" to perform.

In the development of the prototype, we collected 700
English requests that users made while interacting with a
low fidelity prototype of our system. The sessions were
video taped, and each statement made by the user was
transcribed and then mapped (by hand) to a formal
language statement. The natural language statements
and their formal language mappings constitute the
training corpus. Two examples:

N1 Get rid of the last sentence
F1 [delete] target(locator(sentence last))

N2 Change entertainment to education
F2 [change] target(locator(string "entertainment"))

newValue(locator(string "education"))

If n is a natural language statement, f is a formal
language statement, and F is the space of all formal
language statements, then the NLU engine maximizes
the conditional probability P(fln) k/f ¯

The training corpus is used to build models whose
parameters are "trained" automatically from the training
data. Given a sufficiently large training corpus,
statistical translation models are built which are capable
of translating new sentences in the natural language to
formal language statements with high accuracy.

Augmented Natural Language

The interpretation of multimodal input begins with the
augmentation of natural language with gesturing
information. The gesturing information accompanies the
natural language as an input to the NLU engine. In this
manner, it simply becomes another "feature" for the
statistical translator to take into account when evaluating
conditional probabilities of formal language statements.
Two examples:

Example 2.1

N1 (pointing 1) Delete this Word
F1 [delete] target(locator(pointed 2))

Example 2.2

N2 (pointing 2) Remove all text from here to there
F2 [delete]target(locator(start(pointed 5)end(pointed

83

Both natural language statements (N1 and N2) have been
augmented with a "(pointing = n)" construct. This
construct is an indication to the NLU engine of how
many pointing events were associated with the natural
language statement. The NLU engine responds with a
formal language statement that contains formal language
constructs for deictic gestures. For Example 2.1 formal
language statement F1 contains the construct "pointed
2". This formal language construct may be read as "the
pointing event was associated with the second word".
The construct is then used to align pointing events
(stored in a deictic history buffer) with sub-elements
formal language statements. We can do this because we
have timing information associated with each spoken
word and pointing event.

Example 2.2 provides further illustration. N2 includes
the construct "pointing 2", giving the statistical
translation engine a strong hint that the statement was
accompanied by two gestures. The engine produces a
formal language statement with a "locator" component
that has two "pointed n" constructs. The first, "pointed
5" can be interpreted as meaning the start location for the
deletion is indicated by the pointing event that took place
when word number 5 of the natural language utterance
was spoken. Similarly, the second deictic component
"pointed 7" can be interpreted as meaning the end
location for the deletion is indicated by the pointing event
that took place when word number 7 of the natural
language utterance was spoken. Since all spoken words
are time-stamped, we retrieve the time information, align
with pointing events stored in a deictic gesture history
buffer, and calculate the range of characters to delete
based on the stored pointing events.

Formal Language Parsing and Natural Language
Event Dispatching

The formal language statement produced by the NLU
engine is in a fiat text representation. The formal
language parser accepts the string representation, and
transforms it to a heterogeneous collection of objects that
are contained in a top level object called an NLUEvent.
The NLUEvent is a class that is designed to reflect, in a
very direct way, the structure of the formal language. As
can be seen from the sample formal language statements
above, the formal language structure and content are
driven from the tasks that the HCWP is designed to carry
out, i.e., it is very domain/task dependent. By necessity,
the NLUEvent also contains domain specific features.

After the formal language parser builds the NLUEvent,
the event is sent to one of a series of agents in the
application that are capable of carrying out the action.
The decision as to which agent receives the NLUEvent is
made by the natural language event dispatcher. The
dispatcher makes the decision on where an event is
routed based on a series of criteria.

Some events are "hard wired" to specific agents. For
example, printing the document is always sent to the
same agent, regardless of the context of the application.
Other events can be ambiguous, and require an
understanding of the state of the application to interpret
correctly. For example, if the user says "Delete this",
and gestures while uttering the request, there may be two
very different interpretations possible, depending on what
he pointed to. The formal language statement

[delete] target(locator(pointed 2))

is the same regardless of the interpretation, as is the
resulting NLUEvent.

If the object he pointed to is a word in the body of the
multi-line editor, then it is appropriate for the dispatcher
to route the NLUEvent to the edit agent. The edit agent
only knows how to interpret the NLUEvent in the context
of editing actions, and carries out the action
appropriately (in this case deleting the word that was
pointed to).

The second possibility is the user pointed to a file in a list
of files, and said "delete this". Under this circumstance,
the dispatcher sends the NLUEvent to the filer agent,
which knows how to carry out the requested action in its
own context, deleting the file.

The dispatcher makes the decision on where to send an
NLUEvent based on the event itself, the context of the
dialog between the user and the system, and on the GUI
input focus of the application.

Conclusions

At this time, our prototype system is up and running. The
700 sentences we have collected thus far have yielded a
functional system with low end-to-end accuracy. This is
an anticipated result. The current version of the system
will be used to collect significantly more data (minimally,
10,000 sentences are anticipated). Our expectation is to
achieve and end-to-end accuracy rate of 80%.

Future work

As a prototype, the Human-Centric Word Processor is in
its infancy and provides an excellent platform to pursue
research on a variety of topics.

The formal language, the object oriented design of
NLUEvents and the agents are all application specific. A
challenging area of research is to come up with a design
and/or framework where domain independent tools and
components can be used and extended into specific areas,
facilitating the creation of similar types of applications.
The augmentation of natural language and the formal
language must also be expanded to include a much wider

84

array of pen based input gestures (i.e., going beyond
simple deictics). Other input modalities need to be
explored, including vision, eye tracking, etc.

The architecture of the HCWP assumes that speech is the
"triggering" modality. Clearly this is not always the
case. Users may completely specify actions using pen or
vision based gestures. The architecture needs to reflect
this reality.

Finally, the effect of the size of the training corpus on the
accuracy of the system will be of tremendous interest,
since the collection of training data is a time consuming
and labor intensive task. Data need to be collected and
published on this topic.

References

M. M. Blattner, E. P. Glinert, Multimodal Integration.
IEEE Multimedia, 3(4), 14-25, 1996.

Lai, J. and Vergo, J. 1997. MedSpeak: Report Creation
with Continuous Speech Recognition. In Proceedings of
ACM SIGCHI 1997, Conference on Human Factors in
Computing Systems, 431-438. Atlanta, Georgia.

Oviatt, S., DeAngeli, A., Kuhn, K., 1997. Integration
and Synchronization of Input Modes during Multimodal
Human-Computer Interaction. In Proceedings of ACM
SIGCHI 1997, Conference on Human Factors in
Computing Systems, 415-422. Atlanta, Georgia.

Papineni, K. A., Roukos, S., and Ward, R.TI 1997,
Feature-Based Language Understanding. In Proceedings
of the 5th European Conference On Speech
Communication and Technology Volume 3, 1435-1438.
Rhodes, Greece: European Speech Communication
Association.

Srinivasan, S. and Vergo, J. 1998. Object Oriented
Reuse: Experience in Developing a Framework for

Speech Recognition Applications, ICSE 1998, Joint
ACM and IEEE International Conference on Software
Engineering, Kyoto Japan, Forthcoming

85

