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Abstract

The advanced state of agent software and computing
hardware makes it possible to construct complex agents
and robots with multiple streams of input such as vi-
sion, speech, gestures and data. Such agents, like peo-
ple (who also have access to multiple input streams),
need to effectively manage the input in order to process
important information within useful time bounds. This
paper discusses processes and architectural components
that are used to manage input data.

In addition to reduced processing load, input man-
agement may also enable symbol grounding. However,
some effects are not beneficial. For example, the agent
will lack a full accounting of all input data, which
means that standard explanation techniques will not
function correctly. We propose several techniques for
overcoming the disadvantages of input management.

1 The Evolution of Highly-Perceptive Agents
The first agents, in the form of knowledge-based systems,
were invented over twenty years ago. The computing re-
sources of that time were not capable of supporting high-
bandwidth interaction so they relied on simple user inter-
faces, interacting in a very limited way with one person at
a time.

Today we can build agents that are much more perceptu-
ally complex, capable of receiving input from many high-
bandwidth sources at the same time. Various autonomous
robots utilize vision, sonar and infrared sensors while
communicating with other agents via wireless networks.
The CMU Navlab (Pomerleau 1995) processes visual
input and monitors vehicle controls in real time while driv-
ing a van at highway speeds. MIT’s Intelligent Room
(Coen 1998) processes visual, gestural and speech inputs
from multiple people while displaying requested informa-
tion on several displays in the room. ISI’s helicopter pilot
agents (Hill et al. 1997) fly helicopters while scouting for
enemy tanks in a full scale battlefield simulation.

While these are impressive gains over systems devel-
oped a decade ago, they still have many limitations. The
Intelligent Room uses twelve cameras for vision input, yet
the test room required extensive modifications to its light-

ing and decor in order to prevent shadows from interfering
with the visual processes. The helicopter pilot agents at
ISI once participated in a simulation in which they came
over a hill and encountered a field containing ninety tanks.
The agents concentrated on processing visual information
about the tanks. Meanwhile the helicopters drifted out of
position because the helicopter gauges and controls were
ignored. As a result, one of the helicopters crashed into a
hillside while the other two helicopters crashed into each
other. The need to correctly focus attention is just as
prevalent in agent perception as it is in human perception.
A chillingly similar scenario led to the crash of Eastern
Flight 401 on December 29, 1972 near Miami, resulting in
over one hundred deaths.

This paper discusses perception management for highly
perceptive agents. There hasbeen significant researchinto
the problem of allocating cognitive resources to ongoing
tasks; see, for example, (Hayes-Roth 1995). The impor-
tance of allocating perceptual resources has become more
important recently, as the continuing advances in computer
technology have made feasible advanced input modes such
as vision and speech.

In order to process large quantities of input without pro-
ducing problems such as those described above, we must
design the agent’s architecture to facilitate complex per-
ception. If one were designing the first intelligent agent
today, the specifications for it would almost certainly in-
clude the following:

¯ networkaccess to the World Wide Web as a source of
knowledge

¯ access to other intelligent systems on a network
¯ a variety of methods for asynchronous interaction with

people and other systems, including voice, text, gestu-
ral and visual input and output

¯ the ability to control external non-intelligent devices
such as switches and motors

¯ to selectively incorporate data and results into the
knowledge base (to prevent unbounded knowledge
base expansion due to the increased bandwidth)
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This paper focuses on agents that have some or all of the
above perceptual capabilities. The next section discusses
attention mechanisms that help focus and filter perceptual
activity. The following section discusses some ramifica-
tions of perceptual management, including the inability of
standard explanation mechanisms to function in a highly
perceptive environment. There are also some beneficial
ramifications. One is that perception provides a way to
ground symbols-which some say is a prerequisite for truly
intelligent systems.

2 Attention-based Perception

In general, an input manager should be able to:

¯ regulate the amount of information received over each
input channel,

¯ prioritize the input according to dynamically changing
preferences,

¯ provide a way for input to activate memory contents,

¯ handle unrecognized input,

¯ serialize parallel inputs when necessary,

Since people are even more perceptually complex than to-
day’s agents, the characteristics of human perception have
proved valuable when designing agent perception systems.
The human brain is capable of filtering and processing
hundreds of auditory, visual and tactile inputs per second
(Potter 1993). Since similar sensors are likely to exist 
an artificial intelligence, we can look to the human percep-
tual attention system for solutions to the input manage-
ment problem.

