
What’s an AI Toolkit For?

Aaron Sloman
School of Computer Science

The University of Birmingham,
Birmingham B15 2TT,

England

A.Sloman~cs.bham.ac.uk,
http://www.cs.bham.ac.uk/-axs

Abstract

This paper identifies a collection of high level questions
which need to be posed by designers of toolkits for
developing intelligent agents (e.g. What kinds of
scenarios are to be developed? What sorts of agent
architectures are required? What are the scenarios
to be used for? Are speed and ease of development
more or less important than speed and robustness of
the final system?). It then considers some of the
toolkit design options relevant to these issues, including
some concerned with multi-agent systems and some
concerned with individual intelligent agents of high
internal complexity, including human-lilce agents. A
conflict is identified between requirements for exploring
new types of agent designs and requirements for
formal specification, verifiability and efficiency. The
paper ends with some challenges for computer science
theorists posed by complex systems of interacting
agents.

Introduction

This paper is a collection of thoughts about toolkits
for developing intelligent systems involving one or more
agents. The top level question driving this enquiry is
whether it makes sense to ask whether it is possible to
produce one toolkit which meets all requirements, and
if not why not.

It is obvious and not very interesting that we can
form the union of all toolkits ever developed plus
a guide to selecting the best one for each type of
agent development task. This is not an interesting
option because a union of that kind will just be
a highly redundant mish-mash of mostly unrelated
components, whereas an interesting toolkit should
have greater integration, including a principled set of
facilities designed to meet the needs of various kinds of
researchers and developers concerned with intelligent
agents.

Can something more principled be done? My
hunch is that the range of scientific and engineering
objectives to be found in AI is too large and diverse
for any very coherent "finished" toolkit to meet them
all, even if we factor out personal preferences of
developers for different programming languages or
styles of development.

It may be possible to produce an extendable toolkit
supporting a very wide range of paradigms, though
it may be complex and fairly messy. Likewise,
knowledge of a human language can be thought of as
possession of some sort of toolkit for communication,
which is rich in generative power, and highly
extendable, The linguistic toolkit includes all
sorts of diverse components, including morphological,
syntactic, semantic, pragmatic, mechanisms and
mechanisms for extending the language. Moreover,
linguistic knowledge cannot be cleanly separated from
knowledge about the world in which it is used. Similarly
with toolkits for developing intelligent agents.

Just as different sub-languages with varying degrees
of precision and formality are appropriate for different
communicative contexts, so also will different subsets
of development tools be relevant to different classes of
design problems.

This paper attempts to identify some of the
distinctions to be made within a generic set of tools
and tasks.

Of course, to the extent that there is real unclarity,
or disagreement, about what constitutes AI, or what
an agent is, this may be a hopelessly ill defined goal.
However, for now I am going to assume that at the
very least the tasks include both engineering goals
such as producing intelligent robots, software systems,
and symbiotic human-machine systems and scientific
goals such as understanding and modelling existing
intelligent systems and also trying to understand the
space of possible designs, natural and artificial (Davis
1996; Sloman 1994; 1996).

I do not expect that a paper as short as this can
exhaust the topic, but I’ll offer some groundwork by
discussing a set of questions relevant to designing or
choosing a toolkit. It may be that such a survey is useful
if only because some researchers, including both toolkit
designers and toolkit users with limited experience, may
be unaware of the full range of objectives, requirements
and potentially useful tools that may be needed.

To some extent this paper was inspired by Brian
Logan’s paper in this workshop (Logan 1998). His
paper is concerned with classifying types of agent
systems, whereas I am more concerned with classifying

From: AAAI Technical Report WS-98-10. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

the issues that arise in developing agent systems,
though obviously the two are closely related.

The development issues include questions like: What
sorts of things need to be put together? How many
different ways are there of putting things together, and
what are the reasons for choosing them?

Some of the answers will obviously depend on what is
being assembled. For instance, it will make a difference
whether the task is to assemble one complex goal-driven
agent or a collection involving many different kinds of
agents which do not necessarily share any common goal.
The kind of internal complexity required within each
agent will also affect the design process.

Less obviously, there are other determining factors,
such as how well specified the task is initially, whether
further development work may be required once the
system is up and running, and what sorts of testing
will be required. These and other points are discussed
in more detail below.

Some questions

In considering how to design a toolkit there are
a number of issues to be addressed, including the
following:
(a)What kinds of scenarios are to be developed?
Answering this includes specifying which types of
agents and objects are involved in the scenarios, the
kinds of goals, knowledge and skills they can have, and
the ways they can develop and behave.
(b) What are the scenarios to be used for? For instance,
is it a research activity or is there a practical goal?
(c) Is the system being developed a simulation
something else, or is it "the real thing"? (E.g. an actual
plant control system.)
(d) To what extent are the objectives and design
strategies already well understood in advance of use of
the toolkit?
(e) Which is more important: ease and speed
development and debugging, or speed of execution of
the developed system?
(f) Will thorough testing and collection of performance
statistics be required?
(g) Is it essential that the developed system be provably
correct as in some safety critical applications, or is
it enough that it works well in a wide range of test
situations?

Some of the questions break down into a number of
more specific sub-questions, as will be shown below.

What kinds of scenarios are to be
developed?

This is in part a question about the ontology of the
system being developed, including which sorts of agents
are involved, a question discussed in more detail later.
Figure 1 very loosely depicts a class of scenarios where
there are various kinds of concurrently active entities,
including agents which can communicate with one

Agent

Mechanism

Object

V~ Instrument

Reactor

Location

D * Communicat{
........ ~p, Be sensed

Act on

*o

t

Figure 1: Ontologies
(In general a toolkit may be used to build a simulation
involving many types of entities interacting in many
different ways. A few types are indicated here.)

another, agents and objects which can sense and react
to other things, instruments which can do something
if controlled by an agent, "reactors" which don’t do
anything of their own accord but can react if acted
on (e.g. a coiled spring, or mouse-trap) and immobile
locations which may have variable extents and all sorts
of properties relevant to agents, including, for instance
continuously varying heights and other features. Such
terrain features can have causal consequences, e.g.
which objects are visible from a particular location,
which locations are too steep to traverse, the energy
resources required for travel along a particular path,
etc.

This is not meant to be a complete or systematic
overview, merely an indication of the diversity of
participants and types of causal interactions that can
occur in scenarios of interest to AI.

A toolkit to support such diversity cannot be
expected to anticipate all the types of entities, causal
and non-causal relationships, states, processes, etc.
which can occur. So it will be desirable for users to be
able to extend the ontology as needed. One approach
is the use of object oriented programming, especially
where multiple-inheritance is supported. A different
approach is to use axioms defining different classes and
subclasses. Which is more useful is likely to depend
on other factors than the nature of the ontology, some
discussed below.

Another important difference between scenarios

2

concerns whether they are entirely concerned with
software processes within one or more computers (along
with displays and interaction devices) or whether there
will also be physical objects with additional sensor and
motors, e.g. robots or components of a factory being
controlled by the system under development.

Tools for developing systems of the latter kind will
require access to the specialised equipment including
robots, machinery, sensors, etc. Requirements will
include obtaining sample data, testing, and of course
final deployment, though for some development work
simulations may suffice, as is happening increasingly in
real engineering design and development.

There are also important differences between
scenarios in which artificial agents interact with humans
and those in which they interact merely with one
another and with hardware and software artefacts,
machines, etc. Interactions with humans can take many
forms, varying not only in relation to the physical
mode of communication but also the purposes of the
interaction. In some cases artificial agents will require a
deep understanding of human cognition and motivation,
e.g. in some forms of intelligent teaching systems
(Simon 1967; Sloman 1992; Picard 1997).

It is to be expected that the toolkit requirements
for such varied applications will be very diverse. Any
general purpose toolkit should at least provide means
for simulating the application environment if it is
different from the development environment.

If there is an external environment the toolkit
should provide "hooks" for connection to the final
sensors, motors, interaction devices, etc. If sensors
such as TV cameras and microphones are to
provide information about the environment there will
generally be considerable complexity in the perceptual
processing, including many levels of interpretation
(edge features, optical flow patterns, texture regions,
3-D structure fragments, recognised objects, perceived
spatio-temporal relations between objects, perceived
functional relationships, recognised larger contexts, e.g.
a seminar, a party, a family dinner, etc.). This may
require much use of prior domain knowledge in "top
down" processing to deal with ambiguities in the data.

This paper does not fully address perception in
a physical environment, and from now on will
mainly be concerned with development of simulations,
though with increasing sophistication of virtual reality
environments the differences between a simulation and
a physically realised system may diminish.

Often simulations will use software which is not
part of the agent development environment, but
a separately developed specialised simulation tool
(e.g. flight simulators, simulators for various kinds
of machinery, robots, etc.). However if there are
frequently used simulation environments, some useful
abstractions may be possible, leading to useful libraries
for an AI toolkit (e.g. packages for simulating 2-D

Figure 2: Multi-process agents
(Here rectangles represent short or long term databases
and ovals represent processing units. Arrows represent
flow of information.)

motion on a horizontal surface, packages for handling
natural language interaction with a user, packages for
simulating widely used robots).

Often a simulated environment will be a useful
step towards physically (and socially) embedded final
scenarios, provided that adequate care is taken not to
oversimplify the simulation and not to overgeneralise
results of simulations.