Human Perceptual Attention

The methods and structures that people have evolved to
handle perceptual input are:

Sensory buffers separate from regular memory and
having a very short lifetime. According to (Klatzky
1980), evidence exists for perceptual storage areas.
The visual and auditory buffers have been named the
icon and the echo in (Neisser 1967). Perceptions may
be replayed from the sensory buffers, but the inputs
are not consciously processed until the information
moves to short term memory. Only a smaUpercentage
of sensory inputs are permanently retained.

A short term memory distinct from long term memory.
Short term memory has a small capacity, approximate-
ly seven plus or minus two (Miller 1956), and an expo-
nentially decaying activation lifetime measured in sec-

onds (Klatzky 1980). People don~t retain most of the
data they receive or inferences that they make.

An attention mechanism to filter and organize incom-
ing data. Selective attention (Broadbent 1958; Treis-
man 1993) helps to organize and prioritize incoming
data both within a modality (e.g. vision) and across
modalities. People process important data first and
importance depends on the current situation.

Visual Attention
The task of general computer vision is so computationally
complex that it requires an attention mechanism (Tsotsos
1990). Many visual attention models (e.g. Ahmad 1991;
Milanese et al. 1992; Mozer 1988; Sandon 1990) are
based on a theory of human perception and attention
known as Feature Integration Theory (Treisman 1993). 
Feature Integration Theory, perception is divided into two
levels, sub-symbolic and symbolic, with corresponding at-
tention mechanisms, known as early and late attention re-
spectively. The first stage of attention is modal attenua-
tion, in which one modality (input channel) is given pref-
erential treatment.

The second stage of attention is feature registration.
This stage recognizes certain basic features of the input,
for example the primary colors, contrast and verticality in
vision; pitch and timbre in auditory input, etc. Feature
registration is performed in parallel by low-level sensor
and brain structures. The resulting features are placed into
feature maps which contain the locations of recognized
features.

In the third stage, feature maps are combined into per-
ceptual structures representing objects in the external
world1. A perceptual structure contains the features, along
with their values and activation levels, that correspond to
an external object. The activation level of a feature comes
from the early attention mechanism.

If a new object enters the field of view, a new perceptual
structure is created to store information about it. If an ex-
isting object moves, its existing perceptual structure is up-
dated. In people, creation of perceptual structures is af-
fected by attention. Under time pressure, people will cre-
ate only a few important perceptual structures; the rest of
the input will not be available for higher-level processing.
However, the input may be processed later if recalled from
the visuo-spatial sketchpad (Baddeley 1993), a replay loop
that temporarily stores visuo-spatial information.

Perceptual structures bridge the sub-symbolic/symbolic
gap. They are used as patterns to activate concepts from
short term and long term memory. Concepts activated by
perceptual inputs are placed in short term memory and

1 Our "perceptual structures" correspond to Treisman’s "ob-

ject files", a term with a different meaning in Computer Science.
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used for the current processing. This explains, for exam-
ple, how seeing a set of keys can remind you of your own
keys.

In addition to visual attention, a highly perceptive agent
will undoubtedly need an attention module for each input
modality. These will need to be cooperatively managed
according to the current high-level goals, a process I call
coordinated multimodal attention, The process of uti-
lizing input from different input modalities at a high level
is called multimodal interaction (Oviatt 1997).

Figure 1 shows an overview of a perceptive system. Ex-
ternal input feeds into a perceptual management subsystem
(the black box). From there, percepts move into the Sen-
sor Buffer where they can trigger reactive behavior and/or
activate knowledge and reasoning processes used in deep-
er cognitive behavior. The memory model in Figure 1 is
based on a model presented in (Shiffrin and Atkinson
1969).

Characteristics of Attention-based Perception

The higher-level cognitive processes can control atten-
tion in several ways: modality selection, feature registra-
tion and selection, and semantic attention. Modality selec-
tion merely sets a preference for one modality over the
others2. Feature selection causes a preference for certain
features (colors, shapes, sounds, etc.). This is why it 
more useful to tell someone "Bring me the big, orange
book with black letters" rather than "Bring me the AAAI-
87 conference proceedings".

Percepts

Extemal Input

Fig. 1. Symbolic attention, reasoning and memory.

2 Artificial intelligences may be able to implement a more
complexmodality preference system. Itis asyet unclear whether
some characteristics of human attention are limitations or useful
features to artificial intelligences.

At the symbolic level, semantic attention, also called
late selection, can either enhance or suppress the creation
and/or activation of concepts. Enhancement is called se-
mantic priming, while suppression is called semantic in-
terference. The effects of semantic priming are relatively
easy to detect. Subjects display faster recall of concepts
that are semantically related to recently-encountered con-
cepts. The classic illustration of semantic priming is de-
scribed in (Neely 1977), which shows that conscious visu-
al priming takes at least 700ms to happen and that people
rely on sub-symbolic attention when less reaction time is
available.

The classic account of semantic interference is the
Stroop effect (Stroop 1935). In this experiment, subjects
took longer to name the color of ink in which a word was
printed if the word was the name of a different color, for
example the word "yellow" printed in blue ink. The effect
is also encountered if the subjects are to name the color of
a rectangle but the name of another color is printed nearby.

In summary, human perception has evolved a multi-
stage perceptual attention mechanism that covers both sub-
symbolic and symbolic representation levels. The early
stages of perceptual attention perform parallel registration
of basic input features, while later stages integrate those
features into percepts that act as indices into symbolic
memory.

3 Architectural Implications

The general-purpose attention process described above
combined with a high perceptual data rate will both
provide some benefits and cause some problems for
knowledge based systems. This section discusses the im-
pact of the attention process on the structure and behavior
of a typical knowledge based system.

Symbol grounding

One of the main tenets of AI is that symbolic reasoning
forms a basis for intelligent reasoning. Harnad (Harnad
1993) points out that symbolic computation is the "system-
atically interpretable manipulation of meaningless sym-
bols" and that "symbol meanings must be grounded in
something besides their interpretability if they are going
to be candidates" for intelligent reasoning. Harnad pro-
poses that symbols can be grounded in their sensorimotor
projections.

I propose that the perceptual structures generated by the
perceptual attention process qualify as "sensorimotor pro-
jections" suitable for use in symbol grounding. A ground-
ed instance such as FIRE-EXTINGUISHER-3 in the
knowledge base would have a pointer to one or more per-
ceptual structures that were created when it was sensed.
Interpreting (i.e. retrieving the semantics of) the FIRE-
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EXTINGUISHER-3 symbol might involve further pro-
cessing of the perceptual structures. In this way, a seman-
tic aspect of the symbol is retrieved from someplace other
than the other symbols in the knowledge base, satisfying
Harnad’s requirement.

Storing and retrieving information from sensory images
is a research area called computational imagery
(Narayanan 1993). This is still a young research area and
there is considerable debate as to the appropriate storage
and intermediate data formats for performing imagery.

Separate short term and long term memory

If large amounts of data are continually asserted into the
knowledge base, it will quickly bloat and become useless.
One solution is to separate the storage areas for short term
and long term memory. Data arrive in short term memory
and then automatically decay away unless explicitly trans-
ferred into long term memory. This is the model used in
this paper, but it is not the typical memory model used in
knowledge based systems today.

Human memory exhibits characteristics of having sepa-
rate short term and long term memories. The usefulness of
this differentiation between the two types of memory is
not completely known, although it can be postulated that
short term memory functions much the same as a comput-
er’s memory cache; it provides fast access and temporal
grouping. It is probable that the attention process de-
scribed in this paper is best used with a two-level (or
more) memory structure. Since most knowledge based
systems have a monolithic memory, this would necessitate
a reorganization of the general KB system model.

It is likely that early AI systems intended to incorporate
short term and long term memory models similar to those
that people use. However, by the time oPs (Brownston,
et al. 1985) was implemented the distinction had been lost.
The idea of separate memory areas was revived for Soar
(Laird, Newell and Rosenbloom 1987). In Soar, all 
the processing occurs in short term memory. Items must
be specifically transferred into long term memory via a de-
cision procedure. Although Prolog is not modeled after
human memory, it also distinguishes between working
memory and long term memory: Prolog does not retain in-
termediate results and stores information only when an as-
sert operator is executed.