Inside One Agent
For research which aims (for scientific or for engineering
purposes) to model human or animal intelligence
there will be a need to design agents whose internal
architecture is extremely complex: in some cases at
least as complex as the kinds of multi-agent scenarios
depicted in Figure 1. As indicated (crudely) in Figure
there may be various sensors and motors connected to
a variety of internal processing modules and internal
short term and long term databases, all performing
various sub-tasks concurrently, possibly subject to
unpredictable interruptions or distractions from one
another and from the environment.

So a general toolkit must support not only multiple
agents which act concurrently and asynchronously,
but also within-agent components which act concur-
rently and asynchronously within individual agents,
performing multiple different tasks (Minsky 1987).
I.e. if a typical discrete event simulation system is
provided, it must support something like a hierarchical
structure in which concurrent modules themselves
contain concurrent modules.

If different goal generators and other mechanisms act

concurrently in an agent, various kinds of inconsistency
can arise, at different levels: conflicting motor
commands, conflicting goals, conflicting processing
resource requirements, etc. To deal with this the toolkit
library may have to include a variety of different conflict
resolution mechanisms.

AI research over several decades shows that different
types of mechanisms will be required for different
components, including rule-based reactive systems,
neural nets, parsers, meaning generators, sentence
generators, pattern-directed associative knowledge
stores, low level image analysers mainly crunching
numbers, high level perceptual mechanisms mainly
manipulating structures, simulations of other agents,
etc. This in turn probably imposes a requirement for
using different kinds of language for specifying and
implementing different sub-mechanisms.I

So, we need toolkits which can support scenarios in
which there are not only multiple agents and objects
all processing information and performing actions
concurrently, but also multiple sub-mechanisms within
such agents, acting with varying degrees of coherence.
We now try to give more details, starting with simpler
systems and gradually adding complexity.

The need for concurrency WITHIN agents
Concurrent more or less asynchronous sub-components
of a human-like agent may include processes as diverse
as:
¯ taking in and interpreting new perceptual informa-
tion,
¯ processing new communications from other agents,
¯ generating new motives,
¯ comparing motives in order to decide which to adopt
as intentions,
¯ deciding whether to abandon or revise existing
intentions,
¯ formulating and comparing possible plans to achieve
intentions,
¯ deciding which plan (if any) to adopt
¯ executing plans,
¯ monitoring action performance,
¯ deciding whether to revise plans, or postpone
execution,
¯ generating linguistic communications,
¯ monitoring and evaluating internal processes
and many kinds of learning and adaptation.

The processes listed here may be described as
"deliberative" processes. It is also possible to
have an architecture composed entirely of "reactive"
mechanisms implemented on fast, dedicated parallel

1There is a methodological stance which claims that
naturally evolved animal brains have no intelligible modular
structure, and therefore comparable systems cannot be
designed by human engineers. A paper challenging this
argument is in preparation. I believe evolution "discovered"
the same sorts of requirements for modularity of design as
human engineers.

TOWARDS DELIBERATIVE AGENTS
perception action

DELIBERATIVE PROCESSES ~ Long
(Planning, deciding, term

. f^ scheduling, etc.) ,I¯ /~ .,~ ~ memory

Variable ~ ~~~~~
threshold :~ k, lotive
attention ~ activation

filter "" ’41" ~R~

T,,,,V,RON,,,T

Figure 3: A hybrid system combining reactive
and deliberative mechanisms.
(Various supporting mechanisms are needed, e.g.
long term associative store for use in planning and
prediction, a representation for goals, an "attention
filter" to protect urgent and important resource-limited
deliberative processes etc.)

circuitry, with no planning capability (though innate
plans may be used.) That requires the designer (or
evolution) to anticipate and pre-design all possible
types of plans required for all possible contexts,
and may even require an impossibly large memory
to store all those plans. Including a deliberative
mechanism allows plans to be constructed as and
when necessary, e.g. using symbolic AI planning
methods, reducing the need for prior design (or
evolution) of behaviours and also possibly reducing
storage requirements. These trade-offs are not always
understood when supporters of reactive behaviour-
based systems claim that deliberative capabilities (good
old fashioned AI techniques) are not needed.

Figure 3 sketchily indicates a hybrid architecture
which includes interacting deliberative and reactive
mechanisms, all running in parallel with perceptual and
motor control systems, goal generating mechanisms,
and a long term associative memory (required for
deliberation, in order to answer questions about what
actions are possible in particular contexts, what the
consequences of those actions would be, and how
objects in the environment might react).