Reconstructive explanation and recall

Given the decay of short term data in our model, there will
be very few situations in which all of the applicable sensor
data is available to the reasoning process. For example, an
agent may hear a voice behind it, but no longer remember
that a person recently walked behind it. This will have an
impact on the reasoning process, but even more so on the

explanation process. How can a system explain events
when information about them is fragmented? Once again,
we find a possible answer in human cognition.

People, when faced with incomplete data, often use re-
constructive memory to fill in the details. For example, if
someone were asked what happened when they started
their car a week ago, they probably couldn’t remember all
of the details. However, they could use the generic tem-
plate (a.k.a. a schema or case) for starting a car and reply,
"I must have opened the door, sat down, put the key in the
ignition, and started the car. Oh, and it was sunny that
day so then l put on my sunglasses." In this example, one
known fact (that it was a sunny day) is supplemented 
numerous details from a generic template.

The AI term for schema-based explanation and recall is
case-based reasoning (CBR) (Riesbeck and Schank 1986;
Leake 1996). CBR has proven to be a very capable
method of reasoning. Its most difficult problem is index-
ing--selecting and organizing features that are used to re-
trieve cases from memory.

A modern CBR system contains a case library of ab-
stract cases that are instantiated by relevant data. This
method will work well in a reconstructive memory system.

Integrating perception and reasoning

One important question is how perceptual data are incor-
porated into the reasoning cycle of a knowledge based sys-
tem. Data arrive asynchronously, but high level operations
such as updating a Rete network or activating knowledge
sources usually do not allow for asynchronous data. In
systems that must do so, several mechanisms have been
used. See (Hewett and Hayes-Roth 1989) for an overview
and for a description of the method used in Guardian.

The mechanism used in the Guardian system (see Sec-
tion 6) buffers incoming data until a safe point in the rea-
soning cycle is reached. It is then incorporated into the
knowledge base all at once. No more than one action is
performed between safe points, so much of the asyn-
chronous nature of the perceptual input is retained.

Soar takes another approach by making input available
as the value of a special frame slot. It is unclear whether
unread data eventually disappears or whether it is buffered
indefinitely.

4 Applying Perception-Based Architectures

The ultimate measure of the usefulness of an attention
module will be how it aids a complex system perform its
tasks. Let’s look at several perceptually-complex systems
to see how the attention module would help them.

The helicopter pilot agents mentioned in the first section
of this paper were involved in a disaster because they im-
properly divided attention between two tasks: flying the
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helicopter; and observing enemy tanks. In our attention
module, the contents of the SACK, which control percep-
tion, are derived from components of the current plan. If
both tasks were elements of the current plan, then input
from their respective sensors would be available for pro-
cessing. While the attention module would guarantee that
relevant percepts would be available, the cognitive compo-
nent of the agent would still be responsible for ensuring
that the sensor input would be processed. The attention
module provides an organizational advantage, but is not a
total solution.

A second example is MIT’s Intelligent Room project
(Coen 1997). The room contains a vision system that rec-
ognizes gestures, and a speech recognition system. The
goal is to have a room, say in a weather bureau, where
people can point at map displays and ask questions of the
room’s computer.

A recent video of the system shows a person gesturing at
a map, waiting a few seconds, and then asking a question.
Clearly the system is unable to process visual and audio
input at the same time (as people can). To be fully func-
tional, the room needs to be able to perceive multiple
sources of input at the same time. There is no apparent
reason, aside from having a limited implementation of a
perception model, that the system could not process both
input modes simultaneously.

A third application for a perceptual attention module
would be an autonomous vehicle. Imagine a car driving
down a street. Most autonomous vehicles concentrate on
following the road, but there are many other important as-
pects to consider. A car backing down a driveway might
pull out in front of you. A ball rolling into the street might
be followed by a small child. The workers cutting a tree
branch at the side of the road might drop it on the road in
front of you. Each of these situations involves perceptions
that activate reasoning processes or learned schemas. A
perceptual attention module integrated with symbolic
memory can handle these situations.

5 Related Work

Most of the previous work on handling large amounts of
perceptual input has been in the area of real-time AI sys-
tems (Garvey and Lesser 1993). The solutions were de-
veloped as an approach to dealing with a real-world prob-
lem in a perceptually complex environment such as medi-
cal diagnosis (Hayes-Roth 1992), fighting forest fires
(Howe et al. 1990) or pilot agents (Hill 1997).