Alarms and variable resource allocation

Some internal processes may be relatively slow
(e.g. deliberation, perception of complex unfamiliar
structures picking up a delicate and fragile object. If
items in the environment can be fast moving (predators,

perce| on action
m Long

THE ENVIRONMENT

Figure 4: The previous figure with global alarm
mechanism added.
(The alarm system, a special purpose reactive
mechanism, receives inputs from all other parts of
the system, uses rapid pattern recognition to detect
opportunities, dangers, etc. and reacts by sending
"powerful" control signals to all parts of the system.)

prey, or random projectiles) it might be useful to have
an additional trainable "global alarm" system operating
in parallel with the routine reactive and deliberative
mechanisms, able to detect the need for rapid action
or redirection of attention or freezing, etc. Such an
architecture is depicted loosely in Figure 4. It seems
that humans and other animals include one or more
such mechanisms, which, among other things, can
produce emotional reactions.

This illustrates an important point, namely that it
may be necessary to distinguish components which
operate at different speeds. A toolkit should make it
possible to explore and compare an agent which has
a very fast planning mechanism with one which has a
much slower planning mechanisms, and then investigate
the effects of adding "anytime" planning facilities
and alarm systems. This requires user-definable
resource-allocation mechanisms for components of the
architecture (one of the features of the SIM_AGENT
toolkit we have developed).

Another requirement, if alarm systems are to be
able to work, is that one mechanism should be able
to interrupt or redirect another, requiring provision
for something like signal handlers or event handlers,
throughout the system.

Internal monitoring: meta-management

For reasons which have been discussed at length
elsewhere (Beaudoin 1994; McCarthy 1995; Sloman
1997; Wright, Sloman, & Beaudoin 1996) it may be

desirable in some kinds of agents (especially agents
with advanced forms of human self-consciousness), to
introspect, i.e. monitor internal states, categorise them,
evaluate them and attempt to control them.

E.g. an agent which learns that in context A,
reasoning strategy S1 often leads rapidly to a good
conclusion, whereas in context B strategy $2 works
better, can use recognition of the context to select
a reasoning strategy. Without meta-management
this would have to be directly programmed into the
deliberative mechanism from the start, rather than
being something the agent can discover for itself.

If the meta-management architecture also supports
inspection of intermediate structures in perceptual
mechanisms this will enable agents to compare
differences in how the same things look to them. In
human agents this is also relevant to learning to draw
things realistically. Meta-management may also be a
mechanism whereby agents share a culture: for instance
if ways of thinking and deciding are favoured in a
culture then individuals may learn to use them. An
example might be learning to prefer unselfish decision
making criteria to selfish ones.

A crude depiction of an architecture including this
sort of functionality in addition to the previous kinds
is shown in Figure 5, from which the alarm mechanism
has been omitted to save clutter.

It is not clear how many animals can direct attention
inwardly in this sense, and categorise, evaluate and
control internal processes, though humans clearly can
to some extent. I do not know whether a rat or a
chimpanzee can control its thought processes.

In humans, control of attention is partial: in certain
emotional states such as grief or excited anticipation,
for instance, we may find our thoughts wandering away
from the task in hand to a topic related to the source
of the emotion. Where part of the task of an agent
designer is to simulate these emotional processes a
multi-layer hybrid architecture may be needed.2

In artificial agents there could also be various kinds
of interrupt mechanisms which interfere with such
control, for instance a type of global alarm system
which can use very rapid pattern matching to decide
to redirect processing throughout the system (as the
limbic system seems to be able to do in humans and
other animals). There might be different global alarm
systems of different complexity, operating at different
speeds.

The need for speed would rule out deep analysis and
reasoning. Consequently there is a serious risk that such
a system will make mistakes and interfere with complex
tasks. However turning off the alarm system could be
dangerous as urgent and important opportunities and
dangers might then be missed.

2For a recent widely-cited analysis of the role of emotions
in intelligence see Damasio(1994).

5

perception action

THE ENVIRONMENT

Figure 5: Towards a human-like reflective archi-
tecture: the previous system with mechanisms
able to monitor, categorise, evaluate and modify
processes in other systems.
(A "global alarm" mechanism (like an octopus with
tentacles reaching to and from all other parts) could
be added, as in previous figure. It is possible that
metamanagement mechanisms evolved by copying and
then redesigning earlier global alarm mechanisms.)

Re-building the Boat
Consider sailors re-building a boat while sailing in it,
until it no longer has any of its original parts. I
suspect something similar happens between the birth
of a human infant and normal adult development.

There may also be a practical need for artificial agents
to add or remove components in their architecture, e.g.
buying new "plug-ins’.

Tools to allow various types of self-reconstruction
will be required for building such systems. I.e. some
development tools may be required at run time.

Varieties of learning and development
The more complex an agent’s architecture is the
more scope there is for adaptation, development or
learning. For instance in Figure 5 kinds of change
could include addition or removal of sub-components
in the architecture, addition or modification of links
between components, development of new formalisms

for use in various sub-mechanisms, addition of new facts
in the long term memory used by the deliberative layer,
modification of filtering strategies, development of new
ways of categorising internal states, development of new
deliberation strategies, and fine tuning of sensory and
motor systems.

If a global alarm system is added, then it may
be able to learn new patterns requiring fast global
reactions, and it may also be able to modify the
reactions associated with various patterns over time.
E.g. an adult learns to suppress reactions that are
useful in childhood because they inform a parent of
one’s needs.

Development Environments
It has proved quite difficult to design and implement
agents with the degree of complexity and flexibility
outlined here. One reason is the difficulty of knowing
what sort of design is required. This suggests a
need for tools to explore possible designs and design
requirements (e.g. by examining how instances of first
draft designs succeed or fail in various domains and
tasks). I.e. support for very rapid prototyping is
helpful. This raises the issue of the familiar trade-
off been compile time checking and optimisation vs
flexibility.

Many agent toolkits are geared to support a
particular type of agent (e.g. agents built from
collection of neural nets, or agents which all have
a particular sort of cognitive architecture such as
the SOAR architecture proposed by Newell, or the
ACT-R architecture proposed by Anderson). While
these may be useful for exploring the implications
of particular theories, as general purpose toolkits
they are inadequate. The field of AI in general,
and the study of systems of interacting agents in
particular, is in its infancy: we have very little
idea of what the full range of information processing
engines and architectures might be. For instance,
brain scientists are continually discovering new roles for
neurotransmitters in animal brains, and there may be
profound surprises ahead. Thus a toolkit committed
to any particular architecture is likely to impose a
premature commitment, discouraging the investigation
of alternatives. (This is not to deny the usefulness of
such toolkits for their domain of application.)

We also need a type of toolkit which not only
supports the kind of complexity described above, but
which does not prescribe any particular architecture for
agents, so that we can learn by exploring new forms.
It is not clear whether any single toolkit can suffice for
this purpose, or whether a collection of different toolkits
will always be needed. It is very unlikely that one will
suffice for everything, but we can try to find a minimal
set which will cover the known classes of requirements.

An analogy: although almost all programming
languages are inherently general (since they can all be
used to implement a general purpose Turing machine)

there is no one which has proved to be best for all
purposes. However, some (e.g. Common Lisp, Pop-
11) provide support for a wider range of programming
styles than most others (e.g. procedural, functional,
list-processing, pattern based, object oriented styles),
and through the use of such things as interpreters or
incremental compilers, automatic garbage collectors,
powerful syntax-extension mechanisms, and integrated
editors they are also better suited to certain types of
rapid exploratory prototyping.

However one requirement for any toolkit is that it
should support the re-use of components of previous
designs so that not all designers have to start from
scratch. Making this possible involves producing a well-
annotated "library" of components, algorithms, forms
of representation, along with tools for assembling them
into architectures.

Ideally a toolkit should support both explicit design
by human researchers and also automated design
of agents e.g. using evolutionary mechanisms, or
mechanisms which can take a high level functional
specification for an agent and work out which
components are needed. It is very likely that this
cannot be fully automated, so interactive co-operative
design tools will be required.

Combining paradigms

Since different kinds of mechanisms are required
for different subsystems, one of the important
tasks in designing a general purpose toolkit is to
find ways of combining the different mechanisms.
Unfortunately researchers instead often argue about
which mechanisms are the "right" ones!

A condition-action rulesystem may include some
conditions which have to be matched against a very
large long term memory with generalisation and
interpolation capabilities, which might be implemented
as a neural net. We need to continue exploring
techniques for combining such capabilities. This is
done in Anderson’s ACT-R system (Anderson. 1993).
A different mechanism for integrating condition-action
rules with "subsymbolic" mechanisms can be found in
our SIM_AGENT toolkit (Sloman & Poli 1996).
doubt there is a wide variety of types of synthesis to be
explored.

Designing physical robots often forces use of different
paradigms for different components, e.g. low level and
high level vision, fine-grained motor control, various
kinds of symbolic and neural learning mechanisms,
and even integration between mechanical and software
control, for instance in the use of a "compliant" wrist
to guide cylinders into tight-fitting holes, etc. There is
no reason why similar eclecticism should not be useful
in systems which inhabit software worlds, and designers
of general purpose toolkits should be aware of the need
to support this.

Windows into the souls of agents

When agents are very complex it can be very difficult
to understand what is happening when they run,
especially if the observed behaviour is unexpected
and debugging is required. One obvious solution to
this problem is to provide support for trace printing.
However experience with such systems shows that it
is very easy to generate megabytes of unusable trace
printing if there are several agents each with multiple
complex internal processes.

A partial solution is to use graphical displays showing
the interactions of the agents. This is particularly
useful, indeed essential, where the interactions include
simulated spatial motion. However it should also be
possible at run time to select individual agents, and
explore their internal processes either by selectively
turning various kinds of textual and graphical tracing
on and off, or by making the system pause so that one
can probe the agent’s architecture, analyse the contents
of its data-bases, neural nets, etc. This will often
require graphical tools.