One of the assumptions of the work described in this re-
port is that all intelligent systems should be capable of ex-
isting in a perceptually complex environment and, to be
useful, should respond reasonably quickly. Although this
work doesn’t set response-time goals and is therefore not a
real-time system, it is clear that the organization of the

system has much in common with real-time AI systems.

The Guardian patient-monitoring system

The Guardian system for intensive-care patient monitoring
(Hayes-Roth et al. 1992)uses a buffer-based perceptual
preprocessing system to handle the large amount of input
it receives from patient monitors (Washington, Boureau
and Hayes-Roth 1990). In Guardian, the perceptual sys-
tem runs on a separate machine. It allocates a small senso-
ry buffer to each input stream. The buffers act as filters
and pass only significant information to the monitoring
system. The monitoring system tells the perceptual system
what "significant" means for each type of input data.

For a patient monitoring system, a significant value is
one that goes outside the boundary of expected values.
For example, a high or low temperature or blood pressure
is significant. Since the buffers are small (they typically
hold less than five items) they also implement data decay
to make room for new data, and they have a timeout fea-
ture so that the monitoring system will occasionally re-
ceive a datum even if the input values stay within accept-
able parameters. Finally, the boundary parameters are au-
tomatically adjusted by the perceptual system to maintain
specific data rates. For example, the acceptable range may
be widened in times of heavy input load.

This type of perceptual system works well in a monitor-
ing environment. Attention is periodically shifted to each
input data stream (via the timeout feature) while important
data is immediately passed to the monitoring system (via
the parameter range settings). And the perceptual system
is self-adjusting in times of heavy load, which reduces the
possibility of sensory overload.

However, it lacks some features needed in a general-
purpose perceptual system. First, it is heavily dependent
on numeric input data. Perceiving squares or colors does
not utilize a parameter range with boundary values. Pro-
cessing verbal input would also appear to be difficult to
implement with numerically-bounded buffers. Perceptual
preprocessing as used in Guardian does not appear to be a
general solution to perceptual input management, but the
perceptual preprocessing techniques could be used in a
more general system to manage numeric input data.

The RANGER system

RANGER (Kelly 1994) is a system for managing visual
attention during high-speed autonomous vehicle naviga-
tion. In high-speed navigation, detailed image processing
is important when the environment is dynamic and unpre-
dictable. However, detailed image processing becomes
untenable at high vehicle speeds due to the impossibly
short processing times available.
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The RANGER system solves this by computing the rele-
vant sub-window of the visual input that is important at
the current speed. Objects below the sub-window are
unimportant because the vehicle does not have time to
react to them anyway. Objects above the window are not
on the ground and thus do not need to be avoided. Using
the window, the amount of processing required is signifi-
cantly reduced, allowing the system to safely navigate at
higher speeds.

RANGER is not knowledge based; it is based entirely on
mathematical equations involving the vehicle speed, sen-
sor range, and the angle between the camera and the
ground. However, it can be seen as a special case of atten-
tion where a spatial map is segmented and used to govern
the creation and update of perceptual structures for only
those objects in the relevant segment of the spatial map.

6 Summary and Future Work
This paper has discussed the use of perceptual attention for
input management. Perceptual attention helps to organize,
filter, prioritize and serialize input received from any num-
ber of sensors. It can be integrated with the cognitive and
memory systems of a complex artificial agent. In addition
to its benefits, such as symbol grounding, it has some
drawbacks. This paper has explored several ways of over-
coming limitations imposed by the attention processes.

As we continue to develop perceptual attention and
apply it to our project, an autonomous wheelchair, we in-
tend to explore several areas mentionedin this paper. One
is the question of whether characteristics of human percep-
tion and attention are features or limitations. Should artifi-
cial intelligences be subject to the same limitations as peo-
ple? Is the size of human short term memory relevant to
that of artificial agents? Should the inability of people to
attend to two conversations at the same time be incorporat-
ed into artificial conversationalists?

We will also look into the various ways of controlling
the low-level (sub-symbolic) perception mechanism via
the control lines to the cognitive component. There may
be some useful control regimes that are not present in
human perception. For example, people do not have direct
access to textual input (written words are recognized at the
cognitive level) but computers could receive direct textual
input or symbolic input through a knowledge sharing lan-
guage.
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