Such tools are easier to provide when all agents have
similar architectures and environments: where a general
purpose toolkit supports a wide range of architectures,
users will have to be able to extend the graphical
interrogation mechanisms to suit the architectures and
environments: often a non-trivial task.

In some cases the internal structure is too complex
to inspect directly. In that case, it may be necessary
for the agent to engage in a dialogue with the user
describing its current beliefs, desires, plans, intentions,
fears, etc. This will require self-monitoring capabilities
as well as something like natural language processing
mechanisms. Speech synthesisers may also be useful.

What Are the Scenarios to be Used For?

There are large differences between scenarios which are
used entirely for the purposes of theoretical research,
e.g. to test out models of human cognition, or ideas
about agent architectures or types of communication
formalisms, and scenarios which are used for a practical
application.

In particular for theoretical work many insights
often come from incomplete implementations, since the
process of implementation can reveal gaps and errors in
the ideas being developed.

Practical applications also vary. For instance there
is a difference between the design of a disaster control
system which is to be used to control real people
and equipment in dealing with earthquakes or fires or
ship collisions, and a disaster control system which is
used only in testing disaster management strategies,
or in training environments for the people who will
themselves later have to take responsibility in real
situations.

In some ways the training context is more demanding
since the system not only has to be able to perform,

7

it also needs to be able to explain and justify its
performance and also to analyse and comment on the
performance of a trainee. This requires a kind of self-
knowledge which may not be relevant for all fielded
applications. Of course in some applications, providing
explanations to human operators may be included in
the task requirements.

Additional selection criteria
Besides the issues already discussed, there are
additional factors which may influence the choice of a
toolkit. Some of these are listed here.

1. To what extent are the objectives and
design strategies already well understood
in advance of use of the toolkit?
Where a design specification for production of one or
more intelligent systems is well defined in advance, it
may suffice to produce tools which include a precisely
defined formalism for expressing designs along with
compilers or interpreters which can animate such a
design specification.

In that context it also makes sense to require tools to
verify formally that the animation meets some formally
specified set of requirements.

Where the problem is not well defined in advance
and part of the objective of the construction of a
new system is to explore what the design requirements
are and to work out which kinds of designs might
help to meet different sorts of requirements, then
tools which make exploration and experiment relatively
easy may be more important than tools which accept
mathematically precise formal specifications and which
automate verification.

Use of logical specification will be most useful
where requirements and designs are well understood
in advance and formal analysis of systems is required,
whereas object oriented programming with multiple
inheritance and generic functions (multi-methods) will
be more useful for exploratory research. In the latter
case a toolkit supporting a variety of programming
paradigms may be helpful, especially if the exploration
involves designing the simulation environment as well
as many different components in the agents, including
perceptual and motor mechanisms.

2. Which is more important: ease and
speed of development and debugging~ or
speed of execution of the developed
system?
AI languages usually have many features which make
them very suitable for interactive development and
testing. These include dynamic scoping of identifiers,
interpreted or incrementally compiled code, availability
of symbol table and compiler at run time, use of
indirection via identifiers in a global symbol table, so
that redefining the value of a variable causes old code
to point (indirectly) to the new value, etc. For example

typically in an AI environment (Lisp, Prolog, Pop-
11, Scheme), while a system is up and running you
can in a fraction of a second recompile a redefined
rule or procedure and everything which used the old
definition will thereafter automatically use the new
one, via its name: there is no need to re-link and
start again. The space previously used by the old one
will be automatically reclaimed by a garbage collector,
preventing memory leaks. All this can lead to extremely
rapid exploratory development and testing.

Moreover, these languages support schematic re-
usable high order functions with minimal constraints,
such as a sorting procedure which takes an untyped list
and an untyped ordering predicate and uses a general
sorting algorithm (such as merge sort) without caring
whether the list elements are all of the same type as long
as the predicate produces a boolean result when applied
to any two of them. This kind of flexibility makes it
very easy to re-use powerful general purpose libraries
including databases, pattern matchers, etc. in contexts
which would be very awkward for more "disciplined"
languages.

Such facilities are often ruled out in strongly typed
languages (even incrementally compiled ones like ML)
because the typing is used to perform optimisations
which are not guaranteed to be valid if only one part of
a complex previously compiled collection of procedures
is changed.

Another feature of many AI environments is the use
of an interpreter which can be told at run time to
modify its behaviour so as to give the users more tracing
information or the ability to have closer control over
running.

Dynamically recompileable methods in an object-
oriented development environment also provide support
for this type of flexibility.

People who are used to languages like C and C++
and have never used AI languages often do not
appreciate the advantages of such flexibility.

An extreme example of an ill-defined problem might
be the task of making some sort of intelligent interface
easy for a certain class of users. If we don’t initially have
a precise specification of users’ cognitive mechanisms,
we can have no clear idea what kind of appearance or
behaviour will or will not be easy. If we have some
"hunches" regarding ease of use, we can implement
them and then try the system out with real users. A
flexible development environment should make it easy
rapidly to try making various modifications, including
modifications suggested by a user, to see if the user likes
them or not, without having to recompile everything.
Not all these modifications will be in a parameter
space that has previously been found relevant. It
may be necessary to redefine some procedure or add
new procedures to make the changes proposed, e.g.
changing a help procedure so that it provides a new
panel of options.

8

Provision of facilities for easily changing code or the
behaviour of modules at run time without having to
restart the whole system often introduces bugs and
inefficiencies. Nevertheless they are exactly the sorts
of facilities which can make development go very much
faster when the problem is ill defined and when a great
of experimentation is still required to understand the
problem. Moreover the flexibility which sometimes
leads to bugs also supports very flexible and powerful
debugging (e.g. adding a one-off procedure at run
time to search a data-structure suspected of being
corrupted).

Even if facilities supporting rapid prototyping and
exploration of options are incompatible with optimising
run time and space performance, it is arguable that
most interesting research areas in AI are sufficiently ill-
defined that toolkits which optimise flexibility rather
than performance will be needed.

Fortunately changes in hardware have been providing
exponentially increasing performance and available
memory over the last two decades. This means that
hardware developments have led to far greater speed
increases than software modifications can (including
development of new languages or new compilers).
Perhaps this will continue.

3. Is it essential that the developed system
be provably correct as in some safety
critical applications?

One consequences of the kind of flexibility outlined in
the previous section is the impossibility of verifying that
a system will meet some specification. E.g. the use of
un-typed identifiers add considerable flexibility to many
AI systems, but at the same time can make it difficult
or impossible to prove properties of programs.

Furthermore if users have the freedom to redefine
things at run time in the manner required for
exploratory design and rapid prototyping, then in some
cases exactly the same freedom may have to be given
to systems which adapt themselves to new users, new
contexts or new tasks. Such self-modifying code may
be required for agents which begin to match human
intelligence and flexibility. In more mundane contexts
self-modifiability may be a requirement for systems
which can expand themselves by acquiring new "plug-
in" modules at run time (by analogy with tools like
Netscape).

For all these reasons it is arguable that the sorts of
flexible development tools which are required for much
interesting AI research would be incompatible with the
very restrictive requirements typical of safety critical
systems.

On the other hand we often include humans as
components in safety critical systems (e.g. human
pilots) and it may be that for similar reasons we may
eventually have to tolerate intelligent artificial agents
which are no more provably correct than humans are.

Challenges for Theorists

This analysis of the design and development problems
for intelligent systems raises a number of problems
which may be disconcerting for theorists.

¯ The design of systems of such complexity poses a
formidable challenge. Can it be automated to any
useful extent? (In simple cases genetic algorithms and
similar techniques may be relevant.)
¯ Will we ever be able to automate the checking of
important features of such designs?

¯ It seems likely that the sort of complexity outlined
above will be required even in some safety critical
systems. Can we possibly hope to understand such
complex systems well enough to trust them?

¯ Do we yet have good languages for expressing the
requirements for such systems (e.g. what does "coherent
integration" mean? What does "adaptive learning"
mean in connection with a multi-functional system?)

¯ Do we have languages adequate for describing designs
for such systems at a high enough level of abstraction
for us to be able understand them (as opposed to
millions of lines of low level detail)?
¯ Will we ever understand the workings of systems of
such complexity?

¯ How should we teach our students to think about
such things?

Conclusion

I have tried to indicate some of the diversity and
complexity to be found in agent design tasks, and
have spelled out some ways in which this impinges on
requirements for agent toolkits.

Some of the complexity comes from the rich
ontologies in the environments of agents, especially
where the environment contains other kinds of agents
of varying types. Some of it comes from the fact
that agents may themselves have a rich and complex
internal architecture consisting of many concurrent
interacting modules of various types, including reactive
modules, deliberative modules, sensory analysis and
interpretation modules, motor control modules, and
reflective modules capable of monitoring, evaluating,
and to some extent controlling other internal processes.

Apart from the inherent complexity of the designs
to be created, further complexity can arise when the
design task is not initially well specified and is in part
a research process, exploring different architectures and
environments in order to gain an understanding of the
space of possible designs. In that case it may be
possible to facilitate the exploration by using a language
which supports rapid prototyping and incremental
development and testing. In other cases tools for
automatic adaptation or evolution may be helpful.

As the systems being developed grow more complex,
various support tools will be needed, including a library
mechanism for saving re-usable components, sub-

architectures, algorithms, and forms of representation,
along with indexes and other aids for selection and
assembly of these items. Re-usable graphical and
other tracing and profiling mechanisms which can be
selectively turned on and off asynchronously will also
be useful.

In some cases we may end up with systems which are
too complex for us to understand fully, especially if they
have developed using self-modification mechanisms. In
such cases we may simply have to trust the artificial
agents, much as we trust other people, at least after
they have been tested and proved trustworthy.

One of the main points to be stressed in this analysis
is that we do not yet know what sorts of architectures
will be needed for intelligent systems of the future,
whether they are practical systems or research models.
Consequently it is hard to predict what sorts of tools
will be required. It may even turn out that for
some tasks new kinds of information processing engines
will be necessary including for instance, chemical
mechanisms or quantum computers. In the meantime
we should not unduly restrict our research horizons by
using only toolkits designed to support a fixed class of
architectures.3

Acknowledgements

This paper includes ideas from: Riccardo Poli,
Brian Logan, Luc Beaudoin, Darryl Davis, Ian
Wright, Jeremy Baxter (DERA), Richard Hepplewhite
(DERA).

The work is partly funded by grant no CSM3202710
from DERA Malvern.

References

Anderson., J. R. 1993. Rules of the Mind. Mahwah,
N J: Lawrence Erlbaum Associates,.
Beaudoin, L. 1994. Goal processing in autonomous
agents. Ph.D. Dissertation, School of Computer
Science, The University of Birmingham.

Damasio, A. R. 1994. Descartes’ Error, Emotion
Reason and the Human Brain. Grosset/Putnam
Books.

Davis, D. N. 1996. Reactive and motivational agents:
Towards a collective minder. In Muller, J.;
Wooldridge, M.; and Jennings, N., eds., Intelligent
Agents III -- Proceedings of the Third International
Workshop on Agent Theories, Architectures, and
Languages. Springer-Verlag.

Logan, B. 1998. Classifying agent systems. In Logan,
B., and Baxter, J., eds., Proceedings AAAI-98

3The SIM_AGENT toolkit was designed to support
exploration of a very wide range of architectures. It is
described briefly in Sloman & Poli (1996) and at the
following web page, which also points to the source code:
www.cs.bham.ac.uk/~ axs/cog_affect/sim_agent.html

Workshop on Software Tools for Developing Agents.
Menlo Park, California: American Association for
Artificial Intelligence.

McCarthy, J. 1995. Making robots conscious of their
mental states. In AAAI Spring Symposium on
Representing Mental States and Mechanisms.
Accessible via http://www-
formal.stanford.edu/jmc/consciousness.html.

Minsky, M. L. 1987. The Society of Mind. London:
William Heinemann Ltd.
Newell, A. 1990. Unified Theories of Cognition.
Harvard University Press.
Picard, R. 1997. Affective Computing. Cambridge,
Mass, London, England: MIT Press.

Simon, H. A. 1967. Motivational and emotional
controls of cognition. Reprinted in Models of
Thought, Yale University Press, 29-38, 1979.
Sloman, A., and Logan, B. S. 1998. Architectures
and tools for human-like agents. In Ritter, F., and
Young, R. M., eds., Proceedings of the 2nd European
Conference on Cognitive Modelling, 58-65.
Nottkingham, UK: Nottingham University Press.

Sloman, A., and Poli, R. 1996. Sim_agent: A toolkit
for exploring agent designs. In Wooldridge, M.;
Mueller, J.; and Tambe, M., eds., Intelligent Agents
Vol H (ATAL-95). Springer-Verlag. 392-407.

Sloman, A. 1992. Prolegomena to a theory of
communication and affect. In Ortony, A.; Slack, J.;
and Stock, O., eds., Communication from an
Artificial Intelligence Perspective: Theoretical and
Applied Issues. Heidelberg, Germany: Springer.
229-260.
Sloman, A. 1994. Explorations in design space. In
Proceedings 11th European Conference on AI.

Sloman, A. 1996. Beyond turing equivalence. In
Millican, P., and Clark, A., eds., Machines and
Thought: The Legacy of Alan Turing (vol I). Oxford:
The Clarendon Press. 179-219. (Presented at
Turing90 Colloquium, Sussex University, April 1990.
Also Cognitive Science technical report: CSRP-95-7).

Sloman, A. 1997. What sort of control system is able
to have a personality. In Trappl, R., and Petta, P.,
eds., Creating Personalities for Synthetic Actors:
Towards Autonomous Personality Agents. Berlin:
Springer (Lecture notes in AI). 166-208. (Originally
presented at Workshop on Designing personalities for
synthetic actors, Vienna, June 1995).

Wright, I.; Sloman, A.; and Beaudoin, L. 1996.
Towards a design-based analysis of emotional
episodes. Philosophy Psychiatry and Psychology
3(2):101-126.

10

